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This supplementary material contains the lemmas used in the proof of Theorem 1 (Ap-

pendix C), the proofs of Proposition 1, Theorems 1-3 and Corollaries 1-2 (Appendix D-F)

and some additional simulation results (Appendix G).

Appendix B: Equivalence of de nitions given by EQgs.(3) and (4)

o If there exists one € [5(jo1+ j)is(j+ j1)) as (3), wehave J— j1 > j—
when j > for jou— > (- then i< 5 that1s]J fl=min er| 1— ¢
from which ;j follows (4);

e On the contrary, if j = argmin 7| 1 — | as the definition of (4), we have [ >

(jo1+ j)dueto F— joi> g— jif ¥ < j;Similarly, ¢ <3i(j+ j_1) holds for

k> j. Say, j follows the definition of (3).
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Appendix C: Auxiliary lemmas

Lemma S.1 If the model (1) and Assumption 1 hold, ,'= +Op(K,n~'2), where s

* 9

some positive matrix depending on .’s.

This lemma can be proved using the similar arguments in the Proposition 1 of Zou et al.

(2020)), thus the details are omitted here.

ables a.s. bounded by A < oo in absolute value. Let 2 =n-!>"" E(X?). Then for all

X >0,

n 2
X
Pr(ZXi ZX) SeXp<_ on 2+2Ax:3)'

i=1

The third one is a moderate deviation result for the mean; See [Petrov] (2002).
Lemma S.3 (Moderate Deviation for the Independent Sum)

E(]Xj]*"9) < oo (j = 1;2;:::) for some g > 0. Let B, =Y.', E(X?). Then

Pr (30, X > xy/By) Pr (30, Xi < —xv/By)
o) —1 and B(—x)

— 1;
as n — oo uniformly in x in the domain 0 < x - {log(1=Ly)}'*2, where L, = B, * S E(XG ).

For notational convenience, we note that our estimation procedure can be reformulated as

COV(Ul) = COV(Vl) = i Let § = miHOSkSKn Eigmin( ;) and $ = IMaXp<k<Kp Eigmax( i),



where Eig . (A) and Eig, .. (A) denote the smallest and largest eigenvalues of a square ma-

trix A. By Assumption 1, we know that 0 < $ < $ < 0o. To keep the subscript consistent

The next one establishes an uniform bound for || Z'i(ikl 1 Uil

Lemma S.4 Suppose Assumption 1 holds. Then we have as n — oo,

2

ko
Pr max (Ko — ky)7! Uil >Clogn]| =0(n*"—);
b a2 ) ‘i%l ' & ( )

for some large C>0andany0< < -2 1,

Proof. We shall show that the assertion holds when d = 1 and the case for d > 1 is
straightforward by using the Bonferroni inequality. Denote M, = n*=( =) for some 0 < <

, and observe that
Ui = [Uil(|JUi| < My) — E{Uil(|Ui| < Mn)}] + [Uil(|Ui| = Mp) — E{UiI(JU;| > M) }]
=: Uip + Ui2:

It suffices to prove that the assertion holds with Uj; and Ujs respectively. Let X = /Clogn

with a sufficiently large C,

ke 2
P ko — ki)t U | >x°
g (kl;kr;)lg(!n)( 2~ Ki) < Z ')

i:k1+1

ko
<Pr max (Ko —ky) 7' Uir| > x=2
B ((kl:kz)eT(!n)( ’ 1) i%l ' )

ko
+ Pr max ky — kq) 172 Uis| > x=2
((k1:k2)€T(!n)( 2 1) iz;l 2

:Zpl +P2:

On one hand, by the Bernstein inequality in Lemma we have

ko 9
- WpX
P, <n’Pr (ky — k1)_1_2 E Uir| > x=2 | < 2n? exp {— n = } = o(nl_f);
i=kq+1 Ciwp + CoMpwh "X



where C; C, are some positive constants and we use the assumption that < —2 1.

