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ridesharing applications, for instance, most AB test experiment durations do not exceed 20 days (Shi
et al., 2023), and the size of treatment effects typically ranges between 0.5% and 2% (Tang et al., 2019).

The primary objective of this paper is to develop a robust statistical framework for analyzing the
causal connections between the policies implemented by these companies and their corresponding out-
comes, even in the presence of the aforementioned challenges. Our four major contributions can be sum-
marized as follows. Firstly, we address the challenges by introducing linear and neural network-based
Varying Coefficient Decision Process (VCDP) models. These models accommodate dynamic treatment
effects over time and/or space, even in the presence of non-stationarity, random effects, interference,
and spatial spillovers. These models account for market features as mediators to incorporate historical
policy carryover effects. Furthermore, by assuming network interference and employing mean field ap-
proximation (as detailed in Section 3.2), we effectively operate an “effective treatment” (Manski, 2013)
or “exposure mapping” (Aronow and Samii, 2017) in the spatio-temporal system. Our approach extends
beyond the switchback design to any dynamic treatment allocation setup.

Secondly, we develop estimation methods for our VCDPs. For linear VCDPs, we propose a two-
step process involving the calculation of least squares estimates and kernel smoothing to refine the
estimates. Kernel smoothing leverages neighboring observations across time and/or space, enhancing
estimation efficiency and overcoming the challenge of weak signals and small sample sizes. Additionally,
we decompose average treatment effects (ATEs) into Direct Effects (DE) and Indirect Effects (IE).
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et al., 2020). Our VCDPs are closely related to the second and third types of models, but they focus
on interference across time and space. Most aforementioned works studied the interference effect across
time or space and were motivated by research questions in environmental and epidemiological studies.
It remains unknown about their generalization to ride-sharing markets. Fourthly, recent models capture
the interference effect via congestion or price effects in a marketplace (Munro et al., 2021; Wager and
Xu, 2021; Johari et al., 2022). These solutions rely on an assumption of Markovanity or stationarity
and are design-dependent. In contrast, our approach accommodates non-stationarity and is capable of
managing non-Markovianity in scenarios where outcome errors exhibit time-correlated patterns.

Our proposal is closely related to a growing literature on off-policy evaluation (OPE) methods in
sequential decision making (see Uehara et al., 2022, for a review). In the literature, augmented inverse
propensity score weighting methods (see e.g., Zhang et al., 2013; Luedtke and Van Der Laan, 2016; Jiang
and Li, 2016; Thomas and Brunskill, 2016) have been proposed for valid OPE. Nonetheless, these methods
suffer from the curse of horizon (Liu et al., 2018) in that the variance of the resulting estimator grows
exponentially fast with respect to m, leading to inefficient estimates in the large m setting. Efficient
model-free OPE methods have been proposed by Kallus and Uehara (2020, 2022); Liao et al. (2020,
2021); Luckett et al. (2020); Shi et al. (2021, 2022b) under the Markov decision process (MDP, see e.g.,
Puterman, 2014) model assumption. Recently, Hu and Wager (2021) proposed a model-free OPE method
in partially observed MDPs (POMDPs) that avoids the curse of horizon. Our proposal is model-based
and is ultimately different from most existing model-free OPE methods that did not consider the random
effects, spatial interference effects, and the decomposition into DE and IE. In addition, little has been
done on OPE for spatio-temporal dependent experiments.

Finally, our paper is related to a line of works on quantitative approaches to ride-sharing platforms.
In particular, Bimpikis et al. (2019) proposed supply-and-demand models and investigated the impact of
the demand pattern on the platform’s prices and profits. Castillo et al. (2017) studied how the surging
prices can prevent wild goose chase (e.g., drivers pick up distant customers) and conducted regression
analysis to verify the nonmonotonicity of supply on pickup times. However, estimation and inference of
target policy’s treatment effect have not been considered in these papers. Cohen et al. (2022) employed
the difference in differences methods to estimate the treatment effects of different types of compensation
on the engagement of riders who experienced a frustration. Their analysis is limited to staggered designs.
Garg and Nazerzadeh (2022) studied the theoretical properties of driver-side payment mechanisms and
compared additive surge against multiplicative surge numerically. However, they did not consider the
spatial spillover effects of these policies. Our paper complements the existing literature by developing a
general framework to efficiently infer a target policy’s direct and indirect effects based on data collected
from spatio-temporal dependent experiments and analyzing the advantage of switchback designs in the
presence of spatio-temporal random effects.

1.2. Paper outline
The rest of the paper is organized as follows. In Section 2, we introduce a potential outcome framework
for problem formulation, propose two novel temporal VCDP models under temporal dependent exper-
iments, and develop estimation and testing procedures for both DE and IE. In Section 3, we further
propose two spatio-temporal VCDP models under spatio-temporal dependent experiments and develop
the associated estimation and testing procedures. In Section 4, we systematically investigate the theoret-
ical properties of estimation and testing procedures (e.g., consistency and power) developed in Sections
2 and 3. We also illustrate the benefits of employing the switchback design in theory. In Section 5,
we use numerical simulations to examine the finite sample performance of our estimation and testing
procedures. Furthermore, we numerically explore the benefits of the switchback design. In Section 6, we
apply the proposed procedures to evaluating different policies in Didi Chuxing.

2. Policy evaluation for temporal dependent experiments

In this section, we present the proposed methodology for policy evaluation in temporal dependent ex-
periments for one experimental region.

2.1. A potential outcome framework
We use the potential outcome framework to present our model in non-stationary environments. We
divide each day into m equally spaced nonoverlapping intervals. At each time interval, the platform can



4 Shikai Luoa∗, Ying Yangb∗, Chengchun Shic∗

implement either the new or old policy. We use Aτ to denote the policy implemented at the τth interval
for any integer τ ≥ 1. Let Sτ be some state variables measured at the (τ − 1)-th interval in a given day.
All the states share the same support, which is assumed to be a compact subset of Rd, where d denotes
the dimension of the state. Let Yτ ∈ R be the outcome of interest measured at time τ .

Firstly, we define the average treatment effect (ATE) as the difference between the new and old
policies. Let āτ = (a1, . . . , aτ )

⊤ ∈ {0, 1}τ denote a treatment history vector up to time τ , where 1 and 0
denote the new policy and the old one, respectively. We define S∗

τ (āτ−1) and Y ∗
τ (āτ ) as the counterfactual

state and the counterfactual outcome, respectively. Then ATE can be defined as follows.

Definition 1. ATE is the difference between two value functions given by

ATE =

m∑
τ=1

E{Y ∗
τ (1τ ) − Y ∗

τ (0τ )},

where 1τ and 0τ denote vectors of 1s and 0s of length τ , respectively.

Secondly, we can decompose ATE as the sum of direct effects (DE) and indirect effects (IE). Let Rτ

denote the conditional mean function of the outcome given the data history,

E{Y ∗
τ (āτ )|S∗

τ (āτ−1), Y
∗
τ−1(āτ−1), S

∗
τ−1(āτ
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Lemma 1. Under CA, SRA and PA, we have

Rτ (aτ , sτ , . . . , s1) = E(Yτ |Aτ = aτ , Sτ = sτ , . . . , S1 = s1), (4)

E{Rτ (a, S
∗
τ (āτ−1), . . . , S1)} = E[E[Rτ (a, Sτ , . . . , S1)|{Aj = aj}1≤j<τ , {Sj , Yj}1≤j<τ ]]. (5)

Lemma 1 implies that the causal estimand can be represented as a function of the observed data.

2.2. TVCDP model
We introduce two TVCDP regression models to model Yi,τ and the conditional distribution of Si,τ given
the data history, forming the basis of our estimation and testing procedures. Suppose that the experiment
is conducted over n days. Let (Si,τ , Ai,τ , Yi,τ ) be the state-policy-outcome triplet measured at the τth
time interval of the ith day for i = 1, . . . , n and τ = 1, . . . ,m. The proposed TVCDP model is composed
of the following set of additive noise models,

Yi,τ = f1,τ (Si,τ , Ai,τ ) + ei,τ ,

Si,τ+1 = f2,τ (Si,τ , Ai,τ ) + εi,τS ,
(6)

where f1,τ (·) and f2,τ (·) are the regression functions.
We would like to highlight several key points. Firstly, in addition to defining the standard outcome

regression model f1,τ as described in equation (6), it is crucial to specify how past actions influence
future states. This is accomplished through the inclusion of f2,τ , which plays a pivotal role in quantifying
temporal interference effects.

Secondly, we introduce a specific assumption related to the error structure. This assumption is
fundamental as it allows us to incorporate temporal random effects effectively.

Assumption 1. (i) The outcome noise ei,τ = ηi,τ + εi,τ is a combination of two mutually inde-
pendent stochastic processes: day-specific temporal variation ηi,τ and measurement error εi,τ . (ii) The
processes {ηi,τ}i,τ are identical realizations of a zero-mean stochastic process with covariance function
{Ση(τ1, τ2)}τ1,τ2

. Additionally, all components of Ση(t1, t2) have bounded and continuous second deriva-
tives with respect to t1 and t2. (iii) The measurement errors {εi,τ}i,τ and {εi,τS}i,τ are independent over
time. They have zero mean values and exhibit Var(εi,τ ) = σ2

ε,τ and Cov(εi,τS) = Σε,τS.

