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SUMMARY

Section S.1 contains details and simulation studies for sparsely observed functional data, Sec-

tion S.2 contains auxiliary examples and results, Section S.3 provides proofs to the main theo-

rems, and Section S.4 contains technical lemmas.

S.1. DETAILS AND SIMULATION STUDIES FOR SPARSE DESIGN 15

When the functional data are sparsely observed, we adopt the procedure proposed by Yao et al.

(2005) to recover individual functions, as follows. First, the local linear smoother (Fan, 1993) is

adopted to produce an estimate µ̂ of the global mean function and an estimate Ĉ of the global

covariance function of X by pooling all observed data; see Zhang & Wang (2016) for more de-

tails. Then estimates ψ̂k and λ̂k of the eigenfunctions and eigenvalues, respectively, are obtained 20

by solving the eigen-equations
´

D Ĉ(s, t)ψ̂k(s)ds = λ̂kψ̂k(t). The global principal component

scores ξij are estimated by ξ̂ik = λ̂kφ̂
T
ikΣ̂

−1
i (ai − bi), where φ̂Tik = (ψ̂k(Ti1), . . . , ψ̂k(Timi

)),

ai = (X∗
i1, . . . ,X

∗
imi

)T , bi = (µ̂(Ti1), . . . , µ̂(Timi
))T , and Σ̂i is an mi ×mi matrix whose el-

ement in the jth row and lth column is Ĉ(Tij , Til) + σ̂2ζ1j=l with σ̂2ζ being the estimate of the

variance of the noise ζ . Finally, Xi(t) is estimated by X̂i(t) = µ̂(t) +
∑K

j=1 ξ̂ijψ̂j(t), where K 25

is a tuning parameter whose selection is discussed in Yao et al. (2005).

To illustrate the numerical performance of the proposed method for sparsely and irregularly

observed data, we adopt the same setting from Section 4 for dense data, except that now mi ∼
1 + Poisson(3) and Tij ∼ uniform(0, 1). In this new setting, the average number of observations

per curve is 4 and the observed time points are irregularly scattered. From the results presented in 30

Table S.1, we observe that, the proposed method is comparable to other methods for the SO(3)
manifold while exhibits a clear advantage for the other two manifolds. In addition, as the data

are rather sparse, the contamination is expected to dominate the convergence rate in (11) and

(12). Thus, we observe that the root mean square error decreases slowly with the sample size, in

contrast with the fast rate observed in the case of dense data. 35

Since the contamination is of a high level in this setting, the structure of the SO(3) manifold

might be buried by the contamination and thus could not be exploited. This might explain why
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Table S.1: Results of simulation studies for sparsely observed data

SO(3) Manifold Klein Bottle Gaussian Mixture

n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000
FLR 24.0 (0.27) 23.8 (0.27) 23.6 (0.25) 61.4 (0.51) 61.3 (0.44) 61.1 (0.35) 43.2 (1.64) 42.0 (1.65) 41.1 (1.63)

FNW 23.9 (0.24) 23.9 (0.26) 23.8 (0.24) 60.9 (0.59) 60.2 (0.62) 59.7 (0.62) 49.7 (3.65) 47.2 (1.05) 46.2 (0.76)

FCE 25.0 (0.42) 24.9 (0.33) 24.8 (0.31) 62.5 (0.89) 62.2 (0.75) 61.9 (0.56) 49.5 (1.12) 49.2 (0.83) 48.8 (0.78)

FMO 33.5 (1.61) 32.8 (1.19) 32.0 (1.45) 83.9 (3.70) 82.7 (3.06) 81.5 (2.64) 63.8 (3.06) 62.4 (2.16) 60.2 (2.30)

FCM 25.5 (0.60) 25.1 (0.42) 24.4 (0.30) 65.3 (1.56) 63.4 (1.15) 61.5 (0.74) 50.5 (1.52) 49.4 (1.05) 47.7 (0.76)

MUL 26.3 (0.59) 26.0 (0.45) 25.5 (0.39) 66.3 (1.32) 65.4 (1.12) 64.2 (0.79) 51.6 (1.35) 50.9 (0.99) 49.5 (0.89)

FREM 24.9 (0.96) 24.4 (0.87) 23.9 (0.68) 56.1 (2.62) 52.0 (1.19) 50.1 (0.64) 37.1 (2.11) 34.7 (1.98) 32.7 (1.46)

FLR, functional linear regression; FNW, functional Nadaraya–Watson smoothing; FCE, functional conditional expectation; FMO,

functional mode, FCM, functional conditional median; MUL, multi-method; FREM, the proposed functional regression on manifold;

MSP, meat spectrometric data; DTI, diffusion tensor imaging data; SBP, systolic blood pressure data. The numbers outside of

parentheses are the Monte Carlo average of root mean square error based on 100 independent simulation replicates, and the numbers

in parentheses are the corresponding standard error.

the proposed method shares a similar performance with the functional linear regression or is

even slightly outperformed by the latter. Also the performance of sophisticated regression meth-

ods like nonparametric regression methods is generally more sensitive to the noise level of the40

predictor, especially when the predictor resides in a space of higher dimension. This might ex-

plain why in the setting of the SO(3) manifold, almost all nonparametric regression methods

listed in Table S.1 perform no better than the functional linear regression which is perhaps the

simplest parametric method in functional regression.

S.2. AUXILIARY EXAMPLE AND RESULTS45

Example 1. Let S1 = {vω = (cosω, sinω) : ω ∈ [0, 2π)} denote the unit circle regarded as

a one-dimensional Riemannian manifold. Let D = [0, 1] and denote φ1, φ2, . . . a complete or-

thonormal basis of L2(D). Define map X(vω) =
√
C
∑

k k
−c{cos(kω)φ2k−1 + sin(kω)φ2k}

with c > 3/2 and C = 1/
∑

k k
−2c+2 ∈ (0,∞). According to Proposition S.1, X is an isomet-

ric embedding of S1 into L2(D). Then M = X(S1) is a submanifold of L2(D). Moreover, no50

finite-dimensional linear subspace of L2(D) fully encompasses M. A consequence of this ob-

servation is that, a random process taking samples from such M might have an infinite number

of eigenfunctions, even though M is merely one-dimensional, as we shall exhibit in the follow-

ing. Let us treat S1 as a probability space endowed with the uniform probability measure, and

define random variables ξ2k−1(vω) =
√
Ck−c cos(kω) and ξ2k(vω) =

√
Ck−c sin(kω). Then55

X =
∑

k ξkφk can be regarded as a random process with samples from M. It is easy to

check that E(ξkξj) = 0 if k 6= j, E(ξk) = 0, and Eξ22k−1 = Eξ22k = Cπk−2c, which implies

that E(‖X‖2L2) <∞. One can see that the eigenfunctions of the covariance operator of X are

exactly φk. Therefore, X =
∑

k ξkφk is the Karhunen-Loève expansion of the random process

X, which clearly includes an infinite number of principal components, while X is intrinsically60

sampled from the one-dimensional manifold M.

PROPOSITION 1. The embedding X defined in Example 1 is an isometric embedding. More-

over, there is no finite-dimensional linear subspace of L2(D) that fully contains the image

X(S1).

Proof. Let V = {(cos ω, sinω) : ω ∈ (a, b)} be a local neighborhood of v, and let ψ(v) =65

ω ∈ (a, b) for v = (v1, v2) = (cosω, sinω) ∈ V . Then ψ is a chart of S1. Let U be open in

L2 such that X(v) ∈ U . Since L2 is a linear space, the identity map I serves as a chart.
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Let XU,V : ψ(V ) → L2 denote the map X ◦ ψ−1. Let ϑ =
√
C
∑

k k
−c+1{− sin(kω)φ2k−1 +

cos(kω)φ2k}. It defines a linear map from R to L2, denoted by Θ(t) = tϑ ∈ L2. Then,

A(t) ≡t−2‖XU,V (ω + t)−XU,V (ω)−Θ(t)‖2 70

=C

∞∑

k=1

{
k−c cos(kω + kt)− k−c cos(kω) + tk−c+1 sin(kω)

t

}2

+

C
∞∑

k=1

{
k−c sin(kω + kt)− k−c sin(kω)− tk−c+1 cos(kω)

t

}2

≡CB2
1(t) + CB2

2(t).