On the other hand, according to Cauchy inequality and Markov inequality, we note that

EX{|U[I(|Us] > Mn)} < E(U?) Pr(|Ui] > Mp) < Con™

for some constant C5 > 0. Further, it yields max, k,)e7(1,) (ke —ki)"ZE{|Ui[I(|Ui| > My)} =
0(1): Thus, by Assumption 1 and Markov inequality, we have

ko
P<P< ko — ki)~ 172 U (U] > M >X=4>
2=t (kl;krzr)lg';(’(!n)( 2 — ki) i_kz |Ui[I( V5] n)

=ki+1

ka

§P1“< max  (kp — ky) "= Z Ui| > x=2 | max |U;| > Mn> Pr (IH_aX|Ui| > Mn)
(k1;k2)€T(In) i=ki+1 ! |

<nPr <|Ui| > I\/In> <Cin'

for some positive constant C,. The lemma is proved.

A direct corollary of Lemma is the following lemma. Denote T = \/% n(SJQ —
SJQH) and Ty = | /%(S}E - ng+1)'
Lemma S.5 Suppose Assumptions 1-2 hold. For those j € Z,, then we have as n — oo,
Pr{|Til?>Cllogn+ 1, 2)} =0(n'~—); k=1;2

for some large C >0andany0< < —2 —L

Proof. We take Ty as example. By Assumption 2, if there exists a true change point

between “j_; and “j44, it can only be either close to “j_; or Tj41, but not 7j. Without loss



of generality, assume 0 < ¢ —7j_; < . Then we note that

NjNj11 1 TR )
IToill = ||/ 22— — Vi— Vi+ <= (g — pic )
Nj +Nj1 n;j ;—i—l i1 I;H nj +
T+t .~
—1=2 - -1
N Y Vil + [ n_J (M — Hicq)
i=j+1 ]

IN

- : n; e ES! N

njl2i—Z+1Vi +\/% nji12i; Vil + 1,172 n”m;_“;ﬂ“
=i el

ka

> Vi

i=k1+1

Nj + Nj+1

<2 max (kg —ky) 1

(k1K) €T (1n) +17% 0 H”i - “iﬂ” :

The assertion is immediately verified by using Lemma

Appendix D: Proof of Proposition 1

The proof of this proposition follows similarly to Theorem 2 in [Barber et al. (2020 which
shows that the Model-X knockoff selection procedure incurs an inflation of the false dis-
covery rate that is proportional to the errors in estimating the distribution of each feature
conditional on the remaining features. Fix > 0 and for any threshold t > 0, define
Yjer, LW > A < )

1435, TW; < 1)

R (t) =

Consider the event that A = {A := maxjez, Aj < }. Furthermore, for a threshold rule
L.173 Td [ D]ITI 0 -7-1. Tf 5.977 0 Tf Td [L.173 F4477 0 Tf Td 11(T)]TI/F41 7.91



It is crucial to get an upper bound for E{R (L) | Zo0}. In what follows, all the “E(-)” denote

the expectations given Zgo. We have

(W >L;4; <)
R (L }_ZE{HZH <vvfs—L>}

J€To
=Y E{- LW > Lj;4) < )
= | ez LWk < —Lj)
(Wj >Lj;Aj < )
o [ W W
JEZIO {1 + D kezomsg LWk < —Lj)
i—1; Wj+1, Wj| > L <)
& T C(S)
ng:o { 1+Zk610;k¢j]l(wk§ —L;)

where the last step holds since the only unknown is the sign of Wj after conditioning on
(JWj|; Wj_1; Wj41). By definition of Aj, we have Pr (Wj =0 | |Wj|; Wj_1; Wji1; Z20) < 122+
Aj.

Hence,
E{R (L)}
| )
z{ R e

IR (W < -Lj)
=(5+ )_E{R }+J§E{ 1+ > er, k#H(W:S—'—j)}

Finally, the sum in the last expression can be simplified as: if for all null j, Wj > —L, then

the sum is equal to zero, while otherwise,

I(Wj = -Lj) I(Wj < —Lj)
E J — E i j — 1
JGZIO { L 2ker, k7 T(Wic = _Lj>} _]EZZQ {1+ Zkezo;k;éj I(Wy < —Lk)}

where the first step comes from the fact: for any j; Kk, if Wj < —min(L;; Lx) and Wy <
—min(L;j; L), then Lj = Ly; see Barber et al. (2020).