It’s important to note that the day-specific random effects are present only in the outcome regression
model. However, our approach can be extended to scenarios where these random effects also exist in the
state regression model. We provide a detailed discussion of this extension in Section 7. Additionally, it’s
worth mentioning that both the conditional mean and covariance functions, namely f1,τ , f2,τ , σ

2
ε,τ , and

Σε,τS , are time-dependent. This captures the nonstationarity inherent in the data generating process.
Our TVCDP models (6) have strong connections with the MDP model that is commonly used in

reinforcement learning. Specifically, models (6) reduce to non-stationary (or time-varying) MDP models
(Kallus and Uehara, 2022) when there are no day-specific random effects in {ei,τ}i,τ . However, the
proposed time varying models are no longer MDPs due to the existence of the day-specific random
effects. In particular, Yi,τ in (6) is dependent upon past responses given Zi,τ = (1, S⊤

i,τ , Ai,τ )
⊤, leading

to the violation of the conditional independence assumption. In addition, the market features at each
time serve as mediators that mediate the effects of past actions on the current outcome.

Next, we consider two specific function approximations for f1 and f2 and derive their related IE and
DE as follows.

Model 1. Linear temporal varying coefficient decision process (L-TVCDP) assumes

Yi,τ = β0(τ) + S⊤
i,τβ(τ) +Ai,τγ(τ) + ei,τ = Z⊤

i,τθ(τ) + ei,τ ,

Si,τ+1 = ϕ0(τ) + Φ(τ)Si,τ +Ai,τΓ(τ) + εi,τS = Θ(τ)Zi,τ + εi,τS ,

where θ(τ) = (β0(τ), β(τ)
⊤, γ(τ))⊤ is a (d+2)×1 vector of time-varying coefficients, Θ(τ) = [ϕ0(τ) Φ(τ) Γ(τ)]

is a d × (d+ 2) coefficient matrix and Zi,τ = (1, S⊤
i,τ , Ai,τ )

⊤.

Model 1 shares a close connection with the linear quadratic Gaussian model (LQG), well studied in the
fields of RL and control theory (see, for example, Lale et al., 2021). To be more specific, Model 1 can be
seen as a simplified, one-dimensional observation variant of LQG under certain conditions. This happens
when the outcome regression model doesn’t incorporate Ai,τ and the autocorrelated noise ηi,τ . However,
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there’s a crucial distinction between LQG and our proposed model. In LQG, the state variables are
hidden and must be deduced from the observed Yi,τ values. This contrasts with similar models used in
literature for estimating dynamic treatment effects (Lewis and Syrgkanis, 2020).

When {ηi,τ}i,τ become the fixed effects and satisfy ηi,τ = ηi for any i and τ , the outcome regression
model of L-TVCDP includes both the day-specific fixed effects {ηi}i and the time-specific fixed effects
{β0(τ)}τ . It is similar to the two-way fixed effects model in the panel data literature (De Chaisemartin
and d’Haultfoeuille, 2020; Wooldridge, 2021; Arkhangelsky et al., 2021; Imai and Kim, 2021). Further-
more, we derive the closed-form expressions for DE and IE under L-TVCDP, whose proof can be found
in Section S.3 of the supplementary document.

Proposition 1. Under the L-TVCDP model, we have DE =
∑m

τ=1 γ(τ) and

IE =

m∑
τ=2

β(τ)⊤

{
τ−1∑
k=1

(Φ(τ − 1)Φ(τ − 2) . . .Φ(k + 1)) Γ(k)

}
, (7)

where by convention, the product Φ(τ − 1)Φ(τ − 2) . . .Φ(k + 1) = 1 when τ − 1 < k + 1.

Model 2. Neural networks temporal varying decision process (NN-TVCDP) assumes

Yi,τ = g0(τ, Si,τ ) · I(Ai,τ = 0) + g1(τ, Si,τ ) · I(Ai,τ = 1) + ei,τ ,

Si,τ+1 = G0(τ, Si,τ ) · I(Ai,τ = 0) +G1(τ, Si,τ ) · I(Ai,τ = 1) + εi,τS ,

where I(·) denotes the indicator function of an event and g0(·, ·), g1(·, ·), G0(·, ·), and G1(·, ·) are
parametrized via some (deep) neural networks.

Under NN-TVCDP, DE and IE are, respectively, given by

DE =

m∑
τ=1

E
{
g1

(
τ, S0

τ

)
− g0

(
τ, S0

τ

)}
and IE =

m∑
τ=1

E
{
g1

(
τ, S1

τ

)
− g1

(
τ, S0

τ

)}
, (8)

where S0
τ and S1

τ are defined recursively by S0
τ = G0(τ − 1, S0

τ−1) and S1
τ = G1(τ − 1, S1

τ−1).

2.3. Estimation and testing procedures for DE in the L-TVCDP model
We describe our estimation and testing procedures for DE in the L-TVCDP model and present their
pseudocode in Algorithm 1 as follows.

Algorithm 1 Inference of DE in the L-TVCDP model

1: Compute the OLS estimator θ̂ according to (9).

2: Employ kernel smoothing to compute a refined estimator θ̃ according to (10) and calculate the

estimate D̂E by (11).

3: Estimate the variance of θ̂ as follows:
4: (3.1). Estimate the conditional variance of Yi given {Zi,τ}τ using (12);

5: (3.2). Estimate the variance of θ̂ by the sandwich estimator (13).

6: Estimate the variance of θ̃ by Ṽθ = ΩV̂θΩ
⊤ and compute the standard error of D̂E, denoted by

ŝe(D̂E).

7: Reject HDE
0 if D̂E/ŝe(D̂E) exceeds the upper αth quantile of a standard normal distribution.

Step 1 of Algorithm 1 is to obtain an initial estimator of θ(τ) by computing its ordinary least squares
(OLS) estimator, defined as

θ̂(τ) = (

n∑
i=1

Zi,τZ
⊤
i,τ )

−1(

n∑
i=1

Zi,τYi,τ ) for 1 ≤ τ ≤ m. (9)

Step 2 of Algorithm 1 is to employ kernel smoothing to refine the initial estimator. Specifically, for
a given kernel function K(·), we introduce the refined estimator

θ̃(τ) = (β̃0(τ), β̃(τ)
⊤, γ̃(τ))⊤ =

m∑
τ=1

ωτ,h(t)θ̂(τ), (10)
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for any t ∈ [0,m] and a bandwidth parameter h, where ωτ,h(t) = K((t−τ)/(mh))/
∑m

j=1K((t−j)/(mh))
is the weight function. Our DE estimator is given by

D̂E =

m∑
τ=1

γ̃(τ). (11)

We will show in Section 4 that as min(n,m) → ∞, D̂E is asymptotically normal. To derive a Wald test

for (2), it remains to estimate its variance Var(D̂E).
There are two major advantages of using the smoothing step here. First, it allows us to estimate the

time-varying coefficient curve θ(t) without restricting t to the class of integers. Second, the smoothed
estimator has smaller variance, leading to a more powerful test statistics. To elaborate, according to
model (6) for L-TVCDP, the variation of the OLS estimator comes from two sources, the day-specific
random effect and the measurement error. The use of smoothing removes the random fluctuations due
to the measurement error. See Theorem 1 in Section 4 for a formal statement. This smoothing technique
has been widely applied in the analysis of varying-coefficient models (see e.g., Zhu et al., 2014).

Step 3 of Algorithm 1 is to estimate the covariance matrix of the initial estimator θ̂ = (θ̂⊤(1), . . . , θ̂⊤(m))⊤.

We first estimate the residual ei,τ by êi,τ = Yi,τ − Z⊤
i,τ θ̃(τ). It allows us to estimate the day-specific

random effect via smoothing, i.e., η̂i(t) =
∑m

j=1 ωj,h(t)êi,τ . Second, the measurement error can be esti-

mated by ε̂i,τ = êi,τ − η̂i,τ for any i and τ , where η̂i,τ = η̂i(τ). Third, we estimate the conditional
covariance matrix of Yi = (Yi,1, . . . , Yi,m)⊤ given {Zi,τ}τ based on these estimated residuals. Un-
der model (6) for L-TVCDP, the covariance between Yi,τ1

and Yi,τ2
conditional on {Zi,τ}τ is given

by Σy(τ1, τ2) = σ2
ε,τ1

I(τ1 = τ2) + Ση(τ1, τ2), which can be consistently estimated by

Σ̂y(τ1, τ2) ≡ 1

n

n∑
i=1

ε̂2i,τ1
I(τ1 = τ2) +

1

n

n∑
i=1

η̂i,τ1
η̂i,τ2

. (12)

This allows us to estimate Var(Yi|{Zi,τ}τ ) by Σ̂ = {Σ̂y(τ1, τ2)}τ1,τ2
. Finally, the covariance matrix of θ̂

can be consistently estimated by the sandwich estimator,

V̂θ = (

n∑
i=1

Z⊤
i Zi)

−1(

n∑
i=1

Z⊤
i Σ̂Zi)(

n∑
i=1

Z⊤
i Zi)

−1, (13)

where Zi is a block-diagonal matrix computed by aligning Z⊤
i,1, . . ., Z

⊤
i,m along its diagonal.

