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SUMMARY

Section S.1 contains details and simulation studies for sparsely observed functional data, Sec-
tion S.2 contains auxiliary examples and results, Section S.3 provides proofs to the main theo-
rems, and Section S.4 contains technical lemmas.

S.1. DETAILS AND SIMULATION STUDIES FOR SPARSE DESIGN

When the functional data are sparsely observed, we adopt the procedure proposed by Yao et al.
(2005) to recover individual functions, as follows. First, the local linear smoother (Fan, 1993) is
adopted to produce an estimate /i of the global mean function and an estimate C of the global
covariance function of X by pooling all observed data; see Zhang & Wang (2016) for more de-
tails. Then estimates 1&19 and )\, of the eigenfunctions and eigenvalues, respectively, are obtained
by solving the eigen-equations f D C (s, t)Q/A)k(s)ds = j\kqf)k(t) The global principal component
scores ;; are estimated by Eip = j\kéﬁii—l(ai —b;), where (53;6 = (1[%(7}1)7 . ,zﬁk(TZ—mi)),
a; = (X;q,. .. ,Ximi)T, bi = ((Th), ..., fil(Tim,))T, and S, is an m; x m; matrix whose el-
ement in the jth row and /th column is ¢ (T35, Tu) + 62 1;—; with 62 being the estimate of the
variance of the noise ¢. Finally, X;(t) is estimated by X;(t) = fi(t) + Z;(:l £ij0;(t), where K
is a tuning parameter whose selection is discussed in Yao et al. (2005).

To illustrate the numerical performance of the proposed method for sparsely and irregularly
observed data, we adopt the same setting from Section 4 for dense data, except that now m; ~
1 + Poisson(3) and T;; ~ uniform(0, 1). In this new setting, the average number of observations
per curve is 4 and the observed time points are irregularly scattered. From the results presented in
Table S.1, we observe that, the proposed method is comparable to other methods for the SO(3)
manifold while exhibits a clear advantage for the other two manifolds. In addition, as the data
are rather sparse, the contamination is expected to dominate the convergence rate in (11) and
(12). Thus, we observe that the root mean square error decreases slowly with the sample size, in
contrast with the fast rate observed in the case of dense data.

Since the contamination is of a high level in this setting, the structure of the SO(3) manifold
might be buried by the contamination and thus could not be exploited. This might explain why
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2 LIN AND YAO

Table S.1: Results of simulation studies for sparsely observed data

SO(3) Manifold Klein Bottle Gaussian Mixture

n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000

FLR 24.0(0.27) 23.8(0.27) 23.6(0.25) 61.4(0.51) 61.3(0.44) 61.1(0.35) 43.2(1.64) 42.0(1.65) 41.1(1.63)
FNW  239(0.24) 23.9(0.26) 23.8(0.24) 60.9(0.59) 60.2(0.62) 59.7(0.62) 49.7(3.65) 47.2(1.05) 46.2(0.76)
FCE 25.0(0.42) 249(0.33) 24.8(0.31) 62.5(0.89) 62.2(0.75) 61.9(0.56) 49.5(1.12) 49.2(0.83) 48.8(0.78)
FMO  335(1.61) 32.8(1.19) 32.0(1.45) 83.9(3.70) 82.7(3.06) 81.5(2.64) 63.8(3.06) 62.4(2.16) 60.2(2.30)
FCM  255(0.60) 25.1(0.42) 24.4(0.30) 653(1.56) 63.4(1.15) 61.5(0.74) 50.5(1.52) 49.4(1.05) 47.7(0.76)
MUL  26.3(0.59) 26.0(0.45) 255(0.39) 66.3(1.32) 65.4(1.12) 64.2(0.79) 51.6(1.35) 50.9(0.99) 49.5(0.89)
FREM 24.9(0.96) 24.4(0.87) 23.9(0.68) 56.1(2.62) 52.0(1.19) 50.1(0.64) 37.1(2.11) 34.7(1.98) 32.7(1.46)

FLR, functional linear regression; FNW, functional Nadaraya—Watson smoothing; FCE, functional conditional expectation; FMO,
functional mode, FCM, functional conditional median; MUL, multi-method; FREM, the proposed functional regression on manifold;
MSP, meat spectrometric data; DTI, diffusion tensor imaging data; SBP, systolic blood pressure data. The numbers outside of
parentheses are the Monte Carlo average of root mean square error based on 100 independent simulation replicates, and the numbers
in parentheses are the corresponding standard error.

the proposed method shares a similar performance with the functional linear regression or is
even slightly outperformed by the latter. Also the performance of sophisticated regression meth-
ods like nonparametric regression methods is generally more sensitive to the noise level of the
predictor, especially when the predictor resides in a space of higher dimension. This might ex-
plain why in the setting of the SO(3) manifold, almost all nonparametric regression methods
listed in Table S.1 perform no better than the functional linear regression which is perhaps the
simplest parametric method in functional regression.