Accordingly, we have
< 1=2 +
- 1=2 -

E{R (L)} <145

Consequently, the assertion of this proposition holds.

Appendix E: Proof of Lemmas A.1-A.2

Note that both the candidate change-points set 7A;n and the statistics Wj are dependent
with Zo. In fact, we derive the following two lemmas on the basis of conditional probability
on Zo. To be specific, conditional on Zg, 7A5n is fixed as well as (SP —SP,;)" n. Due to
the independence between Zg and Zg, the standard results for independent sum such as

Lemmas can be applied for S& — SF| in the following arguments.

Proof of Lemma A.1

Define , = {C(logn+¥;! 2)}'* for a large C > 0 specified in Lemma . Let Ay ={u e

RY: |lu|| > t= ,}. Then, we observe that

G(t) 1 :Zjezo{Pr(TEng Z t ‘ Zo) — PI’(TLTQJ' S —t ‘ Zo)}
G_(1) PoG-(t)

Conditional on Zg, we have two cases. Firstly, for the case Tyj € Af, by Lemma we
obtain that

G(t) _1< ZjEIo Pr(TlTjT2J >t ’ ZO) < ZjEIo Pr(||T2jH = n | ZO) -0 (nlfipn)'
G_(t) B PoG-(t) B Po=Pn P '
where the first inequality is due to t < GZ'(1=py,), and thus we claim that GG(EZ) —-1=

Op(n'™ " pn).
Next, we consider the case T;j € An. We introduce a new sequence of independent

random variables {B;j} defined as follows:

VIR /. ~ i

B — nj /—nj+nj+1 1y j—1 =
! . VNiNj+1 VA i<t
Nj+1y/Nitnjen ! -



By Lemma [S.3] we firstly verify that for any given u € Ap,
Pr{ I uTBi >t zo}
1— d(t=v




Proof of Lemma A.2

We only show the validity of the first formula and the second one hold similarly. Note
that the G(t) is a deceasing and continuous function. Let zp < z; < --- < z4, < 1 and
ti = G '(zi), where Zgp = an=Pn;Zi = an=Pn + ani =pn;dn = [{(Pn — an)=an}'= ] with > 1.
Note that G(tj)=G(ti;1) = 1 + 0o(1) uniformly in i. It is therefore enough to obtain the

convergence rate of

Dnh = sup
0<i<dn

> ez, HL(Wj > ti) — Pr(Wj > t; | Zo)}‘ _
PoG(ti) '

Define Sj = {k € Zy : Wy is dependent with W;} and further

D(t)=E {ZH(Wth)—Pr(Wth]ZO)} | Zo

J€lo

It is noted that

D(t) => Y E[{I(W; >t) — Pr(W; > t] Z0)} {I(Wi > 1) — Pr(Wk > t| Z0)} | Zo] < 2poG(t):
J€Zo keS;

PrDy > )< ipr <‘Zjezo{]1<wj > 1) — Pr(W; >t | Zo)}‘ . )

— PoG(ti)
dn dn
1 1 2 1
<— D t| S_
<32 e P <3 2 e

Moreover, observe that
dn dn

1 Pn [ 1 1
=—|—+)>) ——
ZpOG(ti) Po (an Zan+an| )

1=0 i=1

dn
1 1
< ¢l —+at — | <ca {1+ 0O(1)):
< (an+ni11+l)_ S +0)

In sum, we can have Pr(D, > ) — 0 provided that a, — oo.