By Lipschitz property of the function

B1,k(t) ≡ k−c cos(kω + kt)− k−c cos(kω) + tk−c+1 sin(kω),

we conclude that |B1,k(t)| ≤ t supt |B′
1,k(t)| ≤ 2k−c+1t. This implies that suptB

2
1(t) ≤∑

k 4k
−2c+2 <∞. By similar reasoning, suptB

2
2(t) <∞ and hence suptA(t) <∞. We now 75

apply the dominated convergence theorem to conclude that

lim
t→0

A(t) = C lim
t→0

{B2
1(t) +B2

2(t)} = C

∞∑

k=1

lim
t→0

{
B1,k(t)

t

}2

+ C

∞∑

k=1

lim
t→0

{
B2,k(t)

t

}2

= 0.

By recalling that the tangent space TvωS
1 at vω is R and the tangent space TX(vω)L2(D) at

X(vω) is L2(D), the above shows that the differential map X∗,vω : TvωS
1 → TX(vω)L2(D) at

vω is given by the linear map Θ, i.e,

X∗,vω(t) = Θ(t) = t
∑

k

√
Ck−c+1{− sin(kω)φ2k−1 + cos(kω)φ2k},

and the embedded tangent space at vω is span{−∑k k
−c+1 sin(kω)φ2k−1 +∑

k k
−c+1 cos(kω)φ2k}. As this differential map is injective at all v ∈ S1, X is indeed

an immersion. Since S1 is compact, X is also an embedding, and the image X(S1) is a 80

submanifold of L2(D).
To show that X is isometric, note that the tangent space of S1 at v is the real line R,

equipped with the usual inner product 〈s, t〉 = st for s, t ∈ R. Let 〈〈f1, f2〉〉 =
´

D f1(t)f2(t)dt
for f1, f2 ∈ L2(D) denote the canonical inner product of L2(D). Recalling the definition

C = 1/
∑∞

k=1 k
−2c+2 in the example, we deduce that 85

〈〈X∗,vω (s),X∗,vω (t)〉〉 = 〈〈Θ(s),Θ(t)〉〉 = st〈〈ϑ, ϑ〉〉

= Cst

∞∑

k=1

{k−2c+2 sin2(kω) + k−2c+2 cos2(kω)}

= Cst

∞∑

k=1

k−2c+2 = st = 〈s, t〉,

which shows that X is isometric.

Finally, to show that there is no finite-dimensional linear subspace of L2(D) that fully contains 90

X(S1), we take the strategy of “proof by contradiction” to assume that H is a finite-dimensional

linear subspace of L2(D) such that X(S1) ⊂ H . Since H is finite-dimensional, there exists

0 6= ϕ ∈ L2(D) such that ϕ ⊥ H and hence ϕ ⊥ X(S1), or more specifically, 〈〈ϕ, x〉〉 = 0 for
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each x ∈ X(S1). As φ1, φ2, . . . form a complete orthonormal basis of L2(D), we can find real

numbers a1, a2, . . . such that ϕ =
∑

k(a2k−1φ2k−1 + a2kφ2k). Then, 〈〈ϕ, x〉〉 = 0 for each x ∈95

X(S1) is equivalent to
∑

k k
−c{a2k−1 cos(kω) + a2k sin(kω)} = 0 for all ω. Since cos(kω) and

sin(kω), as functions of ω, are orthogonal, it implies that a2k−1 = 0 and a2k = 0 for all k, which

indicates that ϕ = 0. However, by assumption, ϕ 6= 0, and we draw a contradiction. �

The contamination of the predictor X poses substantial challenge on the estimation of the

manifold structure. For instance, the quality of the tangent space at x, denoted by TxM,100

crucially depends on a bona fide neighborhood around x, while the contaminated neigh-

borhood N̂L2(hpca, x) and the inaccessible true neighborhood NL2(hpca, x) = {Xi : ‖Xi −
x‖L2 < hpca} might contain different observations. Fortunately we can show that they are not

far apart in the sense of Proposition 2. In practice, we suggest to choose max(hreg, hpca) <
min{2/τ, inj(M)}/4, where τ is the condition number of M and inj(M) is the injectivity ra-105

dius of M (Cheng & Wu, 2013), so that N̂L2(hpca, x) provides a good approximation of the true

neighborhood of x within the manifold.

PROPOSITION 2. For 0 < ̺ < β, define h− = hpca −m−(β+̺)/2 and h+ = hpca +

m−(β+̺)/2. Let Zi = 1
{X̂i∈B

L2

hpca
(x)}

, Vi0 = 1
{Xi∈B

L2

h−
(x)}

and Vi1 = 1
{Xi∈B

L2

h+
(x)}

. Under the

assumption (B3) and logm & log n, pr(∀i : Vi0 ≤ Zi ≤ Vi1) → 1 as n→ ∞.110

Hence one can always obtain lower and upper bounds for quantities involving Zi in terms of

Vi0 and Vi1, i.e., with large probability, it is equivalent to substitute Zi with Vi0 and Vi1 in our

analysis.

Proof. We first bound the following event

pr(∀i : Zi ≤ Vi1) =
n∏

i=1

{1− pr(Zi > Vi1)} = {1− pr(Z > V1)}n115

= {1− pr(Z = 1, V1 = 0)}n ≥
{
1− pr(‖X̂ −X‖ ≥ m−(β+̺)/2)

}n

≥
(
1− cp1m

p(β+̺)/2m−pβ
)n

≥
(
1− cp1m

−2
)n → 1,

where c1 > 0 is some constant, and p > 0 is a constant that is sufficiently large. Similarly, we

can deduce that

pr(∀i : Vi0 ≤ Zi) → 1,

and the conclusion pr(∀i : V0i ≤ Zi ≤ V1i) → 1 follows. �120

We now address the case that the predictor x is not fully observed. It is reasonable to assume

that x comes from the same source of the data, in the sense that its smoothed version x̃ has the

same contamination level as those X̂1, . . . , X̂n, as per (B3). To be specific, assume that

(B4) the estimate x̃ is independent of X1, . . . ,Xn and X1, . . . ,Xn. Also {E‖x̃−
x‖p

L2}1/p ≤ C ′
pm

−β for all p ≥ 1, where C ′
p is a constant depending on p only.125

Note that the independent condition in (B4) is satisfied if t1, . . . , tmx are independent of

X1, . . . ,Xn and X1, . . . ,Xn. The second part of (B4) is met if assumptions similar to (A1)–(A4)

hold also for x and t1, . . . , tmx , according to Proposition 1.
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THEOREM 4. With the conditions (A1), (B1)–(B3), and the additional assumption (B4), the

equation (11) holds when x ∈ M\Mhreg
, and the equation (12) holds when x ∈ Mhreg

, both 130

with ĝ(x) replaced by ĝ(x̃).

Proof. We first observe that

E
[
{ĝ(x̃)− g(x)}2 | X

]
≤ 2E

[
{ĝ(x̃)− ĝ(x)}2 | X

]
+ 2E

[
{ĝ(x)− g(x)}2 | X

]
.

To derive the order for the first term, we shall point out that, with Lemma S.7, S.8 and S.9,

by following almost the same lines of argument, the conclusions of Theorem 1 hold for x̃. This 135

means, by working on x̃ instead of x, we still have a consistent estimate of the intrinsic dimension

and a good estimate of the tangent space at x. Given this, it is not difficult but somewhat tedious

to verify that the argument in the proof of Theorem 2 and 3 still holds for x̃, with care for the

discrepancy ‖x̃− x‖L2 instead of the discrepancy ‖X̂i −Xi‖L2 . This argument also shows that

the order of the first term is the same as the second one (this is expected since x̃ has the same 140

contamination level of those X̂i), and hence the conclusion of the theorem follows. �

S.3. PROOFS OF MAIN THEOREMS

To reduce notational burden, L2(D) is simplified by L2, and we shall use ‖ · ‖ to denote the

norm ‖ · ‖L2 when no confusion arises.