Step 4 of Algorithm 1 is to estimate the covariance matrix of the refined estimator θ̃ = (θ̃⊤(1), . . . , θ̃⊤(m))⊤.

A key observation is that each θ̃(τ) is essentially a weighted average of {θ̂(τ)}τ . Writing in matrix form,

we have θ̃ = Ωθ̂, where Ω is a block-diagonal matrix computed by aligning ω1,h(τ)Jp, . . ., ωm,h(τ)Jp

along its diagonal and Jp is a p × p matrix of ones. As such, we estimate the covariance matrix of θ̃

by Ṽθ = ΩV̂θΩ
⊤. This in turn yields a consistent estimator for the variance of D̂E, as D̂E is a linear

combination of θ̃.
Step 5 of Algorithm 1 is to construct a Wald-type test statistic based on D̂E and its standard error

ŝe(D̂E). We reject the null hypothesis in (2) if D̂E/ŝe(D̂E) exceeds the upper αth quantile of a standard
normal distribution. Size and power properties of the proposed test are investigated in Section 4.

2.4. Estimation and testing procedures for IE in the L-TVCDP model
We describe our estimation and testing procedures for IE in the L-TVCDP model and present their
pseudocode in Algorithm 2 as follows.

Algorithm 2 Inference of IE in the L-TVCDP model

1: Compute the OLS estimator

Θ̂ = {Θ̂(1), . . . , Θ̂(m − 1)}⊤ = {
n∑

i=1

Zi,(−m)Z
⊤
i,(−m)}

−1{
n∑

i=1

Zi,(−m)S
⊤
i,(−1)},

where Si,(−1) and Zi,(−m) are block-diagonal matrices computed by aligning S⊤
i,2, . . ., S

⊤
i,m and Z⊤

i,1,

. . ., Z⊤
i,m−1 along their diagonals, respectively.



8 Shikai Luoa∗, Ying Yangb∗, Chengchun Shic∗

2: Compute the refined estimator Θ̃ = {Θ̃(1), . . . , Θ̃(m − 1)}⊤ = ΩΘ̂.

3: Construct the plug-in estimator ÎE according to (14).

4: Compute the estimated residual ε̂i,τS = Si,τ+1 − Zi,τ Θ̃(τ) for any i and τ .
5: for b = 1, . . . , B do

Generate i.i.d. standard normal random variables {ξbi }ni=1;

Generate pseudo outcomes {Ŝb
i,τ}i,τ and {Ŷ b

i,τ}i,τ according to (15);

Repeat Steps 1-2 in Algorithm 1 and Steps 1-3 in Algorithm 2 to compute ÎE
b
.

6: end for

7: Reject HIE
0 if ÎE exceeds the upper αth empirical quantile of {ÎE

b
− ÎE}b.

Steps 1-3 of Algorithm 2 are to compute a consistent estimator ÎE for IE. Specifically, in Step 1 of
Algorithm 2, we apply OLS regression to derive an initial estimator Θ̂ for Θ = {Θ(1), . . . ,Θ(m − 1)}⊤.
In Step 2 of Algorithm 2, we employ kernel smoothing to compute a refined estimator Θ̃ = ΩΘ̂ to
improve its statistical efficiency, as in Algorithm 1. In Step 3 of Algorithm 2, we plug in Θ̃ and θ̃ for Θ
and θ in model 1, leading to

ÎE =

m∑
τ=2

β̃(τ)⊤

{
τ−1∑
k=1

(
Φ̃(τ − 1)Φ̃(τ − 2) . . . Φ̃(k + 1)

)
Γ̃(k)

}
, (14)

where β̃(τ), Φ̃(τ) and Γ̃(τ) are the corresponding estimators for β(τ), Φ(τ) and Γ(τ), respectively.

Step 4 of Algorithm 2 is to compute the estimated residuals Êi,τ = Si,τ+1 − Zi,τ Θ̃(τ) for all i and τ ,
which are used to generate pseudo outcomes in the subsequent bootstrap step.

Step 5 of Algorithm 2 is to use bootstrap to simulate the distribution of ÎE under the null hypothesis.
The key idea is to compute the bootstrap samples for θ̃ and Θ̃ and use the plug-in principle to construct

the bootstrap samples for ÎE. A key observation is that θ̃ and Θ̃ depend linearly on the random errors,
so the wild bootstrap method (Wu et al., 1986) is applicable. We begin by generating i.i.d. standard
normal random variables {ξi}ni=1. We next generate pseudo-outcomes given by

Ŝi,τ+1 = Θ̃(τ)Ẑi,τ + ξiε̂i,τS and Ŷi,τ = Ẑ⊤
i,τ θ̃(τ) + ξiêi,τ , (15)

where Ẑi,τ is a version of Zi,τ with Si,τ replaced by Ŝi,τ . Furthermore, we apply Steps 1-2 of Algorithm

1 and Steps 1-3 of Algorithm 2 to compute the bootstrap version of ÎE based on these pseudo outcomes
in (15). The above procedures are repeatedly applied to simulate a sequence of bootstrap estimators

{ÎE
b
}Bb=1 based on which the decision region can be derived.

2.5. Estimation procedure in NN-TVCDP model
We first introduce how to estimate the regression functions g0, g1, G0 and G1. Take g0 as an instance,
we consider minimizing the following empirical objective function

n∑
i=1

m∑
τ=1

(1 − Ai,τ ) {Yi,τ − g0(τ, Si,τ )}2 .

Instead of separately estimating g0(τ, •) for each τ , we treat τ as part of the features and jointly estimate
{g0(τ, •)}τ by solving the above optimization. It allows us to borrow information across different time
points to improve the estimation accuracy.

Next, we introduce the estimation procedures for DE and IE. We impose a parametric model (e.g.,
Gaussian) for the density function fετS

of the measurement error εi,τS and summarize the steps below.

1. Use neural networks to estimate g0, g1, G0 and G1 by solving their corresponding least square
objective functions. Denote the corresponding estimators by ĝ0, ĝ1, Ĝ0, and Ĝ1, respectively.

2. Compute the residual ε̂i,τS = Si,τ+1 −
{
Ĝ0(τ, Si,τ ) · I(Ai,τ = 0) + Ĝ1(τ, Si,τ ) · I(Ai,τ = 1)

}
and use

ε̂i,τS to compute the density function estimator f̂ετS
.
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3. Use Monte Carlo to estimate the distributions of the potential states S∗
i,τ (1τ−1) and S∗

i,τ (0τ−1)

conditional on Si,1. Specifically, for τ = 1, . . . ,m, i = 1, . . . , n, and k = 1, . . . ,M , we use f̂ετS

to generate error residuals {ε̂i,τS,k}Mk=1, where M denotes the number of Monte Carlo replications.

Next, we set Ŝ1
i,1,k = Ŝ0

i,1,k = Si,1 for any i and k, and sequentially construct Monte Carlo samples

{Ŝ1
i,τ,k}Mk=1, {Ŝ0

i,τ,k}Mk=1 by setting Ŝ1
i,τ+1,k = Ĝ1(τ, Ŝ

1
i,τ,k)+ε̂i,τS,k and Ŝ0

i,τ+1,k = Ĝ0(τ, Ŝ
0
i,τ,k)+ε̂i,τS,k.

4. Based on (8), we estimate DE and IE by using

D̂E =
1

nM

n∑
i=1

M∑
k=1

m∑
τ=1

{
ĝ1(τ, Ŝ

0
i,k,τ ) − ĝ0(τ, Ŝ

0
i,k,τ )

}
and

ÎE =
1

nM

n∑
i=1

M∑
k=1

m∑
τ=2

{
ĝ1(τ, Ŝ

1
i,k,τ ) − ĝ1(τ, Ŝ

0
i,k,τ )

}
.

3. Policy evaluation for spatio-temporal dependent experiments

In this section, we present the proposed methodology for policy evaluation in spatio-temproal dependent
experiments by extending our proposal in temporal dependent experiments. We highlight several key
differences between the spatio-temporal dependent experiment and the temporal dependent one.

3.1. A potential outcome framework
Firstly, we introduce the spatio-temporal dependent experiments as follows. Specifically, a city is split
into r non-overlapping regions. Each region receives a sequence of policies over time and different regions
may receive different policies at the same time. In our application, we employ the spatio-temporal
dependent alternation design to randomize these policies. In each region, we independently randomize
the initial policy (either A or B) and then apply the temporal alternation design. As discussed in the
introduction, one major challenge for policy evaluation is that the spatial proximities will induce spatio-
temporal interference among locations across time. In the example of ride-sharing platforms, for many
call orders, their pickup locations and destinations belong to different regions. Therefore, applying an
order dispatch policy at one region will change the distribution of drivers of its neighbouring areas as
well, so the order dispatch policy at one location could influence outcomes of those neighbouring areas,
inducing interference among spatial units.