Appendix F: Proof of Theorems 1-3 and Corollaries 1-2

Proof of Corollary 1

(i) By Assumption 2, we know that the event that |Z,| = Ky and for each j € 7y, [ — | <
n occur with probability approaching one as N — oo. Therefore, in what follows we always

implicitly work with the occurrence of this event. From the proof of Theorem 1, we know

that L - 2. Hence

Pr(Wj <L; for some 7j € Z; | Zo)

NiNj+1 20 =& SE &
<Ko (I (8P 80T (S~ SF.) <L | Zo
Nj + Nj41

NiNj+1 - .\ T v Y ' * .
<K, Pr (m(uj —Uj) a(Vj = V) +0, (1 o 1ty — mil®) < L | ZO)

1<k<Kn

<KoPr (O3 (1 iy ik, — wil?) <L)

NjNj+1 - — — . % *
+ Kq Pr (m(uj = Ujr1)" n(Vj = Vi) > 0Of (In  Join ki — micll?) | ZO) — 0

in probability, where we use Lemma [S.4l The result immediately holds.

(ii) From (i), we have limp_,, Pr(M 2 Z;) = 1. Here, we only need to prove limp_,o, Pr(M C
7;) = 1, which is equivalent to show that limp_,o Pr(M NZy = 0) = 1.

It is noted that

Pr(Wj > L; for some j € Ty | Z0) < > Pr(Wj > L | Zo) ~ po p” - Ko

J€To n

By using the condition K, — 0, the corollary is proved.

Proof of Theorem 1

Following the notations in Section 2, assume 7j € M is an informative point and jo is
its corresponding true change-point such that |j — ji| < n by Assumption 2. Note that

"« € M is the selected one such that %=l = min- 7 |71 — 7j|. Because M and M have

10



the same cardinality, we only need to show that "y € Z; (ﬁn), say

[k = jof = min 5 —

1€Tpn !



(ii) Let an = (Clogn)'= where C > 0 is specified in Lemma . Define B, = {u € R? :
|u|| > t=an}. Let C = mjeIo{le’ < i}, where j satisfies Pr(|Wj| > | Zo0) = bn and b,
be a sequence satisfies the conditions that by, — 0, pnbn, — 0 and n =2b, — co. According
to the condition pyn~ 2 — 0 in the theorem, such by, is well defined. By the definition of
W;, we know that E(W;) = 0 for all j € Z,. Moreover, by Lemma , we have j . a3
uniformly in j.

According to Proposition 1, we have

Pr (maXAj > | Zo) =Pr (maxAj > | C;Zo) Pr(C| Zo) + Pr (
j

Jeo J€Do

aXAj > ,CC ‘ Zo)
€Zy

< Pr <I_IlE%XAj > | C;Zo) +Pr(C° | Z0) := A1 + Aq:
Jelo

By the definition of by, Ay = 0p(1). It remains to handle A;.

Notice that conditional on C,

max Aj < max sup |[fj(—t)=F;(t) —1|; (S.3)

jEZo jGIO 0<t< i

where fj(-) is the density of Wj conditional on Zg. It remains to prove that the right-hand
side of (S.3) goes to zero as N — oo.

Denote Tyj = nr:fr‘h*:l n(éEj - é%) = U given Zg. In a similar way to the proof
of Lemma A.1, we consider two cases for U. As to the case U € B}, maxjez, Aj =
Op{(n *b,)~'} by the definition of j and 0 < t < j. On the other hand, we consider

the case U € By. Then, for j € Z, by Lemma we have

fj(t) = {(t=s) — O(t=s—) {1 +0p(1)} = = (t=5){1 +0p(1)};

0|~

where s = vu' u. Similarly, we also have fj(—t) = 1 (—t=s){1 + 0p(1)}, which yields
that the right-hand side of (S.3]) goes to zero since (—t=s) = (t=s) and (t=S) is bounded.
Then, the result (ii) in the theorem holds.

12



Appendix G: Additional simulation results
Selection of p, and !,

Table reports the FDR, TPR and K of MOPS in conjunction with OP, PELT and
WBS detection algorithms with different p, and !, under Example I. We consider the error
from N (0; 1) and fix n = 4096, K, = 15 and SNR=0.5. We observe that different values of
¢ € (1;2] for pp = |cn?**] and € [0:3;0:5] for 1, = N present similar results and their FDRs
are not significantly different. Thus we recommend pp = [2n?¥| and ¥, = min(|n%;60)

in the simulation studies.