S.2.  AUXILIARY EXAMPLE AND RESULTS

Example 1. Let S* = {v,, = (cosw,sinw) : w € [0,27)} denote the unit circle regarded as
a one-dimensional Riemannian manifold. Let D = [0, 1] and denote ¢1, ¢, ... a complete or-
thonormal basis of £2(D). Define map X (v,,) = V/C >, k™%{cos(kw)pap—1 + sin(kw)pa }
with ¢ > 3/2and C =1/ 3", k2¢*2 € (0, 00). According to Proposition S.1, X is an isomet-
ric embedding of S into £2(D). Then M = X (S*) is a submanifold of £2(D). Moreover, no
finite-dimensional linear subspace of £2(D) fully encompasses M. A consequence of this ob-
servation is that, a random process taking samples from such M might have an infinite number
of eigenfunctions, even though M is merely one-dimensional, as we shall exhibit in the follow-
ing. Let us treat S! as a probability space endowed with the uniform probability measure, and
define random variables &op—1(v,,) = VOE™¢ cos(kw) and &9 (v,) = vVCk™¢sin(kw). Then
X =>4 &or can be regarded as a random process with samples from M. It is easy to
check that E(&&;) = 0 if k # j, E(&) =0, and E&2,_ | = E&3, = Cmk™%¢, which implies
that E(||X||?,) < co. One can see that the eigenfunctions of the covariance operator of X are
exactly ¢y. Therefore, X = >, £,y is the Karhunen-Logve expansion of the random process
X, which clearly includes an infinite number of principal components, while X is intrinsically
sampled from the one-dimensional manifold M.

PROPOSITION 1. The embedding X defined in Example 1 is an isometric embedding. More-
over, there is no finite-dimensional linear subspace of £2(D) that fully contains the image
X (Sh).

Proof. Let V = {(cosw,sinw) : w € (a,b)} be a local neighborhood of v, and let ¢ (v) =
w € (a,b) for v = (vi,v2) = (cosw,sinw) € V. Then 1 is a chart of S*. Let U be open in
L£? such that X (v) € U. Since £? is a linear space, the identity map I serves as a chart.
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Let Xy v : ¢(V) — £2 denote the map X oyp™L. Let ¥ = /C 3, k™ {— sin(kw) or—1 +
cos(kw)pay }. It defines a linear map from R to £2, denoted by O(t) = t € £2. Then,

A(t) E7f_zllXuv(w +1) = Xy (w) —0)?

_C Z { cos(kw + kt) — k¢ ctos(kw) + th~H sin(kw) }2 N

¢ sin(kw + kt) — k¢ sin(kw) — tk~+! cos(kw) | >
C Z { ;

ECB%( t) + CB3(t).
By Lipschitz property of the function
By 1 (t) = k¢ cos(kw + kt) — k¢ cos(kw) + tk~* ! sin(kw),

we conclude that |Bj(t)| < tsup,|B, ()] <2k7¢T't. This implies that sup, Bf(t) <

> 4kT2+2 < oo, By similar reasoning, sup, B3(t) < oo and hence sup, A(t) < co. We now
apply the dominated convergence theorem to conclude that

- Biit)\® ., ~v By(t)?
. _ . 2 2 . . 1,k . 2,k _
}%A(t)_0}%{Bl(t)+32(t)}_cz%%{ ; } +C PE%{ . 0.
k=1 k=1
By recalling that the tangent space T, S’ at v, is R and the tangent space TX(%)EQ(D) at
X (v,) is L?(D), the above shows that the differential map X, : 1o, 5" — Ty, £*(D) at
Uy 1s given by the linear map O, i.e,

X b, () =00) =ty VCOE™T{—sin(kw)por—1 + cos(kw)da },
k

and the embedded tangent space at v, is span{— ), k="' sin(kw)dor—1 +
S kT cos(kw)por }. As this differential map is injective at all v € S, X is indeed
an immersion. Since S! is compact, X is also an embedding, and the image X (S!) is a
submanifold of £2(D).