Secondly, to quantify the spatio-temporal interference, we allow the potential outcome of each region
to depend on polices applied to its neighbouring areas as well. Specifically, for the ιth region, let
āτ,ι = (ā1,ι, . . . , āτ,ι)

⊤ denote its treatment history up to time τ and Nι denote the neighbouring regions
of ι. Let āτ,[1:r] = (āτ,1, . . . , āτ,r)

⊤ denote the treatment history associated with all regions. Similarly, let
S∗
τ,ι(āτ−1,[1:r]) and Y ∗

τ,[1:r](āτ,[1:r]) denote the potential state and outcome associated with the ιth region,

respectively. Let S∗
τ,[1:r](āτ−1,[1:r]) denote the set of potential states at time τ .

Similarly, we introduce CA and SRA in the spatio-temporal case as follows.

• CA. S∗
τ+1,ι(Āτ,[1:r]) = Sτ+1,ι and Y ∗

τ,ι(Āτ,[1:r]) = Yτ,ι for any τ ≥ 1 and 1 ≤ ι ≤ r, where Āτ,[1:r]

denotes the set of observed treatment history up to time τ .

• SRA. Aτ,[1:r], the set of observed policies at time τ , is conditionally independent of all potential
variables given Sτ,[1:r] and {(Sj,[1:r], Aj,[1:r], Yj,[1:r])}j<τ .

SRA automatically holds under the spatio-temporal alternation design, in which the policy assignment
mechanism is conditionally independent of the data given the policies assigned at the initial time point.

Thirdly, we are interested in the overall treatment effects. Define ATE as the difference between the
new and old policies aggregated over different regions.

Definition 2. ATE is defined as the difference between two value functions given by

ATEst =

r∑
ι=1

m∑
τ=1

E{Y ∗
τ,ι(1τ,[1:r]) − Y ∗

τ,ι(0τ,[1:r])}.
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Let Rτ,ι denote the conditional mean function of Y ∗
τ,ι(āτ,[1:r]) given the past policies and potential states.

Similarly, we can decompose ATE as the sum of DE and IE, which are, respectively, given by

DEst =

r∑
ι=1

m∑
τ=1

E{Rτ,ι

(
1τ,[1:r], S

∗
τ,ι(0τ−1,[1:r]),0τ−1,[1:r], . . . , S1

)
− Rτ,ι

(
0τ,[1:r], S

∗
τ,ι(0τ−1,[1:r]),0τ−1,[1:r], . . . , S1

)
},

IEst =

r∑
ι=1

m∑
τ=1

E{Rτ,ι

(
1τ,[1:r], S

∗
τ,ι(1τ−1,[1:r]),1τ−1,[1:r], . . . , S1

)
− Rτ,ι

(
1τ,[1:r], S

∗
τ,ι(0τ−1,[1:r]),0τ−1,[1:r], . . . , S1

)
}.

We aim to test the following hypotheses:

HDE
0 : DEst ≤ 0 v.s HDE

1 : DEst > 0, (16)

HIE
0 : IEst ≤ 0 v.s HIE

1 : IEst > 0. (17)

3.2. Spatio-temporal VCDP models
We introduce the spatio-temporal VCDP (STVCDP) models to model Yτ,ι and Sτ,ι, respectively. Suppose
that the experiment is conducted across r regions over n days. Let (Si,τ,ι, Ai,τ,ι, Yi,τ,ι) denote the state-
policy-outcome triplet measured from the ιth region at the τth time interval of the ith day for i = 1, . . . , n,
τ = 1, . . . ,m, and ι = 1, . . . , r. The STVCDP model is given as follows,

Yi,τ,ι = f1,τ,ι
(
Si,τ,ι, Ai,τ,ι, Āi,τ,Nι

)
+ ei,τ,ι,

Si,τ+1,ι = f2,τ,ι
(
Si,τ,ι, Ai,τ,ι, Āi,τ,Nι

)
+ ϵi,τ,ι,

where Āi,τ,Nι
denotes the average of {Ai,τ,k}k∈Nι

, and {ei,τ,ι, ϵi,τ,ι} are the random noises. In parallel to
Assumption 1, we impose the following noise assumption for the STVCDP model.

Assumption 2. (i) The outcome noise ei,τ,ι = ηIi,τ,ι + ηIIi,τ,ι + ηIIIi,τ,ι + εi,τ,ι can be decomposed into

four mutually independent processes: {ηIi,τ,ι}, {ηIIi,τ,ι}, {ηIIIi,τ,ι}, and {εi,τ,ι}. (ii) The {ηIi,τ,ι}, {ηIIi,τ,ι} and

{ηIIIi,τ,ι} are i.i.d. copies of some zero-mean random processes with covariance functions ΣηI (τ1, ι1, τ2, ι2),
ΣηII (τ1, ι1, τ2)I(ι1 = ι2), and ΣηIII (τ1, ι1, ι2)I(τ1 = τ2), respectively. These covariance functions have
bounded and continuously differentiable second-order derivatives. (iii) The measurement errors {εi,τ,ι}i,τ,ι
and the state noises {ϵi,τ,ι}i,τ,ι are independent over different location/time combinations, have zero
means, and satisfy Var(εi,τ,ι) = σ2

ε(τ, ι) and Cov(ϵi,τ,ι) = Σϵ,τ,ι.

We make three remarks. Firstly, as per the STVCDP model, the outcome in the ιth region is
influenced solely by the current actions Ai,τ,ι and those from its neighboring areas. This assumption
is often valid in various applications, such as ride-sharing platforms. For instance, the policy in one
location may impact other locations only through its effect on the distribution of drivers. Within each
time unit, a driver can travel at most from one location to its neighboring ones. Consequently, outcomes
in one location are independent of policies applied to non-adjacent locations.

Secondly, in our spatial interference model, we adopt the mean field approximation. Under this ap-
proach, the outcome Yτ,ι and next state Sτ+1,ι in a given region depend on the treatments of neighboring
regions {Aτ,k}k∈N ι only through their average Āτ,N ι. The mean field approximation is a commonly used
technique in multi-agent reinforcement learning for policy learning and evaluation. It’s worth noting that
studies, such as Shi et al. (2022a), have shown that the average effect Āτ,N ι effectively summarizes the
impact of {Aτ,k}k∈N ι. This approach aligns with assumptions frequently made in the causal inference
literature dealing with spatial interference (Sobel, 2006; Hudgens and Halloran, 2008; Zigler et al., 2012;
Perez-Heydrich et al., 2014; Sobel and Lindquist, 2014; Liu et al., 2016; Sävje et al., 2021).

Thirdly, besides the average effect, alternative low-dimensional summary statistics of {Aij : j ∈ Nι}
can be considered, such as

∑
j∈Nι

θιjAij and θιI{∑j∈Nι
Aij>0} (Hu et al., 2022). The resulting estimation

and inference procedures can be similarly derived.
Similar to model (6), we allow general function approximation for f1 and f2. To save space, we focus

on linear STVCDP models (L-STVCDP) in the rest of this section. Meanwhile, the proposed estimation
procedure can be extended to handle neural network STVCDP models, as in Section 2.4. The proposed
L-STVCDP model is given as follows,

Yi,τ,ι = β0(τ, ι) + S⊤
i,τ,ιβ(τ, ι) +Ai,τ,ιγ1(τ, ι) + Āi,τ,Nι

γ2(τ, ι) + ei,τ,ι, (18)

Si,τ+1,ι = ϕ0(τ, ι) + Φ(τ, ι)Si,τ,ι +Ai,τ,ιΓ1(τ, ι) + Āi,τ,Nι
Γ2(τ, ι) + ϵi,τ,ι,
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where Zi,τ,ι = (1, S⊤
i,τ,ι, Ai,τ,ι, Āi,τ,Nι

)⊤.

Similar to (7), we can show that DEst and IEst are equal to the following,

DEst =
∑r

ι=1

∑m
τ=1{γ1(τ, ι) + γ2(τ, ι)}, (19)

IEst =
∑r

ι=1

∑m
τ=1 β(τ, ι)

⊤
[∑τ−1

k=1 (Φ(τ − 1, ι) . . .Φ(k + 1, ι)) {Γ1(k, ι) + Γ2(k, ι)}
]
,

where the product Φ(τ − 1, ι) . . .Φ(k+1, ι) = 1 when τ − 1 < k+1. These two identities form the basis
of our test procedure.

3.3. Estimation and testing procedures for DE and IE
We first describe our estimation and testing procedures for DE under the spatio-temporal alternation
design and present the pseudocode in Algorithms S.1 of Section S.1 of the supplementary document to
save space.