Proof of Theorem 1. (a) Without loss of generality, assume x = 0. Let G̃j = Ĝj +∆ and 145

G̃(1), G̃(2), . . . , G̃(k) be the associated order statistics of G̃1, G̃2, . . . , G̃k. Also note that the esti-

mator in Levina & Bickel (2004) is still consistent if G is replaced with Ǧ ≡ G+∆. Then,

∣∣∣∣∣∣
1

k − 1

k−1∑

j=1

log
Ĝ(k) +∆

Ĝ(j) +∆
− 1

k − 1

k−1∑

j=1

log
Ǧ(k)

Ǧ(j)

∣∣∣∣∣∣

≤
∣∣∣log G̃(k) − log Ǧ(k)

∣∣∣+

∣∣∣∣∣∣
1

k − 1

k∑

j=1

(
log G̃(j) − log Ǧ(j)

)
∣∣∣∣∣∣
≡ I1 + I2. (1)

For I1, let q and p be the indices such that G̃(k) = Ĝq and Ǧp = Ǧ(k), respectively. For the 150

case q = p, we have |G̃(k) − Ǧ(k)| = |G̃p − Ǧp| ≤
∣∣∣‖X̂p‖ − ‖Xp‖

∣∣∣+∆ ≤ ‖X̂p −Xp‖+∆ by

reverse triangle inequality. When q 6= p, it is seen that G̃p < G̃(k) = G̃q and Gq < Gp = G(k).

If G̃(k) > Ǧ(k), then |G̃(k) − Ǧ(k)| ≤ |G̃(k) − Ǧq| = |G̃q −Gq| ≤ max1≤j≤k{‖X̂j −Xj‖}.

Otherwise, |G̃(k) − Ǧ(k)| ≤ |G̃p − Ǧp| ≤ max1≤j≤k{‖X̂j −Xj‖}. Now, pr(∀1 ≤ j ≤ k :

‖X̂j −Xj‖ > ǫ) ≤∑k
j=1 pr

(
‖X̂j −Xj‖ > ǫ

)
≤ kE‖X̂j −Xj‖rǫ−r = O(km−rβ) = o(1) 155

for a sufficiently large constant r. Therefore, |G̃(k) − Ǧ(k)| converges to zero in probability, or

G̃(k) converges to Ǧ(k) in probability. By Slutsky’s lemma, log G̃(k) converges to log Ǧ(k) in

probability and hence I1 = oP (1).
For I2, we first observe that

I2 =

∣∣∣∣∣∣
1

k − 1

k∑

j=1

(
log G̃(j) − log Ǧ(j)

)
∣∣∣∣∣∣
=

∣∣∣∣∣∣
1

k − 1

k∑

j=1

(
log G̃j − log Ǧj

)
∣∣∣∣∣∣
.
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By Markov’s inequality, for any fixed ǫ > 0,160

pr (I2 > ǫ) ≤ EI2
ǫ

≤ kE| log G̃− log Ǧ|
(k − 1)ǫ

= o(1),

where the last equality is obtained by Lemma S.7. We then deduce that I2 = oP (1). Together

with I1 = oP (1) and (1), this implies that
∣∣∣∣∣∣

1

k − 1

k−1∑

j=1

log
Ĝ(k) +∆

Ĝ(j) +∆
− 1

k − 1

k−1∑

j=1

log
Ǧ(k)

Ǧ(j)

∣∣∣∣∣∣
→ 0 in probability.

Now we apply the argument in Levina & Bickel (2004) to conclude that d̂ is a consistent estima-

tor.

(b) Let h = hpca, and {φ̃k}dk=1 be a orthonormal basis system for TxM and {ψk}∞
k=1

be an orthonormal basis of L2. Without loss of generality, assume that M is properly ro-

tated and translated so that ψk = φ̃k for k = 1, 2, . . . , d, and x = 0 ∈ L2. The sample covari-165

ance operator based on observations in N̂L2(h, x) is denoted by Ĉx as in (6). It is seen that

Ĉx = n−1
∑n

i=1(X̂i − µ̂x)(X̂i − µ̂x)Zi, where Zi = 1
{X̂i∈B

L2

h
(x)}

and µ̂x = n−1
∑n

i=1 X̂iZi.

Let H1 = span{ψk : k = 1, 2, . . . , d} and H2 be the complementary subspace of H1 in L2,

so that L2 = H1 ⊕H2. Let Pj : L2 → Hj be projection operators, and we define operator A =

P1ĈxP1, B = P2ĈxP2, D12 = P1ĈxP2 and D21 = P2ĈxP1. Then Ĉx = A+ B +D12 +D21.170

Note that D12 +D21 is self-adjoint. Therefore, if y =
∑∞

k=1 akψk ∈ L2,

‖D12 +D21‖op = sup
‖y‖=1

〈(D12 +D21)y, y〉 = sup
‖y‖=1

(
〈P1ĈxP2y, y〉+ 〈P2ĈxP1y, y〉

)

=2 sup
‖y‖=1




∞∑

k=d+1

d∑

j=1

ajak〈Ĉxψj , ψk〉


 ≤ 2 sup

‖y‖=1




∞∑

k=d+1

d∑

j=1

|ajak| ·
∣∣∣〈Ĉxψj, ψk〉

∣∣∣




≤2 sup
j≤d

sup
k≥d+1

∣∣∣〈Ĉxψj, ψk〉
∣∣∣ sup

‖y‖=1





∞∑

k=d+1

d∑

j=1

(a2j + a2k)



 ≤ 2 sup

j≤d
sup

k≥d+1

∣∣∣〈Ĉxψj , ψk〉
∣∣∣ .

From Lemma S.9, ‖D12 +D21‖op = OP

(
hd+3 + n−1/2hd/2+3 +m−βhd+1

)
. Similarly,175

we have ‖B‖op = OP

(
hd+4 + n−1/2hd/2+4 +m−βhd+1

)
, and A = πd−1f(x)d

−1hd+2Id +

OP

(
n−1/2hd/2+2 +m−βhd+1

)
, where πd−1 is the volume of the d− 1 dimensional unit

sphere, and Id is the identity operator on H1.

Let an = n−1/2h−d/2 and bn = m−βh−1. Then we have

Ĉx = πd−1f(x)d
−1hd+2{Id +OP (an + bn) Ã+OP

(
h2 + bn

)
B̃ +OP (h+ bn) (D̃12 + D̃21)}

where Ã, B̃, D̃12 and D̃21 are operators with norm equal to one,180

and D̃12 is the adjoint of D̃21. With the choice of ̺, we have Ĉx =

πd−1f(x)d
−1hd+2

{
Id +OP (

√
h)Ã+OP (h)B̃ +OP (h)(D̃12 + D̃21)

}
. The same per-

turbation argument done in Singer & Wu (2012) leads to the desired result. �

Proof of Theorem 2. To reduce notions, let h = hreg and fix x ∈ M\Mhreg
. Let {ϕ̂k}dk=1 be

the orthonormal set determined by local FPCA and {φk}dk=1 the associated orthonormal basis185

of TxM. Let {ψk}∞
k=1 be an orthonormal basis of L2. Without loss of generality, assume M
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is properly rotated and translated so that x = 0 ∈ L2 and ψk = φk for k = 1, 2, . . . , d. Let g =
(g(X1), g(X2), . . . , g(Xn))

T . Then we have

E{ĝ(x) | X } = eT1 (Q̂
T Ŵ Q̂)−1Q̂T Ŵg.

Take z = expx(tθ), where t = O(h), θ ∈ TxM, ‖θ‖L2 = 1, and expx denotes the exponential

map of M at x. By Theorem 1, we have 〈θ, ϕ̂k〉 = 〈θ, ψk〉+OP (h
3/2
pca) and 〈Πx(θ, θ), ϕ̂k〉 = 190

OP (hpca). By Lemma A.2.2. of Cheng & Wu (2013), we have

tθ = y − t2Πx(θ, θ)/2 +O(t3). (2)

Therefore, for k = 1, 2, . . . , d, 〈tθ, ψk〉 = 〈tθ, ϕ̂k −OP (h
3/2
pca)uk〉 = 〈z, ϕ̂k〉 −

t2〈Πx(θ, θ), ϕ̂k〉/2 +OP (hh
3/2
pca + h2hpca) = 〈z, ϕ̂k〉+OP

(
hh

3/2
pca + h2hpca

)
. Since

θ ∈ TxM, we have θ =
∑d

k=1〈θ, ψk〉φk. Let z = (〈z, ϕ̂1〉, 〈z, ϕ̂2〉, . . . , 〈z, ϕ̂d〉)T . By (2),

it is easy to see that 195

g(z) − g(x) = tθ∇g(x) + Hess g(x)(θ, θ)t2/2 +OP (t
3)

=

d∑

k=1

〈tθ, ψk〉∇φk
g(x) +

1

2

d∑

j,k=1

〈tθ, ψj〉〈tθ, ψk〉Hess g(x)(φj , φk) +OP (h
3)

= z
T∇g(x) + 1

2
z
THess g(x)z +OP (h

5/2).