To show that X is isometric, note that the tangent space of S' at v is the real line R,
equipped with the usual inner product (s,t) = st for s, € R. Let {(f1, fa)) = [, f1(t)fo(t)dt
for fi, fo € £L2(D) denote the canonical inner product of £2(D). Recalling the deﬁmtlon
C =1/>72, k2“2 in the example, we deduce that

(X 0. (8), X 0, (D)) = (O(s), (1)) = st(0, V)

= Cst Z{k_26+2 sin?(kw) + k272 cos®(kw) }
k 1

—CstZk 212 — gt = (s,1),
k=1

which shows that X is isometric.

Finally, to show that there is no finite-dimensional linear subspace of £2(D) that fully contains
X (S1), we take the strategy of “proof by contradiction” to assume that H is a finite-dimensional
linear subspace of £2(D) such that X(S') C H. Since H is finite-dimensional, there exists
0 # ¢ € L2(D) such that ¢ 1 H and hence ¢ | X (S'), or more specifically, (i, z)) = 0 for
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4 LIN AND YAO

each z € X(S'). As ¢1, ¢2, ... form a complete orthonormal basis of £2(D), we can find real
numbers ap,as, ... such that ¢ =, (agk—1P26—1 + a2xp2x). Then, (p, z)) = 0 for each = €
X (SY)is equivalent to >, k™ {agk—1 cos(kw) + agy sin(kw)} = 0 for all w. Since cos(kw) and
sin(kw), as functions of w, are orthogonal, it implies that asy—; = 0 and agy, = O for all &k, which
indicates that ¢ = 0. However, by assumption, ¢ # 0, and we draw a contradiction. O

The contamination of the predictor X poses substantial challenge on the estimation of the
manifold structure. For instance, the quality of the tangent space at z, denoted by T,M,
crucially depends on a bona fide neighborhood around x, while the contaminated neigh-
borhood N 2(fipeq, ) and the inaccessible true neighborhood N 2(hpea, ) = {X; : || X; —
x||L2 < hpeo} might contain different observations. Fortunately we can show that they are not
far apart in the sense of Proposition 2. In practice, we suggest to choose max(hyeg, ipca) <
min{2/7,inj(M)}/4, where 7 is the condition number of M and inj(M) is the injectivity ra-
dius of M (Cheng & Wu, 2013), so that M L2 (hpea, ) provides a good approximation of the true
neighborhood of x within the manifold.

PROPOSITION 2. For 0 < o< 3, define h— = hyee —m~BT9/2 and  hy = hyeo +
—(B+0)/2 o - o
m~(B+0)/2 et Z, = Lk, 58 (@) Vio =1y, BE? (01} and V;; = Loy, [Bﬁ(x)}' Under the

assumption (B3) and logm 2 logn, pr(Vi: Vo < Z; < V;1) — 1l asn — oo.

Hence one can always obtain lower and upper bounds for quantities involving Z; in terms of
Vio and Vjy, i.e., with large probability, it is equivalent to substitute Z; with V;q and V;; in our
analysis.

Proof. We first bound the following event
n
pr(Vi: Z; < Vi) = H{l —pr(Z; > Vi) ={1 —pr(Z > W) }"

=1

={l-pr(Z=1,V; =0)}" > {1 —pr(| X - X|| > m‘(ﬁ-i—@)/?)}n
> <1 - Czlamp<6+g>/2m—pﬁ>" > (1 - dm)" 51,

where c¢; > 0 is some constant, and p > 0 is a constant that is sufficiently large. Similarly, we
can deduce that

pI‘(Vi : V’iO < Zz) — 1,
and the conclusion pr(Vi : Vp; < Z; < V3;) — 1 follows. O

We now address the case that the predictor x is not fully observed. It is reasonable to assume
that = comes from the same source Aof the da}ta, in the sense that its smoothed version Z has the
same contamination level as those X1, ..., X}, as per (B3). To be specific, assume that

(B4 the estimate Z is independent of Xi,..., X, and Xi,...,X,. Also {E|z —
prLg}l/ P < Cpm_ﬁ for all p > 1, where C,, is a constant depending on p only.