Step 1 of Algorithm S.1 is to independently apply Steps 1 and 2 of Algorithm 1 detailed in Section
2.3 to the data subset {(Zi,τ,ι, Yi,τ,ι)}i,τ for each region ι in order to compute a smoothed estimator

θ̃0
st(ι) = {θ̃0st(1, ι)⊤, . . . , θ̃0st(m, ι)⊤}⊤ for {θ(1, ι)⊤, . . . , θ(m, ι)⊤}⊤.
Step 2 of Algorithm S.1 is to employ kernel smoothing again to spatially smooth each component

of θ̃0
st(ι) across all ι ∈ {1, . . . , r}. Specifically, we compute θ̃st(ι) = {θ̃st(1, ι)⊤, . . . , θ̃st(m, ι)⊤}⊤ as the

resulting refined estimator, given by θ̃st(τ, ι) =
∑r

ℓ=1 κℓ,hst
(ι)θ̃0st(τ, ℓ), where κℓ,hst

(·) defined in (S.2) is
a normalized kernel function with bandwidth parameter hst.

We remark that we employ kernel smoothing twice in order to estimate the varying coefficients. In
the first step, we temporally smooth the least square estimator to compute θ̃0

st(ι). In the second step, we

further spatially smooth θ̃0
st(ι) to compute θ̃st(ι). Therefore, the estimator θ̃st(ι) has smaller variance

than θ̃0
st(ι), since we borrow information across neighboring regions to improve the estimation efficiency.

To elaborate this point, the random effect in (18) can be decomposed into three parts: ηIi,τ,ι+ηIIi,τ,ι+ηIIIi,τ,ι.

Temporally smoothing the varying coefficient estimator removes the random fluctuations caused by ηIIIi,τ,ι
and the measurement error. Spatially smoothing the estimator further removes the random fluctuations
caused by ηIIi,τ,ι. This in turn implies that the proposed test under the spatio-temporal design is more
powerful than the one developed in Section 2 under the temporal design. Such an observation is consistent
with our numerical findings in Section 5.2.

Steps 3 and 4 of Algorithm S.1 are to estimate the covariance matrix of (θ̃st(1), . . . , θ̃st(r))
⊤, denoted

by Ṽθ,st. These two steps are very similar to Steps 3 and 4 of Algorithm 1. Specifically, we first estimate
the measurement errors and random effects based on the estimated varying coefficients. We next use
the sandwich formula to compute the estimated covariance matrix for the initial least-square estimator.
Then the estimated covariance matrix for θ̃0

st(ι) can be derived accordingly. We use Ṽθ,st to denote the
corresponding covariance matrix estimator.

Step 5 of Algorithm S.1 is to compute the Wald-type test statistic and its standard error esti-

mator. Specifically, let γ̃1(τ, ι) and γ̃2(τ, ι) be the last two elements of θ̃st(τ, ι), we have D̂Est =∑r
ι=1

∑m
τ=1{γ̃1(τ, ι) + γ̃2(τ, ι)}. We will show in Theorem 6 that D̂Est is asymptotically normal. In

addition, its standard error ŝe(D̂Est) can be derived based on Ṽθ,st. This yields our Wald-type test

statistic Tst = D̂Est/ŝe(D̂Est). We reject the null hypothesis if Tst exceeds the upper αth quantile of a
standard normal distribution.

We next describe our estimation and testing procedures for IE. The method is very similar to the
one discussed in Section 2.4. We sketch an outline of the algorithm to save space. Details are presented
in S.2 of Section S.1 of the supplementary document. Specifically, we first plug in the set of smoothed

estimators {Θ̃st(τ, ι)}τ,ι and {θ̃st(τ, ι)}τ,ι for {Θ(τ, ι)}τ,ι and {θ(τ, ι)}τ,ι to compute ÎEst, the plug-in
estimator of IEst. We next estimate the measurement errors and random effects and then apply the

parametric bootstrap method to compute the bootstrap statistics {ÎE
b

st}b. Finally, we reject HIE
0 if ÎEst

exceeds the upper αth empirical quantile of {ÎE
b

st − ÎE}b.
To conclude this section, we remark that in Sections 2 and 3, we focus on testing one-sided hypotheses

for the direct and indirect effects. However, the proposed method can be easily extended to test two-sided
hypotheses as well.
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4. Theoretical Analysis

In this section, we systematically investigate the asymptotic properties of the proposed estimators and
test statistics in L-TVCDP and derive the convergence rates of our causal estimands in NN-TVCDP. We
also explore the benefits of employing the swtichback design and study the theoretical properties of our
estimator in the spatio-temporal dependent experiments.

Firstly, we impose the following regularity assumptions for the temporal dependent experiments using
L-TVCDP.

Assumption 3. The kernel function K(·) is a symmetric probability density function on [−1, 1] and
is Lipschitz continuous.

Assumption 4. The covariate Zis are i.i.d.; for 1 ≤ τ ≤ m, E(Z⊤
i,τZi,τ ) ∈ Mp×p is invertible; all

components of θ(t) have bounded and continuous second derivatives with respect to t.

Assumption 5. There exists 0 < q < 1 such that the absolute values of eigenvalues of Φ(τ) are
smaller than q, and there exist some constants MΓ and Mβ such that ∥Γ(τ)∥∞ ≤ MΓ and ∥β(τ)∥∞ ≤ Mβ.
{β(τ)}2≤τ≤m, {Φ(l)}2≤l≤m−1, and {Γ(k)}1≤k≤m−1 must not be all zero. Θ(τ) has a continuous second-
order partial derivative.

Assumption 3 is mild as the kernel K(·) is user-specified. Assumption 4 has been commonly used
in the literature on varying coefficient models (see e.g., Zhu et al., 2014). Assumption 5 ensures that
the time series is stationary, since Φ(τ) is the autoregressive coefficient. It is commonly imposed in the
literature on time series analysis (Shumway and Stoffer, 2010).

Before presenting the theoretical properties of the proposed method for L-TVCDP, we introduce
some notation. For 1 ≤ τ1, τ2 ≤ m, define Σy and Ση to be the m × m matrices {Σy(τ1, τ2)}τ1,τ2

and
{Ση(τ1, τ2)}τ1,τ2

, respectively. We define

V
θ̂
= (EZ⊤

i Zi)
−1E(Z⊤

i ΣyZi)(EZ⊤
i Zi)

−1 and V
θ̃
= (EZ⊤

i Zi)
−1E(Z⊤

i ΣηZi)(EZ⊤
i Zi)

−1

as the asymptotic covariance matrices of θ̂ and θ̃, respectively. Let V
θ̂
(τ, τ) and V

θ̃
(τ, τ) denote the

submatrices of V
θ̂
and V

θ̃
that correspond to the asymptotic covariance matrix of θ̂ and θ̃, respectively.

We first compare the mean squared error (MSE) of the OLS estimator θ̂(τ) against that of the smoothed

estimator θ̃(τ) based on L-TVCDP.

Proposition 2. Suppose λmin(Vθ̂
(τ, τ)) and λmin(Vθ̃

(τ, τ)) are uniformly bounded away from zero
for any τ . Under Assumptions 3 and 4, we have

m∑
τ=1

MSE(θ̂(τ)) ≍ n−1trace(V
θ̂
),

m∑
τ=1

MSE(θ̂(τ)) ≍ n−1trace(V
θ̃
) +O(mh4 +m−1).

Proposition 2 has an important implication. Both trace(V
θ̂
) and trace(V

θ̃
) are of the order of mag-

nitude O(m). When m ≪
√
n or h4 ≫ n−1, the squared bias of θ̃ may dominate its variance. Hence,

the OLS estimator θ̂ may achieve a smaller MSE. When m ≍
√
n and h4 = O(n−1m), the two MSEs

are of the same order of magnitude and it remains unclear which one is smaller. When m ≫
√
n and

h4 = o(n−1), the variance of θ̃ dominates its squared bias. Moreover, Σy −Ση is strictly positive definite,

so is V
θ̂

−V
θ̃
. As a result, θ̃ achieves a smaller MSE. In our applications, m is moderately large and the

condition m ≫
√
n is likely to be satisfied. With properly chosen bandwidth, we expected the smoothed

estimator achieves a smaller MSE.
Secondly, we present the limiting distributions of θ̂(τ) and θ̃(τ) and prove the validity of our test for

DE based on L-TVCDP.