Table S1: FDR(%), TPR(%) and K of MOPS in conjunction with OP, PELT and WBS detection
algorithms when error follows N (0; 1), n = 4096, K, = 15 and SNR=0.5 under Example I. The pp
is chosen as pn = Lcn2:5j with ¢ =1:2;1:5;2 and ', =n with = 0:3;0:4;0:5.

=03 =04 =0:5

Pn Method FDR TPR K FDR TPR K FDR TPR K

M-OP 19:8 91:3 177 19:1 92:7 17:9 18:9 95:2 18:3

1:2n%®  M-PELT 1955 91:2 175 19:4 93:1 18:0 19:9 957 188
M-WBS 16:9 91:8 17:3 17:2 92:3 175 195 95:3 185

M-OP 18:6 90:0 17:2 21:0 92:9 18:6 20:5 93:7 184

1:5n%*® M-PELT 166 89:3 16:7 20:8  93:1 18:6 21:2  94:1 189
M-WBS 17:3 859 16:3 18:3 86:3 166 16:4 90:9 170

M-OP 20:5 795 174 19:5 82:1 165 20:4 85:3 170

2n2¥ M-PELT 202 80:3 17:1 20:0 82:7 167 19:7 855 170
M-WBS 19:6 767 159 17:8 77:8 158 18:1 831 165

Next, we investigate the performance of our methods in the case that p, > 2n?¥. Figure
presents the FDR and TPR curves of MOPS, R-MOPS and M-MOPS when p,, varies in
(2n?;n=10) and the WBS algorithm is employed under Example I. Here we fix 1, = 10
and the true change-point number K, = 30 and consider the error comes from N (0;1) and

standardized ?(3). The FDR values of MOPS vary in an acceptable range of the target level

13



no matter the choice of p, under normal error, but are slightly distorted under standardized

2(3) error. The R-MOPS is able to improve TPR and yield smaller FDR levels than MOPS
due to the use of full sample information. We also observe that the M-MOPS leads to more
conservative FDR levels and smaller TPR than R-MOPS because of only using half of the
observations around each candidate point. That is consistent with our theoretical analysis

in Proposition 1 and Theorem 3. Similar results can also be found in Figure

Method — MOPS -=- R-MOPS -4: M-MOPS

N(0, 1) X (3)

0.20 -

0.15-

da4d

0.05-
1.0-

0.9-

0.8-

ddl

0.7 -

0.6 -

0.5-
50 100 150 200 250 50 100 150 200 250
P
Figure S1: FDR and TPR curves against p, € (2n%%;n=10) of MOPS, R-MOPS and M-MOPS
in conjunction with WBS algorithm when n = 4096, K, = 30 and SNR=1 under Example I. The

I.is xed as 10.

Figure [52| shows the FDR and TPR curves against 1, of the MOPS, R-MOPS and M-
MOPS in conjunction with WBS algorithm when n = 4096, K, = 10 and p, is fixed as
12n2%5 | under Example I. It implies that all the procedures are not sensitive to the choice of

I, in terms of FDR control. Meanwhile, a large !, could improve the detection power due

14



to more observations in each segment.

Method — MOPS -=- R-MOPS -4: M-MOPS

N(O, 1) t(3)

0.18-

0.15-

a4

0.12-

0.9-

0.8-

ddl

0.7 -

0.6- K

0.5- g

Figure S2: FDR and TPR curves against !, of MOPS, R-MOPS and M-MOPS in conjunction
with WBS algorithm when n = 4096, K, = 10 and SNR=0.7 under Example I. The p, is xed as
|2n%5 .

Comparison under other models

Three other MCP models are considered, reflecting changes in different aspects such as the
location and scale. Table [S2] gives a summary of all three simulated models along with the
associated statistics SJQ in constructing Wj.