Note that the independent condition in (B4) is satisfied if ¢y,...,¢,,, are independent of
Xi,..., X, and Xy, ..., X,. The second part of (B4) is met if assumptions similar to (A1)-(A4)
hold also for x and ¢4, . .., ¢,,,, according to Proposition 1.
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THEOREM 4. With the conditions (A1), (B1)-(B3), and the additional assumption (B4), the
equation (11) holds when z € M\ M, ., and the equation (12) holds when = € My, , both
with g(z) replaced by §(z).

Proof. We first observe that

E[{9() - g()}* | 27] <2E[{9(2) — §(2)}* | 2] +2E [{g(x) — g(2)}* | 2]

To derive the order for the first term, we shall point out that, with Lemma S.7, S.8 and S.9,
by following almost the same lines of argument, the conclusions of Theorem 1 hold for . This
means, by working on T instead of z, we still have a consistent estimate of the intrinsic dimension
and a good estimate of the tangent space at x. Given this, it is not difficult but somewhat tedious
to verify that the argument in the proof of Theorem 2 and 3 still holds for z, with care for the
discrepancy ||Z — || 2 instead of the discrepancy || X; — X; || 2. This argument also shows that
the order of the first term is the same as the second one (this is expected since & has the same
contamination level of those X’i), and hence the conclusion of the theorem follows. O

S.3. PROOFS OF MAIN THEOREMS

To reduce notational burden, £2(D) is simplified by £2, and we shall use || - || to denote the
norm || - ||_2 when no confusion arises.

Proof of Theorem 1. (a) Without loss of generality, assume x = 0. Let G; = G + A and
G1),G2),- -, G be the associated order statistics of G, G2, . . . , G Also note that the esti-
mator in Levina & Bickel (2004) is still consistent if G is replaced with G = G + A. Then,

k—1 A k—1 X

1 G +A 1 G
T D I N e DI
—lo Gy tA kol TG

k
< ‘log é(k) — log G(k)‘ + 1 ; (logG — log G‘(j)) =L+ L. €))
For I, let ¢ and p be the indices such that @( k) = @ and Gp = G(k) respectively. For the
caseq—p,wehave|G(k G(k|—|G -G |<‘||X I — 11Xy ||‘+A<HX - X,|| + Aby
reverse triangle inequality. When ¢ # p, it is seen that G < G(k) G and Gy < G = G(p).
If G(k) > G(k), then |G k) — G(k | < |Gy — Gl = |Gg — Gyl < max1<]<k{||X - X}
Otherwise, |G(k Gyl < G, — G| < maxi<j<i{[|X; — X;||}. Now, pr(Vl<j<k:
1, = X1 > ) < Sy or (1% = X1 > €) < REILK; = X,[re™ = O(km™) = of1)

for a sufficiently large constant . Therefore,

~(k) k)] converges to zero in probability, or

G(k) converges to G(k) in probability. By Slutsky’s lemma, log G(k) converges to log G(k) in
probability and hence I; = op(1).
For I, we first observe that

1 k B . 1 k ~ .
I = 1 ; (log G(j) — log G(j)) = Z (log Gj —log Gj> :

J=1
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6 LIN AND YAO

By Markov’s inequality, for any fixed € > 0,

EI 7 —log G
2 kE|log G — log G| —o(1),
€ (k—1)e

pr(ly >e¢) <

where the last equality is obtained by Lemma S.7. We then deduce that I5 = op(1). Together
with I; = op(1) and (1), this implies that

k v
G(k +4 . o
E > — E log 5 — 0 in probability.

Now we apply the argument in Levina & Bickel (2004) to conclude that d is a consistent estima-
tor.