Due to the smoothness of g, the compactness of M and the compact sup-

port of K , we have g = Q[g(x) ∇g(x)]T +H/2 +OP (h
5/2), where H = 200

[ξT1 Hess g(x)ξ1, ξ
T
2 Hess g(x)ξ2, . . . , ξ

T
nHess g(x)ξn]

T , ξi = (ξi1, . . . , ξid̂)
T , ξij = 〈Xi, ψj〉,

and

Q =

(
1 1 · · · 1
ξ1 ξ2 · · · ξn

)T

.

Then the conditional bias is

E{ĝ(x)− g(x) | X } = eT1 (Q̂
T Ŵ Q̂)−1Q̂T Ŵg− g(x)

= eT1

(
1

n
Q̂T Ŵ Q̂

)−1 1

n
Q̂T Ŵ (Q− Q̂)

[
g(x)
∇g(x)

]
(3) 205

+ eT1

(
1

n
Q̂T Ŵ Q̂

)−1 1

n
Q̂T Ŵ

{
1

2
H +OP (h

5/2)

}
. (4)

Now we analyze the term in (3). Let Z = 1
X̂∈B

L2

h
(x)

. By Lemma S.8, EZ ≍ hd. Then, by

Hölder’s inequality, for any fixed ǫ > 0, we choose a constant q > 1 and a sufficiently large

p > 0 so that 1/q + 1/p = 1 andEZ‖X̂ −X‖ = (EZ)1/q(E‖X̂ −X‖p)1/p = O(hd−ǫdm−β).
Therefore, 210

1

n
Q̂T Ŵ (Q− Q̂)

[
g(x)
∇g(x)

]
=

[
1
n

∑n
i=1Kh(‖X̂i − x‖)(ξi − ξ̂i)

T∇g(x)
1
n

∑n
i=1Kh(‖X̂i − x‖)(ξi − ξ̂i)

T∇g(x)ξ̂i

]
= OP (h

−1−ǫdm−β),

(5)
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since

∣∣∣∣∣
1

n

n∑

i=1

Kh(‖X̂i − x)‖)(ξi − ξ̂i)
T∇g(x)

∣∣∣∣∣ ≤
1

n

n∑

i=1

Kh(‖X̂i − x‖)‖ξi − ξ̂i‖Rd‖∇g(x)‖

≤ {sup
v

|K(v)|}‖∇g(x)‖
(

1

n

n∑

i=1

Zi‖ξi − ξ̂i‖Rd

)
= OP (h

−1−ǫdm−β),

and similarly, n−1
∑n

i=1Kh(‖X̂i − x‖)(ξi − ξ̂i)
T∇g(x)ξ̂i = OP (h

−1−ǫdm−β)1d×1.

For Q̂T Ŵ Q̂, a direct calculation shows that215

1

n
Q̂T Ŵ Q̂ =

[
n−1

∑n
i=1Kh(‖X̂i − x‖) n−1

∑n
i=1Kh(‖X̂i − x‖)ξ̂Ti

n−1
∑n

i=1Kh(‖X̂i − x‖)ξ̂i n−1
∑n

i=1 ξ̂
T
i Kh(‖X̂i − x)‖)ξ̂i

]
.

It is easy to check that n−1
∑n

i=1Kh(‖X̂i − x‖) = n−1
∑n

i=1Kh(‖Xi − x‖) +
OP (h

−1−ǫdm−β), and note that the choice of h ensures that h1+ǫd ≫ m−β . Similar calculation

shows that 1
n

∑n
i=1Kh(‖X̂i − x‖)ξ̂Ti = 1

n

∑n
i=1Kh(‖Xi − x‖)ξTi +OP (h

−1−ǫdm−β) and

also

1

n

n∑

i=1

ξ̂Ti Kh(‖X̂i − x)‖)ξ̂i =
1

n

n∑

i=1

ξTi Kh(‖Xi − x‖)ξi +OP (h
−1−ǫdm−β).

Therefore,

1

n
Q̂T Ŵ Q̂ =

1

n
QTWQ+OP (h

−1−ǫdm−β)1d×11
T
d×1, (6)

with

1

n
QTWQ =

[
n−1

∑n
i=1Kh(‖Xi − x‖) n−1

∑n
i=1Kh(‖Xi − x‖)ξTi

n−1
∑n

i=1Kh(‖Xi − x‖)ξi n−1
∑n

i=1 ξiKh(‖Xi − x‖)ξTi

]
.

By Lemma S.4, S.5 and S.6, we have

1

n
QTWQ

=

[
f(x) h2u1,2d

−1∇f(x)T
h2u1,2d

−1
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Then, by the binomial inverse theorem and matrix blockwise inversion, we have

(
1

n
Q̂T Ŵ Q̂

)−1

=

[
1

f(x) −∇T f(x)
f(x)2

−∇f(x)
f(x)2 h−2 d

u1,2f(x)
Id

]
225

+

[
OP (h

2 + h−1−ǫdm−β + n− 1

2h− d
2 ) OP (h+ h−3−ǫdm−β + n− 1

2h− d
2

−1)

OP (h+ h−3−ǫdm−β + n− 1

2h− d
2

−1) OP (h
− 1

2 + h−5−ǫdm−β + n− 1

2h− d
2

−2)

]
.

(7)

Together with (5), it implies that

eT1 (Q̂
T Ŵ Q̂)−1Q̂T Ŵ

{
(Q− Q̂)

[
g(x)
∇g(x)

]}
=OP (h

−1−ǫdm−β). (8)

Now we analyze (4) with a focus on the term Q̂T ŴH . A calculation similar to those in Lemma

S.5 and S.6 shows that 1
n

∑n
i=1Kh (‖Xi − x‖) ξTi Hess g(x)ξi = h2u1,2d

−1f(x)∆g(x) + 230

OP (h
7/2 + n−1/2h−d/2+2) and 1

n

∑n
i=1Kh (‖Xi − x‖) ξTi Hess g(x)ξiξi = OP (h

4 +

n− 1

2h− d
2
+3). Therefore,

1

n
QTWH =

[
h2u1,2d

−1f(x)∆g(x) +OP (h
7/2 + n−1/2h−d/2+2)

h4 + n− 1

2h− d
2
+3

]

and hence

1

n
Q̂T ŴH =

[
h2u1,2d

−1f(x)∆g(x) +OP (h
7/2 + n−1/2h−d/2+2 + h−1−ǫdm−β)

OP (h
4 + n− 1

2h− d
2
+3 + h−1−ǫdm−β)

]
. 235

The condition on h implies that n− 1

2h− d
2 ≪ 1. With (7), we conclude that

eT1 (Q̂
T Ŵ Q̂)−1Q̂T Ŵ

{
1

2
H +OP (h

3)

}
=

1

2d
h2u1,2∆g(x) +OP (h

3 + n− 1

2h− d
2
+2 + h−1−ǫdm−β).

Combining this equation with (4) and (8) , we immediately see that the conditional bias is

E{ĝ(x)− g(x) | X } =
1

2d
h2u1,2∆g(x) +OP (h

3 + n− 1

2h− d
2
+2 + h−1−ǫdm−β). (9)

Now we analyze the conditional variance. Simple calculation shows that

var{ĝ(x) | X } = n−1σ2εe
T
1 (n

−1Q̂T Ŵ Q̂)−1(n−1Q̂T ŴŴ Q̂)(n−1Q̂T Ŵ Q̂)−1eT1 (10)

and

1

n
Q̂T ŴŴ Q̂ =

1

n
QTWWQ+OP (m

−βh−d−1−ǫd)1(d+1)×(d+1). (11)

In addition, 240

1

n
QTWWQ =

[
1
n

∑n
i=1K

2
h (‖Xi − x‖) 1

n

∑n
i=1K

2
h (‖Xi − x‖) ξTi

1
n

∑n
i=1K

2
h (‖Xi − x‖) ξi 1

n

∑n
i=1K

2
h (‖Xi − x‖) ξiξTi

]
.
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With Lemma S.4, S.5 and S.6, we can show that

hd

n
QTWWQ

=

[
u2,0σ

2f(x) h2d−1u2,2σ
2∇f(x)

h2d−1u2,2σ
2∇T f(x) h2d−1u2,2σ

2f(x)Id

]
+

[
O(h2) +OP (n

− 1

2h− d
2 ) OP (h

3 + n− 1

2h− d
2
+1)

OP (h
3 + n− 1

2h− d
2
+1) OP (h

7

2 + n− 1

2h− d
2
+2)

]
.