Theorem 1. Suppose λmin(Vθ̂
(τ, τ)) and λmin(Vθ̃

(τ, τ)) are uniformly bounded away from zero for
any τ . Under Assumptions 1, 3 and 4, for any (d+2)-dimensional vectors an,1, an,2, with unit ℓ2 norm,

(i)
√
na⊤

n,1{θ̂(τ) − θ(τ)}
/√

a⊤
n,1Vθ̂

(τ, τ)an,1
d−→ N(0, 1) as n → ∞ for any τ ;

(ii) Suppose m → ∞, h → 0, and hm → ∞ as n → ∞. Then
√
na⊤

n,2{θ̃(τ)−θ(τ)}
/√

a⊤
n,2Vθ̃

(τ, τ)an,2
d−→

N(bn, 1) as n → ∞ for any τ , where the bias bn = O(
√
nh2 +

√
nm−1).
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(iii) Suppose h = o(n−1/4), m ≫
√
n and the sum of all elements in m−2Vγ̃ is bounded away from

zero where Vγ̃ denotes the submatrix of V
θ̃

which corresponds to the asymptotic covariance ma-

trix of θ̃. Then for the hypotheses (2), under HDE
0 , P(D̂E/ŝe(D̂E) > zα) = α + o(1); under

HDE
1 , P(D̂E/ŝe(D̂E) > zα) → 1, where zα denotes the upper αth quantile of a standard normal

distribution.

Theorem 1 has several important implications. First, the bias of the smoothed estimator θ̃ decays
with m. In cases where m is fixed, the kernel smoothing step is not preferred as it will result in
an asymptotically biased estimator. Second, each θ̃(τ) converges at a rate of Op(n

−1/2) under the

assumption that λmin(Vθ̃
(τ, τ)) is bounded away from zero. The rate Op(n

−1/2m−1/2) cannot be achieved
despite that we have a total of nm observations, since the random errors {eτ}τ are not independent.
We also remark that in the extreme case where {eτ}τ are independent, we can set h ∝ (nm)−1/5

and θ̃(τ) attains the classical nonparametric convergence rate Op((nm)−2/5). Third, since V
θ̂

− V
θ̃
is

strictly positive, this similarly implies that the smoothed estimator is more efficient when bn = o(1), or
equivalently, h = o(n−1/4) and m ≫

√
n. Finally, in the proof of Theorem 1, we show that the covariance

estimator Ṽθ is consistent. This together with asymptotic distribution of θ̃ yields the the consistency of
our test in (iii).

Thirdly, we present the validity of the proposed parametric bootstrap procedure for IE under the
temporal alternation design based on L-TVCDP.

Theorem 2. Suppose that there is some constant 0 < c1 ≤ 1 such that c1 ≤ E∥ετ,S∥2 and Ee2τ ≤ c−1
1

for all 1 ≤ τ ≤ m. Suppose that h = o(n−1/4), m ≍ nc2 for some 1/2 ≤ c2 < 3/2 and mh → ∞. Then
under the assumptions in Theorem 1 and Assumption 5, with probability approaching 1, we have

sup
z

|P(ÎE − IE ≤ z) − P(ÎE
b

− ÎE ≤ z|Data)| ≤ C(
√
nh2 +

√
nm−1 + n−1/8),

where C is some positive constant.

We have several remarks. The derivation of Theorem 2 is non-trivial when m diverges with n.

Specifically, since ÎE is a very complicated function of the estimated varying coefficients (see Equation
(14)), its limiting distribution is not well-defined. To prove Theorem 2, we derive a nonasymptotic error

bound on the difference between the distribution of ÎE and that of the bootstrap statistics conditional on
the data. As a result, it ensures that the type-I error can be well-controlled and the power approaches
one. Please refer to the proof of Theorem 2 in the supplementary document for details. Finally, we
require m to diverge with n at certain rate. In settings with a small or fixed m, one can apply the
proposed bootstrap procedure to the unsmoothed estimator θ̂. The resulting test procedure remains
valid regardless of whether m is fixed or not.

Fourthly, we illustrate the advantage of employing the switchback design in the presence of temporal
random effects. As commented in the introduction, the switchback design assigns different treatments
at adjacent time points Ai,1 = 1 − Ai,2 = Ai,3 = . . . = Ai,2t−1 = 1 − Ai,2t, whereas the alternating-day
design assigns fixed treatment Ai,1 = Ai,2 = Ai,3 = . . . = Ai,2t−1 = Ai,2t within each day for any i and t.
In the switchback design, the random effects at adjacent time points can cancel with each other when
estimating the causal effect, yielding a more efficient estimator. To elaborate this point, we compare
the mean square errors of the proposed estimators under the switchback design against those under an
alternating-day design where the new and old policies are daily switched back and forth. To simplify
the analysis, we focus on the case where the state is one-dimensional and assume the treatment effect
estimators are constructed based on the unsmoothed OLS estimators (see Section S.12.3 for details). Let

MSE(D̂Esb) and MSE(D̂Ead) denote the mean squared errors of DE estimators under the switchback
design and the alternating-day design, respectively.

Theorem 3. Suppose that the state is one-dimensional, Ση(τ1, τ2) is nonnegative for any τ1 and τ2
and Assumptions 1 and 4 hold. When {Φ(τ)}τ and {Γ(τ)}τ are of the same signs, respectively, i.e. for
any τ1, τ2, Φ(τ1)Φ(τ2) ≥ 0 and Γ(τ1)Γ(τ2) ≥ 0, then as n → ∞, we have

nMSE(D̂Esb) ≤ nMSE(D̂Ead) + o(1),

where the equality holds only when Ση(j, k) = 0 for any j, k such that |j − k| = 1, 3, 5, . . ..
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To ensure that DE achieves a much smaller MSE under the switchback design, we only require that
the random effects are non-negatively correlated and that the correlation Σ(j, k) is nonzero for some
j − k = 1, 3, 5, . . .. These conditions are automatically satisfied when the random effects are positively
correlated. We next provide a close-formed expression for the ratio of the two MSEs under an AR(1)
noise structure and the constraint that Γ(1) = Γ(2) = · · · = Γ(m − 1) = 0.

Corollary 1. Suppose that for any 1 ≤ τ1, τ2 ≤ m, Σe(τ1, τ2) = cρ|τ1−τ2| for some constant c > 0.
Then under assumptions of Theorem 3, when Γ(1) = Γ(2) = · · · = Γ(m− 1) = 0, we have as n,m → ∞,

MSE(D̂Esb)

MSE(D̂Ead)
=

(1 − ρ)2

(1 + ρ)2
+ o(1).

It can be seen from Corollary 1 that the larger the ρ, the smaller the variance ratio. In particular, when
ρ = 0.5, MSE of DE under the switchback design is approximately 9 times smaller than that under the
alternating-day design. We next consider IE.

Theorem 4. Suppose m = 2. Under Assumptions 1 and 4, we have

n{MSE(ÎEad) − MSE(ÎEsb)} = o(1).

Theorem 4 suggests that the IE estimators under the two designs have comparable MSEs. This together
with Theorem 3 underscores the superiority of the switchback design, particularly when m = 2. However,

as m exceeds 2, determining the closed-form expression for MSE(ÎE) becomes exceedingly complex,
making it challenging to directly compare the two designs. Addressing this complexity and extending
the comparison for cases where m > 2 is a task we reserve for future research.

Fifth, we establish the convergence rates of the estimated DE and IE for NN-VCDP.

Theorem 5. Suppose that fετS
is Lipschitz, meaning that for any τ , there exists a constant Lf > 0

such that |fετS
(x) − fετS

(y)| ≤ Lf∥x − y∥2, where ∥ · ∥2 represents the Frobenius norm. Additionally,

assume that the NN-based learners satisfy E{Ĝa(τ, Sτ ) − Ga(τ, Sτ )}2 ≤ ∆2
1(n,m) and E{ĝa(τ, Sa1

τ ) −
ga(τ, S

a1
τ )}2 ≤ ∆2

2(n,m), where a ∈ {0, 1} and ∆1(n,m) and ∆2(n,m) are specific functions. The

density estimator should fulfill
∫
x |fετS

(x) − f̂ετS
(x)|dx = Op(∆3(n,m)) for some function ∆3. Both ga

and ĝa must be uniformly bounded. Moreover, the ratio of the density function of the potential state Sa
τ to

the density of the observed state Sτ must be bounded by
√
ω for any τ and a. Then, as min(n,m) → ∞,

we obtain the following convergence results:

D̂E − DE = Op

(
m

√
ω∆2(n,m) +m2∆1(n,m) +m2Lf

√
ω∆3(n,m) +

m√
n

√
log(nm)

)
,

ÎE − IE = Op

(
m

√
ω∆2(n,m) +m2∆1(n,m) +m2Lf

√
ω∆3(n,m) +

m√
n

√
log(nm)

)
.

Since the convergence rates of NN-based learners have been widely studied in the literature (see e.g.,
Shen et al., 2019; Schmidt-Hieber, 2020; Shen et al., 2022; Yan and Yao, 2023), these results can be used

to establish the convergence rates of Ĝa and ĝa.
Finally, we impose the following regularity assumptions for the proposed tests in spatio-temporal

dependent experiments based on L-STVCDP.

Assumption 6. For any τ, ι, E(Z⊤
i,τ,ιZi,τ,ι) is invertible; θ(τ, ι), ΣηI (τ1, τ2, ι1, ι2), ΣηII (τ1, ι1, τ2), and

ΣηIII (τ1, ι1, ι2) have bounded and continuous second-order derivatives.