(b) Let h = hpeq, and {¢y}¢_, be a orthonormal basis system for T, M and {i5}5>,
be an orthonormal basis of £2. Without loss of generality, assume that M is properly ro-
tated and translated so that ¢, = ¢y, for k =1,2,...,d, and z = S £?. The sample covari-
ance operator based on observations in A |_2(h :c) is denoted by C, as in (6). It is seen that

C =n"! Zz 1( Mx)(X /’L$)ZZ7 where Z; = {Xi |B§2($)} and jiz = n -1 Zizl XzZz-
Let H; = span{¢y : k=1,2,...,d} and Ho be the complementary subspace of H; in L2,
so that £2 = H1 @ Ha. Let Pj - L2 = H ; be projection operators, and we define operator A =
P1CyP1, B = PolyPa, Dig = Pi1CyPs and Doy = PoCyPy. Then Cp = A + B + D + Doy
Note that D15 + Do is self-adjoint. Therefore, if y = 220:1 apy, € L2,

D12 + Datllop = sup (D12 + Da1)y,y) = sup <<Plém7)2y,y> + <P2éxplyay>)
y =1 y =1

oo d oo d
=2 sup Z Zajak<ém¢ja¢k> < 2 sup Z Z]ajak] . ‘(ém¢j7¢k>‘

Y =1 \ g=d+1j=1 Y =1 \ g=d+1j=1

oo d
<20 sup [(Cotgtd| s § 30 S+ ad) b < 2sup sup [(Gosn)]-
Jj=d k=d+1 Y =1 | p=dt1 =1 Jj=d k=d+1
From Lemma S.9, |[Diz+ Daillop = Op (h¥H3 + n~1/2pd/243 4 m~PhdtL) . Similarly,
we have |B|op = Op (h®+* + n™V2p4/2H4 £ m=BFpdtl) and A = gy f(z)d TR0, +
Op (n™Y2p4/2+2 4 =Bpd+1l) | where 74— is the volume of the d — 1 dimensional unit

sphere, and I is the identity operator on H .
Leta, = n~Y/2h=%2 and b,, = m~Ph~!. Then we have

Co = ma—1f(2)d 12 {1y 4+ Op (an + by) A+ Op (h? +b,) B+ Op (h + b,) (D1a + Doy}

where ./ZL l§, 1512 and f)21~ are operators with norm equal to one,
and Djo is the adjoint of Dy. With the choice of p, we have C, =

Tg—1 f(x)d "t hd+2 {Id + Op(Vh)A+ Op(h)B+ Op(h) (D12 + 7521)}. The same per-
turbation argument done in Singer & Wu (2012) leads to the desired result. O

Proof of Theorem 2. To reduce notions, let i = hyeq and fix z € M\M,, . Let {¢}{_; be
the orthonormal set determined by local FPCA and {qﬁk}g:l the associated orthonormal basis
of T, M. Let {tx}7>, be an orthonormal basis of £?. Without loss of generality, assume M
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is properly rotated and translated so that z = 0 € £ and ¢, = ¢ for k= 1,2,...,d. Let g =
(g(Xl)a g(X2)’ s ’g(Xn))T Then we have

E{j(z) | 27} = e (Q"TWQ)T'QTWa.

Take z = exp,(tf), where t = O(h), § € T, M, ||6||_2 = 1, and exp,, denotes the exponential
map of M at z. By Theorem 1, we have (0, o) = (6, ¢r) + Op(h;’,ég) and (I1,.(0,6), o) =
Op(hpea)- By Lemma A.2.2. of Cheng & Wu (2013), we have

th =y — t*11,(0,0) /2 + O(t3). 2)
Therefore, for k=1,2,....,d, (t0, ) = (t0, o — Op(hiég)um = (z,PK) —
£2(I1,(0,0), &) /2 + Op(WB3L2 + W2hpea) = (2, 1) + Op (hhi;éi + h2hpca). Since

0 e Tx-/\/L we have 0 = Zi:l(avwk>¢k Let 5= (<27¢1>7 <27¢)2>7 B <z7¢d>)T- By (2)9
it is easy to see that

g(z) — g(z) = tOVg(x) + Hess g(x)(,0)t? /2 + Op(t3)
d d

(10, 000V, 9(r) + 5 D (10,105) (16, s g(x) (65, 60) + Op (1)
k=1 jk=1

1
=37 Vg(x) + 53" Hess g(x)s + Op(h2).