Combined with (7), the above equation implies that

n−1σ2εe
T
1 (n

−1Q̂T Ŵ Q̂)−1(n−1QTWWQ)(n−1Q̂T Ŵ Q̂)−1eT1 = OP (n
−1h−d). (12)245

Also,

n−1σ2εe
T
1 (n

−1Q̂T Ŵ Q̂)−1
1(d+1)×(d+1)(n

−1Q̂T Ŵ Q̂)−1eT1OP (h
−d−1−ǫdm−β)

= OP

(
m−βn−1h−d−1−ǫd(1 + h−2−ǫdm−β + h−4−2ǫdm−2β)

)
. (13)

Combining the above result with (10), (11), (12), (13) and the condition on h, gives the following

conditional variance250

var{ĝ(x) | X } =
1

nhd
u2,0σ

2
ε

f(x)
+OP

(
n−1h−d(h+ n− 1

2h− d
2 )
)
. (14)

Finally, the rate for E[{ĝ(x)− g(x)}2 | X ] is derived from (9) and (14). �

Proof of Theorem 3. The proof is similar to the proof for Theorem 2. Below we shall only

discuss those that are different. Let h = hreg to reduce notational burden. We first have

1

n
QTWQ = f(x)vκ1v

+

[
O(h) +OP (n

− 1

2h− d
2 ) O(h2) +OP (n

− 1

2h− d
2
+1)

O(h2) +OP (n
− 1

2h− d
2
+1) O(h3) +OP (n

− 1

2h− d
2
+2)

]
255

where

κq =

[
κ11,q κ12,q
κT12,q κ22,q

]
, κ22,q = (κ22,q,j,k)

d
j,k=1 , v =

[
1 0
0 hId

]
.

Then,

1

n
Q̂T Ŵ Q̂ = f(x)vκ1v

+

[
O(h) +OP (n

− 1

2h− d
2 ) +OP (h

−1−ǫdm−β) O(h2) +OP (n
− 1

2h− d
2
+1) +OP (h

−1−ǫdm−β)

O(h2) +OP (n
− 1

2h− d
2
+1) +OP (h

−1−ǫdm−β) O(h3) +OP (n
− 1

2h− d
2
+2) +OP (h

−1−ǫdm−β)

]

and also260

(
1

n
Q̂T Ŵ Q̂

)−1

= v−1κ−1
1 v−1/f(x)

+

[
OP (h+ h−2−ǫdm−β + n− 1

2h− d
2 ) OP (1 + h−4−ǫdm−β + n− 1

2h− d
2

−1)

OP (1 + h−4−ǫdm−β + n− 1

2h− d
2

−1) OP (h
−1 + h−5−ǫdm−β + n− 1

2h− d
2

−2)

]
.
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This implies that

eT1 (Q̂
T Ŵ Q̂)−1Q̂T Ŵ

{
(Q− Q̂)

[
g(x)
∇g(x)

]}
= eT1

[
1 h−1

h−1 h−2

]
OP (h

−1−ǫdm−β)1d×1

= OP (h
−1−ǫdm−β). 265
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S.4. TECHNICAL LEMMAS285

Here we collect some technical lemmas that will be used in the proofs of the main theorems.

The lemma below is used to establish Proposition 1. Its proof depends on Lemma 2 and 3.

LEMMA 1. Suppose h0 → 0, and mh0 → ∞. For any p ≥ 1, assume E|ζ|p <∞. Under the

assumptions (A1)–(A3), for the estimate X̂ in (3) with a proper choice of δ,

{E(‖X̂ −X‖p
L2 | X)}1/p = O

(
m−1/2h

−1/2
0

){
sup
t

|X(t)| + LX

}
+O(hν0)LX , (17)

where O(·) does not depend on X.290

Proof. In order to reduce notations, let h = h0. Denoting ∆ = δ1|S0S2−S2
1

|<δ with δ = m−2,

according to (3), we have

X̂(t)−X(t) =
S2(R0 − S0X)

S0S2 − S2
1 +∆

− S1(R1 − S1X)

S0S2 − S2
1 +∆

− ∆X

S0S2 − S2
1 +∆

≡ I1 + I2 + I3.

Therefore,

‖X̂ −X‖p ≤ cp(‖I1‖p + ‖I2‖p + ‖I3‖p) (18)

for some constant cp depending on p only.295

For I1, we have

‖I1‖p =
[
ˆ

D

{
S2(R0 − S0X)

S0S2 − S2
1 +∆

}2

dt

]p/2
≤
[
ˆ

D
{S2(R0 − S0X)}4 dt

ˆ

D

(
1

S0S2 − S2
1 +∆

)4
]p/4

≤
{
ˆ

D
S8
2dt

ˆ

D
(R0 − S0X)8dt

}p/8
{
ˆ

D

(
1

S0S2 − S2
1 +∆

)4
}p/4

.

This also shows that, for p ≥ 2,

E(‖I1‖p | X)300

≤
(
E

{[
ˆ

D
S8
2dt

ˆ

D
(R0 − S0X)8dt

]p/4
| X
})1/2


E





[
ˆ

D

(
1

S0S2 − S2
1 +∆

)4

dt

]p/2
| X








1/2

≤
(
E

[
ˆ

D
S4p
2 dt

]
E

[
ˆ

D
(R0 − S0X)4pdt | X

])1/4
(
E

[
ˆ

D

{
1

S0S2 − S2
1 +∆

}2p

dt

])1/2

=

{
ˆ

D
E(S4p

2 )dt

}1/4 [ˆ

D
E{(R0 − S0X)4p | X}dt

]1/4 [ˆ

D
E

{(
1

S0S2 − S2
1 +∆

)2p
}
dt

]1/2
.

(19)
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Let E0,X = E(R0 − S0X | X) and ℓ be the largest integer strictly less than ν. By Taylor expan-

sion, 305

E0,X = E


 1

mh

m∑

j=1

K

(
Tj − t

h

)
{X(Tj) + ζj −X(t)} | X




=
1

mh

m∑

j=1

E

[
K

(
Tj − t

h

){
X(ℓ)(t+ τj(Tj − t))−X(ℓ)(t)

ℓ!
(Tj − t)ℓ

}
| X
]
,

where τj ∈ [0, 1]. Hence, with uν denoting
´ 1

−1K(s)|s|νds, we have

|E0,X | ≤ 1

mh

m∑

j=1

E

{
K

(
Tj − t

h

) ∣∣∣∣∣
X(ℓ)(t+ τj(Tj − t))−X(ℓ)(t)

ℓ!
(Tj − t)ℓ

∣∣∣∣∣ | X
}
,

≤ 1

hℓ!
LXE

{
K

(
T − t

h

)
|T − t|ν

}
≤ LXCT,2

ℓ!
hνuν . (20) 310

Let σr,X = E
([
h−1K {(Tj − t)/h} {X(Tj) + ζj −X(t)} − E0,X

]r | X
)
. Then, for r ≥ 2,

σr,X = E

([
1

h
K

(
Tj − t

h

)
{X(Tj) + ζj −X(t)} − E0,X

]r
| X
)

≤ 3rE

[{
1

h
K

(
Tj − t

h

)
|X(Tj)−X(t)|

}r

| X
]
+ 3rE

[{
1

h
K

(
Tj − t

h

)
|ζj|
}r

| X
]
+ 3r|E0,X |r

≤ 2 · 3r
{
sup
t

|X(t)|r
}
E

[{
1

h
K

(
Tj − t

h

)}r]
+ 3rE

[{
1

h
K

(
Tj − t

h

)}r

|ζj |r
]
+ 3r|E0,X |r

≤ 2 · 3r
{
sup
t

|X(t)|r
}
h1−rCr

T,2 + 3rh1−rCr
T,2E|ζ|r + 3rLr

XC
r
T,2h

rνurν . (21) 315

With (20) and (21), by Lemma 2, conditioning on X, we have

E
{
(R0 − S0X −E0,X)4p | X

}
≤ c1(p)C

4p
T,2{supt |X(t)|4p + L4p

X u
4p
ν }m−2ph−2p, where

cj(p) denote a constant depending on p only for any j. This implies that

E
{
(R0 − S0X)4p | X

}
≤ 24pE

{
(R0 − S0X − E0,X)4p | X

}
+ 24pE

{
(E0,X)4p | X

}

(22)