Under multivariate mean change model (Example III), we examine the performance
of the refined MOPS in conjunction with the OP and PELT algorithms. For simplicity,
each dimension of the signals u;’s is set as the same as the signals i’s in Example 1. Two

scenarios for the error distribution are considered: (i) €; N (0; ) with = (0:5M )4,

15



Table S2: Preview of simulated models and the sample mean SJQ of the j-th segment for the odd

part. Change-points 7j’s are estimated on the basis of Zo.

NO. Model sy

i Xi = pi+ e xEJ? A

IV X ~ Multinomial(m; g;) X% A

\Y Xi= i"i vij? 1y Vi = logX
(ii) &i = ("i;i1: ") T, where iy Mg s ( 2—-5)=y/10. We consider the dimension d = 5,
10 and adjust the scale parameter to = 9v/d. Table presents the results when the

sample size N = 3072 and the number of change-points K, = 27. The R-MOPS-based
methods perform reasonably well in terms of FDR control and reliable TPR. In contrast,
the CV-PELT results in overly conservative FDR levels across all the settings and its Py’s
are much smaller than those of R-MOPS.

Table S3: Comparison results of FDR(%), TPR(%), Pa(%) and K when K, = 27 and n = 3072

under Example Il (multivariate mean shift).

d=5 d=10
errors Method FDR TPR P, K FDR TPR P, K
RM-OP 185 97.1 535 329 189 929 350 32.1
ei~N(@; ) RM-PELT 187 975 540 32.8 185 925 335 31.9
CV-PELT 09 91.3 180 249 06 867 40 236

RM-OP 19.7 99.1 87.0 33.0 20,3 959 685 331
RM-PELT 195 99.0 855 32.7 20,8 96.2 695 333
CV-PELT 0.8 859 45 234 1.7 84.1 0.0 231

(SN
I
ot

Further, we consider the MCP problem for multinomial distributions (Example IV), i.e.
Xi ~ Multinom(ny; qi), where the variance of the observation relies on their mean. Braun
et al.| (2000) integrated the problem into quasi-likelihood framework in combination with

BIC to determine the number of change-points. In particular, they aimed to identify the

16



breaks in the probability vectors q;i’s and recommended the BIC with a penalty . = 0:5n%23,
which will be seen as a benchmark for comparison in this example. To implement MOPS, we
apply their algorithm in our training step, i.e., given a candidate model size pn, we obtain
the estimated change-points by constructing the statistics Wj in (5). We follow the same

mechanism in Braun et al. (2000)) to generate Qi’s. To be specific, the initial mean vector

reports the simulation results when n = 2048, K, = 20, ny € (80;100;120) and d is
chosen as 5 or 10. Again, our R-MOPS can successfully control the FDR at the nominal
level in most cases. The BIC method appears to result in a slightly underfitting model on
average. Accordingly, the BIC method delivers conservative FDR levels and it may miss

some change-points due to relatively low Pj.

Table S4: Comparison results of FDR(%), TPR(%), Pa(%) and K between R-MOPS and BIC in

conjunction with Braun et al.| (2000)’s algorithm when K, =20 and n = 2048 under Example 1V.

d=5 d=10
ne Method FDR TPR P, K FDR TPR P, K
80 R-MOPS 202 981 855 252 17.1 928 450 23.1
BIC 1.8 922 410 19.4 1.9 892 320 193
100 R-MOPS 21.1 992 92.0 26.0 20.1 983 755 252
BIC 1.6 947 625 19.6 1.5 932 555 195
120 R-MOPS 215 99.8 975 26.2 212 99.0 850 26.0
BIC 1.3 972 735 19.7 1.1 964 69.0 19.6

At last, we investigate the performance of R-MOPS in conjunction with PELT under
Example V when the scale signal function of ;’s is chosen as a piecewise constant function
with values alternating between 1 and 0.5. We fix n = 4096 and show the curves of FDR,
TPR and P, when K, € [28;35] in Figure [S3] We observe that the FDRs of R-MOPS

17



with PELT get closer to the target level as Ky increases, which is in accordance with the
theoretical justification. Meanwhile, the CV-PELT method usually results in an underfitting

model because some true change-points are not selected.

