












where

D =

26666664
R
M00(x)dx 0>

0 diag

0BB@
8><>:R

264M00 M0j

Mj0 Mjj

375 dx�j
9>=>;
j=1,...,d

1CCA

37777775 ; A =

2641 0>

0 Π

375 :

Since g0(emK�1(�))2V (emK�1(�)) is bounded and epK�1(�) is bounded away from 0, one can

obtain that D�1 is bounded. Using the same technique, we can prove that Π is one-to-one

and onto, and kΠ�k � dk�k. Hence Π has a bounded inverse, which implies that A also

has, i.e. there exists a constant c1 such that k eF (1)
K (e�b0cK )k < c1.

The other conditions are veri�ed as follows. To prove that eF (1)
K satis�es the Lipschitz

condition k eF (1)
K �� eF (1)

K �0k � c2k���0k, by the decomposition (2), it is su�cient to prove

the boundedness of D and A, which is guaranteed by the smoothness and boundedness of

g0(emK�1(�))2V (emK�1(�)) and epK�1(�). Finally, by the uniform continuity of eFK and the fact

eFK e�K = 0, there exists a positive constant r such that supβ2Br(β̃K) k eFK�k < (2c2
1c2)�1.

This proves that if e�b0cK 2 Br(e�K), then kf eF (1)
K (e�b0cK )g�1 eFK(e�b0cK )k < (2c1c2)�1. Note

that M is close to QK , the two norms k � kM and k � kQK
are equivalent. Conclusion (1)

now follows from Lemma 1. Theorem 1 (2) follows from the property of Hilbert-Schmidt

operators Πj; see Theorem 4.B in Appendix 4 of Bickel et al. (1993) and Theorem 4 of Yu

et al. (2008) for details.

S.3.2 Proof of Lemma 2-3

We �rst prove Lemma 2. Recall that ��� is de�ned in (23). The proof is based on the

decomposition of ���.
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Proof. We further decompose ���j (xj) = ��A�j (xj) + ��B�j (xj); ���1j(xj) = ��A�1j (xj) + ��B�1j (xj) that264 ��Aj (xj)

��A1j(xj)

375 =

264 ���j (xj)

���1j(xj)

375�
264E(���j (xj) jX1; : : : ;XK)

E(���1j(xj) jX1; : : : ;XK)

375 ;
264��Bj (xj)

��B1j(xj)

375 =

264E(���j (xj) jX1; : : : ;XK)

E(���1j(xj) jX1; : : : ;XK)

375 :
We omit the constants in the functions and de�ne the spaces

H0
(Q) =

�
f = (f1(x1); : : : ; fd(xd); f11(x1); f1d(xd))

> :Z
(Q00fj +Q0jf1j)dx = 0 for j = 1; : : : ; d

�
;

H0

j(Q) = ff 2 H0
(Q) : f depends only on xjg:

In this proof, we consider 2d-dimensional functions. Let 	j be the projection operator from

H0
(Q�K) onto H0

j(Q
�
K). Then for any � 2 H0

(Q�K),

	j�`(x`) = f`(x`); 	1j�1`(x`) = f1`(x`);

where for ‘ 6= j, f`(x`) = �`(x`) and f1`(x`) = �1`(x`), and

fj(xj) = gj(xj)�
Z
gj(xj)Q

�
K,00(x)dx;264 gj(xj)

f1j(xj)

375 = �
X
6̀=j

0B@Z
264Q�K,00 Q

�
K,0j

Q
�
K,j0 Q

�
K,jj

375 dx�j
1CA
�1 Z 264Q�K,00 Q

�
K,0`

Q
�
K,j0 Q

�
K,j`

375
264 �`(x`)
�1`(x`)

375 dx�j:
Then de�ne T = 	1 � � �	d. Recall that !ki(x;�) plays the same role of Kh(Xki � x) in

Mammen (1999). With assumption (A2) on the smoothness of link function g, conclusions

of AM can be carried over to GAM and we can obtain that T is smaller than  < 1

w.p.1. Let �j(xj) = �
R PK

k=1 Pk,0(��; e�kjK)dx�j, �1j(xj) = �
R PK

k=1 Pk,j(�
�; e�kjK)dx�j,

�0,j(xj) = ����0
R
Q
�
K,00(x)dx�j and �0,1j = ����0

R
Q
�
K,0j(x)dx�j. Then we have the following

expression for ��, �� = T �� + � , where � = � + �0. By iterative applications, we have
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��s =
P1

i=0 T
i� s for s = A;B. Based on these stochastic expansions, one can use the

techniques in the proof of Theorem 1{2 in Mammen and Nielsen (1999) to obtain the

following result: for xj 2 (0; 1),

sup
�����Aj (xj)�

�
�j(xj)� ��0

� ��� = op(N
�2/5
K );

sup
�����Bj (xj)� bj(xj)

��� = op(N
�2/5
K );

and the asymptotic distribution of ��� follows from the standard theory of kernel smoothing.