≤ 24pc1(p)C
4p
T,2{sup

t
|X(t)|4p + L4p

X u
4p
ν }m−2ph−2p + (2CT,2uν)

4p h4pνL4p
X .320

By a similar argument, we can show that E(S2 − ES2)
4p ≤ c2(p)m

−2ph−2p. Also, it is easy to

check that CT,1u2 ≤ ES2 ≤ CT,2u2 with uq denoting
´ 1

−1K(u)|u|qdu and hence

E(S4p
2 ) ≤ 24pE(S2 − ES2)

4p + 24p|ES2|4p ≤ C4p
T,2u

4p
2 + c2(p)m

−2ph−2p = O(1). (23)

The same argument leads to E{S0S2 − S2
1 − E(S0S2 − S2

1)}2p ≤ c3(p)m
−ph−p. Note that

inftE(S0S2 − S2
1) > 0 so that {E(S0S2 − S2

1)}−1 = O(1). By Lemma 3, this also implies that

ˆ

D
E

{(
1

S0S2 − S2
1 +∆

)2p
}
dt = O(1) +O(m−ph−p +m−4p) = O(1). (24)
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Puting (19), (22), (23) and (24) together, we conclude that325

E(‖I1‖p | X) = c4(p)

[
{sup

t
|X(t)|p + Lp

X}m−p/2h−p/2 + hpνLp
X

]
. (25)

The same rate for I2 can be obtained in a similar fashion. For I3, we have

‖I3‖p =
{
ˆ

D

(
∆X

S0S2 − S2
1 +∆

)2

dt

}p/2

≤ ∆p sup
t

|X(t)|p
{
ˆ

D

(
1

S0S2 − S2
1 +∆

)2

dt

}p/2

.

Therefore, with (24),

E(‖I3‖p | X) ≤ ∆p sup
t

|X
≤ ∆p 2
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(ar + br)h1−r for r ≥ 2. Therefore,

E




N∑

j=1

Vj




2p

≤
p∑

q=1

(
N

q

)
(2p)q−1

(
2p

k1, k2, . . . , kN

)
2q(a2phq−2p + b2phq−2p)

≤ (2p)p−1(2p)!2p(a2p + b2p)

p∑

q=1

N !

(N − q)!q!
hq−2p

≤ (2p)p−1(2p)!p2p(a2p + b2p)

p∑

q=1

Nphq−2p

≤ (2p)p−1(2p)!p2p(a2p + b2p)Nph−p. 345

Multiplying both sides by N−2p yields the conclusion of the lemma. �

LEMMA 3. Suppose D ⊂ R
p is compact set and SN (t) for t ∈ D is a sequence of ran-

dom processes defined on D. For bN > 0, define δN (t) = 2bN1{|S(t)|≤bN}. Suppose for

some constant c0, 0 < c0 ≤ ESN (t) <∞ for all t and sufficiently large N . Also, assume

limN→∞ inft∈D ESN (t) > 0. For a sequence of aN → 0 and any p > 0, if b−r
N apN ≤ 1 for some 350

p and r > 0, and

(1) if E (supt∈D |SN (t)− ES(t)|p) = O(apN ), then we have

E sup
t∈D

∣∣∣∣
1

SN (t) + δN (t)
− 1

ESN (t)

∣∣∣∣
r

= O(arN + brN );

(2) if
´

D E (|SN (t)− ESN (t)|p) dt = O(apN ), then we have

E

ˆ

∣∣∣∣
ESN (t)

SN (t) + δN (t)
− 1

∣∣∣∣
r

dt = O(arN + brN ).

Proof. From now on, we shall supress N when there is no confusion raised. Let S̃(t) = S(t) +
δ(t) and v(t) = ES̃(t)−Eδ(t) = ES(t). For a fixed t that is suppressed below, 355

∣∣∣∣
v

S̃
− 1

∣∣∣∣
r

≤
(
|S̃ − v|r
|S̃|r

)
1{|S̃−v|≤v/2} +

(
|S̃ − v|r
|S̃|r

)
1{|S̃−v|>v/2}

≤ (v/2)−r
∣∣∣S̃ − v

∣∣∣
r
+ b−r

N

∣∣∣S̃ − v
∣∣∣
r
1{|S̃−v|>v/2}

≤ cr(v/2)
−r |S − ES|r + cr(v/2)

−rδr + b−r
N

∣∣∣S̃ − v
∣∣∣
r
1{|S̃−v|>v/2}

≡ I1 + I2 + I3,

where cr > 0 is a constant independent of t.
(1) By assumption, E supt I1 = O(arN ). Since |δ| ≤ 2bN , we have E supt I2 = O(brN ). Also,

E sup
t
I3 ≤ cpb

−r
N sup

t
(v/2)−pE(sup

t
|S − v|p+r + sup

t
|δ|p+r) = O(b−r

N ap+r
N ) = O(arN + brN )

for a sufficiently large p, and a constant cp > 0.

(2) By the assumption,
´

I1dt = O(arN ). Since |δ| ≤ 2bN , we have
´

I2dt = O(brN ). Also,
ˆ

I3dt ≤ b−r
N

ˆ

{v(t)/2}−pE|S̃(t)− v(t)|p+rdt = O(b−r
N ap+r

N ) = O(arN + brN ).
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Therefore, the conclusion of part (2) follows. �360

In order to state the following lemmas, we shall first establish some notations and

convention. Let uq,k =
´

B
R

1
(0)K

q(‖u‖
Rd)‖u‖k

Rddu. We also identify TxM with R
d. Let

Dx,h denote the set {θ ∈ R
d : expx(θ) ∈ B

M
h (x)}, where expx denotes the exponential map

at x. Let κ11,q =
´

h−1Dx,h
Kq(‖u‖Rd)du, κ12,q,j =

´

h−1Dx,h
Kq(‖u‖Rd)θjdu and κ22,q,j,k =

´

h−1Dx
Kq
(
h−1‖θ‖Rd

)
θjθkdθ, where θj denotes the jth component of θ. Let πd−1 denote the365

volume of the unit sphere Sd−1. The following three lemmas are based on Lemma A.2.5 of

Cheng & Wu (2013) and hence their proofs are omitted.

LEMMA 4. Suppose K is a kernel function compactly supported in [−1, 1] and continuously

differentiable in [0, 1]. Let h ≥ hpca.

1. If x ∈ M\Mh, then370

n−1
n∑

i=1

h−dKq

(‖Xi − x‖L2

h

)
= uq,0f(x) +O(h2) +OP (n

− 1

2h− d
2 )

2. If x ∈ Mh, then

n−1
n∑

i=1

h−dKq

(‖Xi − x‖L2

h

)
= f(x)κ11,q +O(h) +OP (n

− 1

2h− d
2 ).

LEMMA 5. Suppose K is a kernel function compactly supported in [−1, 1] and continuously

differentiable in [0, 1]. Let h ≥ hpca and ϕ̂k be the estimate in Theorem 1. Then,375

(1) if x ∈ M\Mh,

1

n

n∑

i=1

h−dKq

(‖Xi − x‖L2

h

)
〈Xi − x, ϕ̂k〉

= h2uq,1d
−1∇φk

f(x) +OP (h
3 + n− 1

2h− d
2
+1 + h2h3/2pca + h3hpca).

(2) if x ∈ Mh,

1

n

n∑

i=1

h−dKq

(‖Xi − x‖L2

h

)
〈Xi − x, ϕ̂k〉380

= hκ12,q,k(x) +OP (h
2 + n− 1

2h− d
2
+1 + hh3/2pca + h2hpca).

LEMMA 6. Suppose K is a kernel function compactly supported in [−1, 1] and continuously

differentiable in [0, 1]. Let h ≥ hpca.