Assumption 7. There exists q < 1 such that the absolute values of eigenvalues of Φ(τ, ι) are smaller
than q. In addition, there exist MΓ and Mβ < ∞ such that ∥Γ1(τ, ι)+Γ2(τ, ι)∥∞ ≤ MΓ and ∥β(τ, ι)∥∞ ≤
Mβ. Θ(τ, ι) has a bounded and continuous second-order derivative.

With these assumptions, we present the asymptotic properties of our DE and IE estimators and their
associated test statistics for the spatio-temporal dependent experiments based on L-STVCDP. Define

V
θ̃st

(τ1, ι1, τ2, ι2) = {EZi,τ1,ι1
Zi,τ1,ι⊤1

}−1E{Zi,τ2,ι2
Z⊤
i,τ1,ι1

ΣηI (τ1, ι1, τ2, ι2)}{EZi,τ2,ι2
Z⊤
i,τ2,ι2

}−1

as the asymptotic covariance between
√
nθ̃st(τ1, ι1) and

√
nθ̃st(τ2, ι2).
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Theorem 6. Suppose λmin(Vθ̃st
) is bounded away from zero. Under Assumptions 2, 3 and 6, for any

set of (d+ 2)-dimensional vectors {Bτ,ι}τ,ι, we have as n,m, r → ∞, h, hst → 0 and mh, rhst → ∞ that

(i) For any set of (d + 2)-dimensional vectors {Bτ,ι}τ,ι with
∑

τ1,τ2,ι1,ι2
B⊤

τ1,ι1
V
θ̃st

(τ1, ι1, τ2, ι2)Bτ2,ι2
≥

c
∑

τ,ι ∥Bτ,ι∥22 for some constant c > 0, we have

√
n
∑
τ,ι

[B⊤
τ,ι{θ̃st(τ, ι) − θst(τ, ι)}]

/√ ∑
τ1,τ2,ι1,ι2

B⊤
τ1,ι1

V
θ̃st

(τ1, ι1, τ2, ι2)Bτ2,ι2

d→ N(bn,st, 1),

where the bias bn,st = O(
√
nh2 +

√
nh2st +

√
nm−1 +

√
nr−1).

(ii) Suppose h, hst = o(n−1/4) and m, r ≫
√
n. Then for the hypotheses (16), P(D̂Est/ŝe(D̂Est) >

zα) = α+ o(1) under HDE
0 and P(D̂Est/ŝe(D̂Est) > zα) → 1 under HDE

1 .

Theorem 7. Suppose that there are some constants 0 < c1 ≤ 1 such that c1 ≤ Eε2τ,ι,S ,Ee2τ,ι ≤ c−1
1

for all 1 ≤ τ ≤ m, 1 ≤ ι ≤ r, and that h, hst = o(n−1/4), m, r ≫
√
n and mr ≍ nc2 for some constant

c2 < 3/2. Then under Assumptions of Theorem 6 and Assumption 7, with probability approaching 1,

sup
z

|P(ÎEst − IEst ≤ z)−P(ÎE
b

st − ÎEst ≤ z|Data)| ≤ C(
√
nh2+

√
nh2st+

√
nm−1+

√
nr−1+n−1/8), (20)

where C is some positive constant.

Theorem 6 establishes the limiting distribution of the proposed DE estimator for the spatio-temporal
dependent experiments. Similar to Proposition 2, we can show that the smoothed estimator is more
efficient when m, r ≫

√
n and h4, h4st = o(n−1). In addition, Theorem 7 allows both m and r to be either

fixed, or diverge with n, and is thus applicable to a wide range of applications.

5. Real data based simulations

5.1. Temporal alternation design

In this section, we conduct Monte Carlo simulations to examine the finite sample properties of the pro-
posed test statistics based on L-TVCDP and L-STVCDP models. To generate data under the temporal
alternation design, we design two simulation environments based on two real datasets obtained from
Didi Chuxing. The first dataset is collected from a given city A from Dec. 5th, 2018 to Jan. 13th, 2019.
Thirty-minutes is defined as one time unit. The second dataset is from another city B, from May 17th,
2019 to June 25th, 2019. One-hour is defined as one time unit. Both contain data for 40 days. Due
to privacy, we only present scaled metrics in this paper. Figure 1 depicts the trend of some business
metrics over time across 40 different days. These metrics include drivers’ total income, the number of
requests and drivers’ total online time. Among them, the first quantity is our outcome of interest and
the last two are considered as the state variables to characterize the demand and supply networks. As
expected, these quantities show a similar pattern, achieving the largest values at peak time.



16 Shikai Luoa∗, Ying Yangb∗, Chengchun Shic∗

0 10 20 30 40
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fig. 1. Scaled business metrics from City A (the first row) and City B (the second row) across 40 days, including
drivers’ total income, the numbers of requests and drivers’ total online time.

We next discuss how to generate synthetic data based on the real datasets. The main idea is to
fit the proposed L-TVCDP models to the real dataset and apply the parametric bootstrap to simulate
the data. Let β̃0(τ), β̃(τ), ϕ̃0(τ), and Φ̃(τ) denote the smoothed estimators for β0(τ), β(τ), ϕ0(τ) and

Φ(τ), respectively. We set γ̃(τ) and Γ̃(τ) to (δ/100) × (
∑

i,τ Yi,τ/nm) and (δ/100) × (
∑

i,τ Si,τ/nm),
respectively. As such, the parameter δ controls the degree of the treatment effects. Specifically, the null
holds if δ = 0 and the alternative holds if δ > 0. It corresponds to the increase relative to the outcome
(state). We next generate the policies according to the temporal alternation design and simulate the
responses and states based on the fitted model. Let TI denote the time span we implement each policy
under the alternation design. For instance, if TI = 3, then we first implements one policy for three
hours, then switch to the other for another three hours and then switch back and forth between the two
policies. We consider three choices of n ∈ {8, 14, 20}, fives choices of δ ∈ {0, 0.25, 0.5, 0.75, 1} and three
choices of TI ∈ {1, 3, 6}. This corresponds to a total of 45 cases. The bandwidth is set h = Cn−1/3,
where C is selected by the 5-fold cross validation method.

In Figure 2, we depict the empirical rejection probabilities of the proposed test for DE, aggregated
over 400 simulations, for all combinations. It can be seen that our test controls the type-I error and
its power increases as δ increases. In addition, the empirical rejection rates decreases as TI increases.
This phenomenon suggests that the more frequently we switch back and forth between the two policies,
the more powerful the resulting test. It is due to the positive correlation between adjacent observations.
To elaborate, consider the extreme case where we switch policies at each time. The policies assigned at
any two adjacent time points are different. As such, the random effect cancels with each other, yielding
an efficient estimator. We conduct some additional simulations using the numbers of answered requests
and finished requests of cities A and B as responses (see Figure S.2 in the supplement). Results are very
similar and are reported in Figures S.3–S.4 in the supplementary document. See also Tables S.1–S.2 in
the supplementary document.
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Fig. 2. Simulation results for L-TVCDP: empirical rejection rates (expressed as percentages) of the proposed test
for DE under different combinations of (n, δ,TI) and types of outcomes. Synthetic data are simulated based on
the real dataset from city A (the first row) and city B (the second row).

To infer IE, we set the outcome to drivers’ total online income. The empirical rejection probabilities of
the proposed test for IE are reported in Figure 3. Results are aggregated over 400 simulations. Similarly,
the proposed test is consistent. Its power increases with the sample size and δ. In addition, its power
under TI = 1 is much larger than those under TI = 3 or 6. This suggests that we shall switch back and
forth between the two policies as frequently as possible to maximize the power property of the test (see
also Tables S.3–S.4 in Supplementary document).

TI=1 TI=6TI=3

0           0.25             0.5             0.75           10           0.25             0.5             0.75           10           0.25             0.5             0.75           1

TI=3TI=1 TI=6

0           0.25             0.5             0.75           10         0.25             0.5             0.75           10           0.25             0.5             0.75           1

Fig. 3. Simulation results for L-TVCDP: empirical rejection rates (expressed as percentages) of the proposed test
for IE under different combinations of (n, δ,TI). Synthetic data are simulated based on the real dataset from city
A (the first row) and city B (the second row).

5.2. Spatio-temporal alternation design
To generate data under the spatio-temporal alternation design, we create a simulation environment
based on the real dataset from city A. We divide the city into 10 non-overlapping regions. We plot these
variables associated with 3 particular regions, over the first 10 days in Figure 4. It can be seen that
although the daily trends differ across regions, the state and the response are highly correlated.
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Fig. 4. Number of call requests and drivers’ total income across different regions and days. The values are scaled
for privacy concerns.

We fit the proposed models in (18) to the real dataset to estimate the varying coefficients and

the variances of the random errors. Then we manually set the treatment effects γ̂(τ, ι) and Γ̂(τ, ι)
to (δ1/100) × (

∑n
i=1

∑m
τ=1 Yi,τ,ι/nm) and (δ2/100) × (

∑n
i=1

∑m
τ=1 Si,τ,ι/nm) for some constants δ1 and

δ2 > 0. We consider both the temporal and spatio-temporal alternation designs, and simulate the data
via parametric bootstrap.