Method — R-MOPS -=- CV

a
0.95-
0.204 — /// - /

0.90-

0.10- o
N
0.80- N RS
N N
005- ® -~ ----o_ S
TTe--_. o75- u T~-a

28 30 32 31 28 30 32 31 28 30 32 34

Figure S3: FDR, TPR and P, curves against K, between R-MOPS and CV criterion based on

PELT when n = 4096 and errors are i.i.d from standardized t; under Example V.

Extension on controlling PFER

Table [55] reports some PFER results of the MOPS in conjunction with OP and PELT when
the target PFER level kg = 1;5 or 10. We fix the sample size n = 4096, the dimension d =5
for multivariate data and consider that all errors are distributed from N (0; 1). The validity

of our MOPS approach in terms of PFER control is clear.

Others

Figure 54| displays the performance comparison under Example I with the same model setting
as Section 5.1 when the target FDR level is = 0:1. The comparison results are analogous

to those in nominal level = 0:2.

Table [S6| presents the comparisons between our R-SaRa and dFDR-SaRa under Example
I. Following the recommendation in Hao et al| (2013)), we choose four thresholds h; =

|13logn], hy = |5logn], hy = |7logn| and hy = [9logn]| as simple competitors. It is
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Table S5: PFER performance of MOPS in conjunction with OP and PELT when the target PFER

level ko = 1; 5 and 10 under Examples I-V.

Kn =5 Kn =10 Kn =15
Ko
Example Method 1 5 10 1 5 10 1 5 10
| M-OP 1.08 5.07 9.83 0.98 513 9.73 0.92 4.96 10.56
M-PELT 0.86 4.94 9.86 091 5.23 10.18 1.06 5.07 10.90
1 M-OP 0.79 4.86 10.03 0.69 4.72 10.25 0.89 4.97 10.04
M-PELT 0.74 4.14 957 0.77 493 10.36 0.66 5.05 8.58
11 M-OP 0.65 5.04 10.05 1.06 5.10 10.13 0.94 5.01 10.72
M-PELT 0.67 4.78 9.83 0.83 4.87 10.27 0.72 4.91 10.60
v M-OP 0.81 4.13 9.18 1.01 5.16 9.93 0.97 513 9.75
M-PELT 0.68 4.22 9.00 1.02 474 9.74 0.83 5.09 10.08
\Y M-OP 0.78 5.10 9.93 0.89 5.09 10.08 1.13 5.07 10.89
M-PELT 0.62 4.97 10.21 0.77 4.89 10.38 0.72 5.02 11.12

Method —

SNR

Figure S4: FDR, P, and the average number of estimated change-points K curves against SNR

among RM-PELT, CV-PELT and FDRseg when K, = 20, n = 2048 and the target FDR level

= 0:1 under Example 1.

clear that the R-MOPS performs well in terms of FDR control, but the performance of

dFDR-SaRa depends on the choice of h to a large extent.

For the frequent change-point setting, [Fryzlewicz (2020) proposed WBS2 detection algo-
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Table S6: Comparison results of FDR(%), TPR(%), Pa(%) and K between RM-Sara and dFDR-
SaRa-h in Hao et al.| (2013) when n = 10240 and SNR=0.7 under Example I.

Kp = 20 Kp = 40
Errors Method FDR TPR P, K FDR TPR P, K
RM-SaRa 195 992 840 254 222 998 92.0 522
dFDR-SaRa-h; 17.1 782 65 19.2 10.7 839 1.0 37.8
N(0;1) dFDR-SaRa-h, 10.2 943 440 21.0 30 959 290 396
dFDR-SaRa-h; 9.6 97.3 705 216 0.2 983 495 39.4
dFDR-SaRa-h, 3.4 99.1 90.0 205 00 958 1.0 383
RM-SaRa 186 99.7 945 253 209 999 965 51.1
dFDR-SaRa-h; 16.8 89.2 185 216 11.0 92.8 135 419
2(3) dFDR-SaRa-h, 12.8 981 740 227 20 99.3 81.0 405
dFDR-SaRa-h; 7.2 99.7 965 216 03 99.8 92.0 400
dFDR-SaRa-h, 2.6 100.0 100.0 20.6 00 953 0.0 390