(1) If x ∈ M\Mh, then

n−1
n∑

i=1

h−dKq

(‖Xi − x‖L2

h

)
〈Xi − x, ϕ̂j〉〈Xi − x, ϕ̂k〉385

=

{
h2uq,2d

−1f(x) +OP (h
7

2 + n− 1

2h− d
2
+2) if 1 ≤ j = k ≤ d

OP (h
7

2 + n− 1

2h− d
2
+2) otherwise.
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(2) If x ∈ Mh, then

n−1
n∑

i=1

h−dKq

(‖Xi − x‖L2

h

)
〈Xi − x, ϕ̂j〉〈Xi − x, ϕ̂k〉

= h2f(x)κ22,q,j,k(x) +OP (h
3 + n− 1

2h− d
2
+2 + h2h3/2pca).

In order to prove Theorem 1, we establish the following auxiliary lemmas. 390

LEMMA 7. Let G̃ = Ĝ+∆ and Ǧ = G+∆ with ∆ = 1/ logm. Then E| log G̃− log Ǧ| =
o(1). This result also holds for Ĉx̃, if x̃ is independent of X̂1, . . . , X̂n, and that {E‖x̃−
x‖p}1/p = O(m−β) for all p ≥ 1.

Proof. By Jensen’s inequality and the concavity of log(·),

E(log Ǧ− log G̃) ≤ logE
Ǧ

G̃
= logE

‖X − x‖+∆

‖X̂ − x‖+∆
≤ logE

‖X̂ − x‖+ ‖X̂ −X‖+∆

‖X̂ − x‖+∆
395

≤ log(1 + ∆−1E‖X̂ −X‖) ≡ an

with an ≥ 0 and an → 0. For the other direction, we first observe that

E

(
G̃

Ǧ

)1/4

= E

{
1

Ǧ1/4
E(G̃1/4 | X)

}
≤ E

[
1

Ǧ1/4
E{‖X̂ −X‖1/4 + (‖X − x‖+∆)1/4 | X}

]

≤ E

[
C

1/4
1 m−β/4{η(X)}1/4

Ǧ1/4
+ 1

]
≤ 1 + ∆−1/4E

[
C

1/4
1 m−β/4{η(X)}1/4

]

= 1 +O
(
m−β/4(logm)1/4

)
400

where C1 > 0 is some constant. This implies that

1

4
E(log G̃− log Ǧ) = E log

(
G̃

Ǧ

)1/4

≤ logE

(
G̃

Ǧ

)1/4

≡ bn
4

with bn ≥ 0 and bn → 0, or equivalently,

E(log Ǧ− log G̃) ≥ −bn.
ThereforeE| log Ǧ− log G̃| ≤ an + bn = o(1). Following almost the same lines, we can deduce

the same result for G̃(x̃), i.e., the quantity G̃(x) when x is replaced with x̃. � 405

LEMMA 8. Let x̃ be an estimate of x such that x̃ is independent ofX and X̂, and that {E‖x̃−
x‖p}1/p = O(m−β) for all p ≥ 1. Suppose 0 < a < β, h & m−a and h+ = h+m−(β+a)/2.

Let Z̃ = 1
{X̂∈BL2

h
(x̃)}

and V = 1
{X∈BL2

h+
(x)}

. If F is a positive functional of X and X̂ such

that E{F (X, X̂)V } = O(hb) for some b ≥ 0, and E{F (X, X̂)}q <∞ for some q > 1, then

we have E{F (X, X̂)|Z̃ − V |} = O(hb) and E{F (X, X̂)Z̃} = O(hb). Also, E{F (X, X̂)|Z − 410

Z̃|} = o(hb) with Z denoting 1
{X̂∈B

L2

h
(x)}

.

Proof. Let κ = m−(β+a)/2 and Ṽ = 1
{X∈B

L2

h+
(x̃)}

. Choose r > 1 such that r−1 + q−1 = 1. To

reduce notational burden, we simply use F to denote F (X, X̂).
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We shall first establish that E(F |V − Ṽ |) = O(hb). To this end, we observe that

E(F |V − Ṽ |) ≤ E(FV 1Ṽ =0) + E(FṼ 1V =0).415

For the first term, for any fixed s ≥ 2rab/(β − a), we have

E(FV 1Ṽ=0) = E{F1‖X−x‖≤h,‖X−x̃‖≥h}
≤ E{F1‖x̃−x‖≥κ,‖X−x‖≤h + F1h−κ≤‖X−x‖≤h}
≤ E{F1‖x̃−x‖≥κ}+ E{FV }
≤ {EF q}1/qpr (‖x̃− x‖ ≥ κ)1/r +O(hb)420

≤ {EF q}1/q
(
ms(β+a)/2E‖x̃− x‖s

)1/r
+O(hb)

= O(ms(β+a)/(2r)−sβ/r + hb) = O(hb).

Similar result can be derived for the second term. Thus, we prove that E(F |V − Ṽ |) = O(hb).
Define h− = h− κ, Ũ = 1

{X∈B
L2

h−
(x̃)}

. Note that Ũ ≤ Ṽ . Then, by Hölder inequality, we have

E(F |Z̃ − Ṽ |) = E(F1Z̃=11Ṽ =0) + E(F1Z̃=01Ũ=1) + E(F1Z̃=01Ṽ=11Ũ=0)425

≤ E(F1Z̃=11Ṽ =0) + E(F1Z̃=01Ũ=1) + E(FṼ 1Ũ=0)

≤ (EF q)1/q
{
(E1Z̃=11Ṽ=0)

1/r + (E1Z̃=01Ũ=1)
1/r
}
+O(hb)

≤ 2(EF q)1/q{pr(‖X − X̂‖ ≥ m−(β+a)/2)}1/r +O(hb)

≤ 2(EF q)1/q
(
ms(β+a)/2E‖X − X̂‖s

)1/r
+O(hb)

= O
(
ms(β+a)/(2r)−sβ/r

)
+O(hb) = O(hb).430

Then E(F |Z̃ − V |) ≤ E(F |Z̃ − Ṽ |) + E(F |Ṽ − V |) = O(hb). Since |E(FZ̃)− E(FV )| ≤
E(F |Z̃ − V |), the result E(FZ̃) = O(hb) follows. �

LEMMA 9. Suppose {ψk}∞
k=1 is an orthonormal basis of H and x ∈ M is fixed. Assume that

ψ1, . . . , ψd span the tangent space TxM. Let πd−1 be the volume of the d− 1 dimensional unit

sphere Sd−1 and Ĉx the sample covariance operator based on N̂L2(h, x) for some h & m−a
435

with 0 < a < β. Then,

sup
j≤d

sup
k≥d+1

∣∣∣〈Ĉxψj , ψk〉
∣∣∣ = OP

(
hd+4 + n−1/2hd/2+3 +m−βhd+1

)
,

sup
j,k≥d+1

∣∣∣〈Ĉxψj , ψk〉
∣∣∣ = OP

(
hd+4 + n−1/2hd/2+4 +m−βhd+1

)
,

sup
1≤j 6=k≤d

∣∣∣〈Ĉxψj , ψk〉
∣∣∣ = OP

(
hd+3 + n−1/2hd/2+3 +m−βhd+1

)
,

for 1 ≤ k ≤ d : 〈Ĉxψk, ψk〉 = πd−1f(x)d
−1hd+2 +OP

(
n−1/2hd/2+2 +m−βhd+1

)
.440

The above results hold also for Ĉx̃, if x̃ is independent of X̂1, . . . , X̂n, and that {E‖x̃−
x‖p}1/p = O(m−β) for all p ≥ 1.
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Proof. Denote Zi = 1
{X̂i∈B

L2

h
(x)}

. Then Ĉx can be written as Ĉx = n−1
∑n

i=1(X̂i − µ̂x)⊗
(X̂i − µ̂x)Zi, where µ̂x =

∑n
i=1 X̂iZi. For any y, z such that ‖y‖L2 = ‖z‖L2 = 1, we have

〈Ĉxy, z〉 =〈n−1
n∑

i=1

Zi(X̂i − µ̂x)⊗ (X̂i − µ̂x)y, z〉 = n−1
n∑

i=1

〈X̂i − µ̂x, y〉〈X̂i − µ̂x, z〉Zi 445

=n−1
n∑

i=1

〈Xi − µx, y〉〈Xi − µx, z〉Zi + n−1
n∑

i=1

〈(X̂i −Xi)− (µ̂x − µx), y〉〈X̂i − µ̂x, z〉Zi

+ n−1
n∑

i=1

〈X̂i − µ̂x, y〉〈(X̂i −Xi)− (µ̂x − µx), z〉Zi

+ n−1
n∑

i=1

〈(X̂i −Xi)− (µ̂x − µx), y〉〈(X̂i −Xi)− (µ̂x − µx), z〉Zi

≡I1 + I2 + I3 + I4,

where µx =
∑n

i=1XiZi. Before we proceed to analyze I1, I2, I3 and I4, we prepare some cal- 450

culations.