We also consider three choices of n ∈ {8, 14, 20}, three choices of TI ∈ {1, 3, 6} and three choices of
δ1, δ2 ∈ {0, 0.5, 1}. This yields a total of 81 combinations under each design. The rejection probabilities
of the proposed tests for DE and IE tests are reported in Figures 5 and 6 (see also Tables S.5 and
S.6 in the supplementary document). It can be seen that the type I error rates of the proposed test
are close to the nominal level under both designs. More importantly, the power under spatio-temporal
alternation design is higher than that of temporal alternation design in all cases. The reason is twofold.
First, under the spatio-temporal design, we independently randomize the initial policy for each region,
and adjacent regions may receive different policies. Observations across adjacent areas are likely to be
positively correlated. As such, the variance of the estimated treatment effects will be smaller than that
under the temporal design where all regions receive the same policy at each time. Second, we employ

kernel smoothing twice when computing D̂Est and ÎEst, as discussed in Section 3. This results in a more
efficient estimator. In addition, compared with the results in Tables S.1 and S.3, it can be seen that the
test that focuses on the entire city has better power property than the one that considers a particular
region in general. Finally, the power decreases with TI and increases with n, δ1 and δ2.
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Fig. 5. Simulation results for L-STVCDP: the empirical rejection probabilities of the proposed test test for DE
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Fig. 6. Simulation results for L-STVCDP: the empirical rejection probabilities of the proposed test test for IE
under the temporal alternation design (left panel) and the spatio-temporal alternation design (right panel).

6. Real data analysis

In this section, we apply the proposed tests based on L-TVCDP and L-STVCDP to a number of real
datasets from Didi Chuxing to examine the treatment effects of some newly developed order dispatch
and vehicle reposition policies. Due to privacy, we do not publicize the names of these policies.

We first consider four data sets collected from four online experiments under the temporal alternation
design. All the experiments last for 14 days. Policies are executed based on alternating half-hourly time
intervals. We denote the cities, in which these experiments take place, as C1, C2, C3, and C4 and their
corresponding policies as S1, S2, S3, and S4, respectively. For each policy, we are interested in its effect
on three key business metrics, including drivers’ total income, the answer rate, and the completion rate.
Similar to Section 5.1, we use the number of call orders and drivers’ total online time to construct the
time-varying state variables.

All the new policies are compared with some baseline policies in order to evaluate whether they
improve some business outcomes. Specifically, in city C1, policy S1 is proposed to reduce the answer
time (the time period between the time when an order is requested and the time when the order is
responded by the driver). This in turn meets more call orders requests. Both policy S2 in city C2 and
policy S3 in city C3 are designed to guide drivers to regions with more orders in order to reduce drivers’
idle time ratio. Policies S2 and S3 are designed to assign more drivers to areas with more orders. This in
turn reduces drivers’ downtime and increase their income. Policy S4 aims to balance drivers’ downtime
and their average pick-up distance.

We also apply our test to another four datasets collected from four A/A experiments which compare
the standard policy against itself. These A/A experiments are conducted two weeks before the A/B
experiments. Each lasts for 14 days and thirty-minutes is defined as one time unit. We remark that the
A/A experiment is employed as a sanity check for the validity of the proposed test. We expect our test
will not reject the null when applied to these datasets, since the sole standard policy is used.

We fit the proposed L-TVCDP models to each of the eight datasets. In Figures 7 and 8, we plot
the predicted outcomes against the observed values and plot the corresponding residuals over time for
policy S1. Results for policies S2–S4 are represented in Figure S.5 in the supplementary article. It
can be seen that the predicted outcomes are very close to the observed values, suggesting that the
proposed model fits the data well. P-values of the proposed tests are reported in Tables 1 and 2. As
expected, the proposed test does not reject the null hypothesis when applied to all datasets from A/A
experiments. When applied to the data from A/B experiments, it can be seen that the new policy S1

directly improves the answer rate and the completion rate, while increasing drivers’ total income in city
C1. It also significantly increases drivers’ income in the long run. Policy S2 has significant direct and
indirect effects on drivers’ income as expected. Policy S4 significantly increases the immediate answer
rate, while improving the overall passenger satisfaction. However, policy S3 is not significantly better
than the standard policy.

We further apply the proposed test to two real datasets collected from an A/A and A/B experiment
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Table 1. One sided p-values of the proposed test for DE, when applied
to eight datasets collected from the A/A or A/B experiment based on the
temporal alternation design, with DTI, ART and CRT corresponding to
drivers’ total income, the answer rate and the completion rate, respec-
tively.

AA AB
DTI(%) ART(%) CRT(%) DTI(%) ART(%)
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Table 3. One sided p-values of the proposed test,
when applied to two datasets collected from the A/A
or A/B experiment based on the spatio-temporal al-
ternation design. Drivers’ total income is set to be
the outcome of interest.

DE IE
AA AB AA AB

p-value 0.176 0.001 0.334 0.000

under the spatio-temporal alternation design, conducted in city C5. This city is partitioned into 17
regions. Within each region, more than 90% orders are answered by drivers in the same region. Similar
to the temporal alternation design, both experiments last for 14 days and 30-minutes is set as one time
unit. We take the number of requests as the state variables and drivers’ total income as the outcome,
as in Section 5.2. In Figures 9 and 10, we plot the fitted drivers’ total income and the fitted number of
requests against their observed values, and plot the corresponding residuals over time. We only present
results associated with 2 regions in the city for space economy. The fitted values and residuals associated
with other regions are similar and we do not present them to save space. It can be seen that the proposed
models fit these datasets well. In addition, we report the p-values of the proposed test in Table 3. It can
be seen that the new policy significantly increases drivers’ income. When applied to the dataset from
the A/A experiment, it fails to reject either null hypothesis.

AA

AB

region 1 region 2

0    10    20    30    40

�̂�𝑒

time

0.75
0.50
0.25
0.00

-0.25
-0.50
-0.75

𝑧𝑧

�̂�𝑧

1        2       3        4      5

5

4

3

2

1

0    10    20    30    40

�̂�𝑒

time

0.50
0.25
0.00

-0.25
-0.50
-0.75

𝑧𝑧

�̂�𝑧

1         2         3         4

4

3

2

1

0    10    20    30    40
time

0.5

0.0

-0.5

1      2     3      4      5

5

4
3

2

1
0

�̂�𝑒 �̂�𝑧

𝑧𝑧

0    10    20    30    40
time

0.5

0.0

-0.5

1      2     3    4      5

5
4
3
2
1
0

�̂�𝑒 �̂�𝑧

𝑧𝑧

• IE

Fig. 9. Plots of the fitted drivers’ income against the observed values, as well as the corresponding residuals.
Data are collected from an A/A or A/B experiment under the spatio-temporal alternation design.
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Fig. 10. Plots of the fitted number of orders against the observed values, as well as the corresponding residuals.
Data are collected from an A/A or A/B experiment under the spatio-temporal alternation design.
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7. Discussion

In this study, driven by the need for policy evaluation in technological companies, we thoroughly examine
AB testing for temporal and/or spatial dependent experiments, particularly in scenarios characterized
by weak signals, (spatio)-temporal random effects, and intricate interference structures. Our approach
offers two key benefits. Firstly, it accommodates the switchback design, which can significantly enhance
testing power. As explained earlier, by applying diverse treatments to neighboring time points, we can
potentially offset the impact of random effects at these times, resulting in more efficient estimations
of treatment effects. Secondly, we break down the ATE into its DE and IE components. We then
advocate for testing these effects separately. This separation aids decision-makers in gaining a clearer
understanding of how different policies function and in devising more effective strategies and designs.
Further details can be found in Section S.12.4 of the supplementary document.

There are several intriguing avenues for future research. Firstly, considering Assumptions 1 and 2,
it’s worth exploring scenarios where errors in the state regression model are not necessarily independent
over time. This can be achieved by incorporating random effects into the state regression model, allowing
for correlated errors over time. However, this introduces dependencies between these random effects,
which in turn affects the conditional independence of past and future features. Consequently, the Markov
assumption is violated, and applying existing OPE methods and our proposal from Section 2 directly
would result in biased policy value estimations. In Section S.12.1 of the supplementary document, we
present two approaches to mitigate this endogeneity bias. Secondly, we can delve into situations involving
a large number of state variables. However, in ride-sharing platforms, it’s reasonable to assume that
the dimension of state variables is fixed. This typically involves a two-dimensional market feature,
encompassing the number of call orders and the number of available drivers. We outline potential
extensions to high-dimensional settings in Section S.12.2 of the supplementary document. Thirdly, while
the interference structure examined in this work is general, it remains relatively simple. It would be
intriguing to explore more complex structural interferences across both space and time. Lastly, addressing
statistical inference for deep neural networks remains an open challenge. This could represent a significant
step toward incorporating deep learning into causal inference, offering promising directions for future
research.
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