rithm with threshold-based model selection criterion “Steepest Drop to Low Levels” (SDLL).
We compare our procedure R-MOPS in conjunction with WBS2 to the WBS2.SDLL crite-
rion when the “extreme.teeth” example of the univariate changes in Fryzlewicz (2020) is
considered. Specially, in the “extreme.teeth” example, the mean ’s for each observation
are defined as follows: j =0 if 1 <mod(i;10) <5 and ;=1 if mod(i; 10) € {0;6;7;8;9},
and the sample size n is 1000. Two values of SNR and three error distributions includ-
ing N(0;1), standardized t(3) and standardized 2(3) are considered. We fix 1,, = 4 and
Pn = 250 for the R-MOPS. From Table [S7, we can see that the FDRs of R-MOPS with
WBS2 are still controlled, though they appear to be overly conservative. The WBS2.SDLL

generally has better performances in terms of K estimation in the most settings.

Another real-data example: OPEC oil price

We analyze the daily Organisation of the Petroleum Exporting Countries (OPEC) Refer-
ence Basket oil prices from Jan. 6, 2003 to Dec. 16, 2020 with sample size n = 4610,

which is available from https://www.quandl.com. As the raw oil price series tend to ex-
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Table S7: Comparisons of K, FDR(%) and TPR(%) between R-MOPS and SDLL in conjunction
with WBS2 |Fryzlewicz (2020)’s \extreme.teeth" example when n = 1000, K, = 199 and three error

distributions are considered. The target FDR level is = 0:2 and 2 is the error variance.
=03 =05
Error  Method K FDR TPR K FDR TPR
N(0;1) RMOPS 1937 7.1 90.4 160.6 10.0 72.6
SDLL 199.4 3.8 96.4 71.6 9.0 29.3

t(3) RMOPS 1939 7.1 90.5 176.5 8.0 81.6
SDLL 209.8 7.1 97.8 221.8 19.6  89.0

23 RMOPS 1931 7.1 90.2 1679 8.9 76.8
SDLL 211.0 8.1 97.2 200.5 228 773

hibit strong autocorrelation (Baranowski et al.; 2019)), we consider analyzing the log-returns
1001og(Pi=Pj_1), where Pj is the daily oil price. Figure presents the data sequence of
log-returns and its autocorrelation, indicating the correlations of log-returns are relatively
weak. As|Baranowski et al.| (2019)) pointed out that both mean and scale changes exist in the
sequence, we build Sj = (Zi;log(Z?))" in W; for the proposed MOPS procedure to detect
changes in both the mean and variance when PELT algorithm is applied. In this study,
we use the function cpt.meanvar() in R package changepoint to implement the PELT

algorithm and also report change-points detected by the BIC for comparison.

The BIC results in 33 change-points, while the R-MOPS with PELT yields 36 and
55 change-points when the target FDR level is 0.05 and 0.1, respectively. The locations
of the change-points identified by BIC and R-MOPS with = 0:05 are given in the left
panel of Figure The estimated change-points of both methods largely agree each other.
However, the BIC does not indicate any changes in late 2004 and early 2005 and meanwhile
R-MOPS has several estimated change-points in that period. This period could potentially
be related to a noticeable expansion of the production volume in the late 2004, which leads

to a significant change of oil price elasticity. Thus, Murray and King| (2012) called the early
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Figure S5: (@): Scatter plots of the log-returns of daily OPEC oil prices, where the blue dash
and red solid lines represent the estimated change-points detected by BIC and R-MOPS with PELT

algorithm under = 0:05; (b) Autocorrelation of log-returns.

2005 was oil’s tipping point.
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