First, it can be checked that

‖µ̂x − µx‖ =

∥∥∥∥∥
1

n

n∑

i=1

{(Xi − µx))′′∞∞]TJ
/TJ
5∞99 Td
[(i)-′.349∈′57.6796935T{
6.5996∞ - Q
.88}[(L)-7.756′3]TJ
/R45 5.97758 T{
[(x)-4.∈5∞7∈]TJ
/R∞8 ∞′.9′9∞ T{
5.∈8′′8 ∞.68′′8 Td
[(;)-∞63(∈.349∈′5]TJ
/R∈′ ∞′.9′∈′ Td
[(-∞.68′′8 Td
[(x)-4.∈5′∞9]TJ
/R∈′ ∞′.9′9∞ T{
5.∈7969 ∞.68′′8 Td
[(‖)5]TJ
/R∞6 ∞′.9′9∞ T{
8.5∞96796935T{
6.599∞ T{
∞′7′′∞∞]TJ
≤[(X)3.′′∞∞]TJ
/R∈∈ 7.97′.′′∞35′737]T9′9∞ T{
∞∞.5∈′3 ∞9.′8′∞ Td
[(38 ′ ∈
6.6 TL
T*[()-6]TJ
6.48′′8 TL
T*[()-6]TJ
6.6 TL
T*[()-6]TJ
T*[()-6]TJ
/R∞6 ∞′.9′9∞ T{
7.8 38 T|
/ Td
[(∞)5]TJ
ET
Q
q 66 ′ ′ -4.8 ∈′74.68 4445.68 cm
BI
/IM t∇ue
/W ∞
/H ∞
/BPC ∞
ID −
EI Q
6′′39 4.56′∞6 Td
[(−)-∈.′95∈3]TJ
/R3′ 7.97′∞∞ T{
6.6 ′ Td
[(∞)4.′3∞∞7]TJ
/R∈∈ 7.97′∞∞ T{
∞∞.8797 9.∞∞99∈ Td
[(n)-3.4∞853]TJ
/R∈6 ∞′.9′9∞ T{
-5.4 -3.∈4′∈3 Td
[(X)3.∈∞.68′′8 Td
[(−)-4]TJ
/R∞8 ∞′.9′9∞ T{
�)-∈.99886]TJ
/R∈∈ 7.97′∞∞ T{
6.6 -∞.68′′8 Td
[(x)-4.∈4866]TJ)-∈.′95∈3(∞)4.′3∞∞7]TJ
/R∞6 ∞′.9′9∞ T{
∞∞.∈797 3.∈3984 Td
[(()∈.99886]TJ
7.46 ∞′.9′9∞ T{
6.∈3984 ′)-73.9868(^)5]TJ
/R∞8 ∞′.9′9∞ (x)-4.∈4866]T∞( ) ,
:68008 Td
[(+)-4]TJ
/R1837 10.9099Td
[(1)4.24866]TJi93104-260Ji931]TJ
TJ
/Rl6(l)2.9eTd
[(-260J)1.92.9602 Td
[23(1)4.03117]TJ
/R16 2 Td98132R26 10.9091  true
/W 1
/H 1
/BPC 1
ID �
EI Q
q091 T

1
n∑}−X iL )

( ) , (
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from triangle inequality, and the fifth is based on (28). Now, let h1 = h+m−(β+a)/2 and

Vi = 1
{Xi∈B

L2

h1
(x)}

. Based on the assumption (B3), E(
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for 1 ≤ j ≤ d,

E sup
k≥d+1

|Ξj,k| ≤E sup
k≥d+1

∣∣∣∣∣n
−1

n∑

i=1

〈Xi − µx, ψj〉〈Xi − µx, ψk〉Zi

∣∣∣∣∣

≤E sup
k≥d+1

∣∣∣∣∣n
−1

n∑

i=1

〈Xi, ψj〉〈Xi, ψk〉Zi

∣∣∣∣∣

+E sup
k≥d+1

∣∣∣∣∣n
−1

n∑

i=1

〈µx, ψj〉〈µx, ψk〉Zi

∣∣∣∣∣ 495

≡I1 + I2. (36)

It is seen that I1 is the dominant term, which we evaluate below (utilizing the fact that Πx(θ, θ) ⊥
TxM):

I1 = E sup
k≥d+1

∣∣∣∣∣n
−1

n∑

i=1

〈Xi, ψj〉〈Xi, ψk〉Zi

∣∣∣∣∣ ≤
1

n
E

n∑

i=1

sup
k≥d+1

|〈Xi, ψj〉〈Xi, ψk〉Zi|

= E sup
k≥d+1

|〈Xi, ψj〉〈Xi, ψk〉Zi| = E sup
k≥d+1

|〈Xi, ψj〉〈P2Xi, ψk〉Zi| . 500

≤ E (|〈Xi, ψj〉|‖P2Xi‖Zi) . (37)

Since by Lemma A.2.4 of Cheng & Wu (2013),

E |〈Xi, ψj〉‖P2Xi‖Vi|

≤
ˆ

Sd−1

ˆ h1

0
〈tθ, ψj〉‖t2Πx(θ, θ)‖L2f(exp(tθ))td−1dtdθ +O(hd+5)

= O(hd+3), 505

we can apply Lemma 8 to conclude E (|〈Xi, ψj〉|‖P2Xi‖Zi) = O(hd+3), and hence with (37),

we assert that I1 = O(hd+3). This proves (31). The result (32) is obtained in a similar way.

For (33), by the same argument that leads to (36), we can show that for 1 ≤ j 6= k ≤ d, EΞj,k

is dominated by

En−1
n∑

i=1

〈Xi, ψj〉〈Xi, ψk〉Zi = E〈Xi, ψj〉〈Xi, ψk〉Zi. 510

Now, because

E〈Xi, ψj〉〈Xi, ψk〉Vi

=

ˆ

Sd−1

ˆ h1

0
〈tθ, ψj〉〈tθ, ψk〉[f(x) + t∇θf(x)]t

d−1dtdθ +O(hd+4)

= O(hd+3),

where the second equality is based on the fact that the second fundamental form is self-adjoint, 515

by Lemma 8, (33) follows. The result (34) is dervied in a similar fashion.
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Let χi,k = n−1〈Xi, ψj〉〈Xi, ψk〉Zi. Then Ξj,k =
∑n

i=1 χi,k. Then by Theorem 11.1 of

Boucheron et al. (2016), we have

var

(
sup

k≥d+1
Ξj,k

)
= var

(
sup

k≥d+1

n∑

i=1

χi,k

)
≤

n∑

i=1

E sup
k≥d+1

χ2
i,k = nE sup

k≥d+1
χ2
i,k. (38)

The term E supk≥d+1 χ
2
i,k can be computed as follows:520

E sup
k≥d+1

χ2
i,k = E sup

k≥d+1

[
n−1〈Xi, ψj〉〈P2Xi, ψk〉Zi

]2

≤ n−2E sup
k≥d+1

‖Xi‖2‖P2Xi‖2‖ψj‖2‖ψk‖2Zi = n−2E‖Xi‖2‖P2Xi‖2Zi.

Since

E‖Xi‖2‖P2Xi‖2Vi =
ˆ

Sd−1

ˆ h1

0
‖tθ‖2‖t2Πx(θ, θ)‖2f(exp(tθ))td−1dtdθ +O(hd+8) = O

(
hd+6

)
,

we apply Lemma 8 to conclude E‖Xi‖2‖P2Xi‖2Zi = O(hd+6). Therefore, E supk≥d+1 χ
2
i,k =525

O(n−2hd+6). With (38), we show that

var

(
sup

k≥d+1
Ξj,k

)
= O

(
n−1hd+6

)
.

Other results are dervied in the same way. �
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