Now we present the proof of Lemma 3, which is a product of the pre-speci�ed bandwidth

order in Assumption (A5).

Proof. Noting that �FK di�ers from bFK only in the bandwidths, the proof of Lemma 6 of

Yu et al. (2008) can be carried over by substituting �Kj,i for hij. By Assumption (A5), we

have

k �FK ���Kkp,0 = op

�
N
�2/5
K

�
; k �FK ���Kk1 = op

�
N
�2/5
K

�
:

We note that eFK is the linear approximation of �FK , then k �FK ���Kk ’ k eFK ���Kk for norms

k � kp,0 and k � k1, which gives

k eFK ���Kkp,0 = op

�
N
�2/5
K

�
; k eFK ���Kk1 = op

�
N
�2/5
K

�
: (3)

Finally, we can use the same techniques in proof of Theorem 1 by substituting ���K for e�bmcK

to prove that the su�cient conditions of Lemma 1 hold when setting �0 = ���K . This implies

that ��K must be close to e�K at the same rate as (3), which complete the proof.

S.3.3 Proof of Proposition 1

Proof. Using the same technique in the proof of Theorem 2, we can derive that

Ef(e�Kj � �j)2g =
�
A1j�

θ
Kj,2 + A2jN

�1
K �θKj,�5

�2
+ A3jN

�2
K �θKj,�9
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+ op

��
�θKj,2 +N�1

K �θKj,�5

	2
+N�2

K �θKj,�9

�
;

where A1j; A2j; A3j are constants �� and

�θKj,i =
1

NK

KX
k=1

nk(e�θkjK,j)i; i = 2;�5;�9:

Using the same argument as S.3.4, when (21) and (22) hold, the online estimates e�Kj
satis�es e�Kj � �j = Op

�
N
�2/7
K

�
. Substituting the expression of ehKj in (16) and h�Kj in (14),

we obtain ehKj � h�Kj
h�Kj

=
1

5

 
�je�Kj
! 1

5 �e�2
K,j � �2

j

�2
j

�
� 1

5

e�Kj � �j
�j

:

When hσKj = Op(N
�1/5
K ), e�2

Kj(u) � �2
j (u) = Op(N

�2/5
K ) and then e�2

K,j � �2
j = Op(N

�2/5
K ),

and hence the convergence rate of ehKj is dominated by e�Kj � �j.
S.3.4 Proof of Theorem 3

Proof. This result follows directly from Theorem 4 in Yang and Yao (2022) based on the

oracle properties of the proposed estimate in Theorem 2. The optimal bandwidth h�Kj as

in (14) is strictly decreasing with K. Thus the candidate sequence shall be decreasing with

�kj1 = ehkj. There is no e�ciency loss if e�kjK,j = bhKj which implies that the optimal �lj

shall make e�kjK,j as close to bhKj as possible. With the convergence of ehkj, we have

e�kjK,jbhKj = g(l)

�
Nk

NK

�� 1
5

+Op

�
N
� 2

7
k

�
:

Write g(l) = fg(l)1/λgλ and note that Nk=NK grows linearly, then � shall be 1=5 and the

optimal g(l)1/λ shall be linear between (0; 1). Hence, the optimal � is

�Kj` =

�
L� ‘+ 1

L

� 1
5 ehKj:
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Next we derive the asymptotic lower bound for the relative e�ciency. Writing bhKj =

h�Kjf1 +Op(N
�2/7
K )g and using the expressions of h�Kj as in (14), one can derive

eff(e�Kj)



+
4

5

�
5

6
� L

1
5�

1+ 1
5

0 + 1� �0

�
+Op

 
N
� 1

5
K

L
+N

� 2
7

K

!
: (5)

The property of breakpoint K0 also guarantee that�
1

L

� 1
5
K0X
k=1

nk
NK0

ehkj � ehKj;
holds with probability 1 when K tends large, which is equivalent to�

1

L

� 1
5
K0X
k=1

(
nk
NK0

�
eCkN� 1

5
keCKN� 1

5
K

)
� 1:

Under Assumption (A6), we obtain

NK0

NK

�
�

5

4

�5
1

L
+Op(N

� 2
7

K );

i.e. �0 2 [0; (5=4)5=L] holds with probability 1 when K tends large. Note that (5) is strictly

increasing with respect to �0 on this domain. Hence we have

eff(e�Kj)�1 � 1 + c1L
�1 + c2L

�2;

where

c1 = 53=(3� 25) + 56=(6� 45)� 6=5� (5=4)5 � 0:183

and

c2 = f57=(6� 46)� (5=4)5g2=5 � 0:0032:

This completes the proof of Theorem 3.
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