Due to the smoothness of ¢, the compactness of M and the compact sup-
port of K, we have g=Q[g(x)Vg(x)|T+ H/2+O0p(h°/?), where H =
[¢] Hess g(2)&1, &5 Hess g(x)&a, . .., E  Hess g(2)6n]T, & = (&ir,- -, 697 &ij = (Xi,15),

and
Q- 11..-1 T
§1& &)
Then the conditional bias is

E{j(x) —g(x) | 27} =] (QTWQ)T'Q"Wg - g(x)
el

o (Lomig) Lamiig- g [ 4@ G
B n n Vg(z)

—1
+oT <%QTWQ> %QTW{%HWPMW)}- @)

Now we analyze the term in (3). Let Z =1 BE2 (2)" By Lemma S.8, EZ = h®. Then, by
h

Holder’s inequality, for any fixed € > 0, we choose a constant ¢ > 1 and a sufficiently large
p>0sothatl/q+1/p=1land EZ||X — X| = (EZ)"9(E|X — X||P)"/P = O(h*~<dm™F).
Therefore,

Lo - o [90) ] [ A5 Kl —al) (6 —607Va(0) | _ o o mimeay
HW@- QI = | B e ot ~Or :

&)
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since

n

1 — N 1 .
EZKh(HXz‘ —2)|)(& - &) V()| < nZKh 1X; — z)I|& — & llgall Va(@)]]
=1 i=1

< {sup | K(v) } Vo (ZZH& @\W) Op(h™ ™),

and similarly, n ™' S0 | K, (| X; — 2])(& — €)T V()& = Op(h™ 7 Um ™) L .
For QTW Q, a direct calculation shows that

Lomio = [n_l S Kn(I1 X —al)  n7t S Ka(I1Xs — 2[DE]

n n”t S (X — 2 ])6 nTt 0 & Kn (X — 2) )&
It is easy to check that n_lz,lKh(HX —xH) —n_lz 1 K (| X — 2]) +
Op(h™17“m™"), and note that the choice of h ensures that h'T¢¢ > m s . Similar calculation

shows that £ 3°0  K(||X; — 2|)E] = L 30 Ku(|X: — )] + Op(h™7“m™7) and
also

—Z£TKh 1X; — 2) )& ZéTKh 1X; — 2))& + Op(h™'~m™F).
Therefore,
—QTWQ— —QTWQ+O (W17 ™) 1 gy 12, (6)

with

Lotwo— [ "7 S Ka(lXe—al) 0 S Ka(|X — alef
" nU S (1 el n Tt S 6 (1 — 2T ]

By Lemma S.4, S.5 and S.6, we have
1

—Q"WQ

n

f(x) h2uy od ™'V f ()"
h2u172d_1
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Then, by the binomial inverse theorem and matrix blockwise inversion, we have

<1 Zrirg) — | T fT(f)gB)

" ~7wr Wl

Op(h? + h™1"dy=B 4 n~3p7%) op(h+h—3—fdm—ﬁ+n—%h -1
Op(h+ k=3 m™B 4 0 2R~ 571) Op(h™% + h™5 ™8 4 " 2h~572)

(7

225

Together with (5), it implies that
F@ QW@ Q) [ ) |} —opietu) ®

Now we analyze (4) with a focus on the term QTWH . A calculation similar to those in Lemma
S.5 and S.6 shows that 137 | K, (||X; — z||) ¢/ Hess g(2)& = h*uiod 1 f(2)Ag(z) + =0
Op(RT/? 4 n~1/2p=d/2+2) and LS Kn (|1X: — 2|) €7 Hess g(z)&:& = Op(ht +
n~2h~2"3). Therefore,

Lorpyrgr — |Pow2d™ f(@)Ag(e) + Op(h/? + 0™V 2p=a/242)
W= S

and hence

235

B h2u1 gd_lf(:v)A ( ) +0 (h7/2 + n—1/2h—d/2+2 + h—l—sdm—ﬁ)
N 4y pTIRTES h1medm=h) .

The condition on A implies that n"2 h_% < 1. With (7), we conclude that
QW) \QTW {%H + Op(h3)} = 2—1dh2u1,2Ag(x) +Op(h3 +n 2h7 82 4 pmlmedy A,
Combining this equation with (4) and (8) , we immediately see that the conditional bias is
E{j(x) —ga) | 2} = —h u12Ag(x) + Op(h® +n~2h~342 4 717l =0) (9)
Now we analyze the conditional variance. Simple calculation shows that
var{§(z) | 2 =07 'o2ef 0TI QTWQ) T (T QTWIWQ)(nTIQTWQ) Tl (10)
and
%QTWWQ = %QTWWQ +O0p(m PR ) L g1y (a1 - (11

In addition, 240

1 . LS R2(IX —af) LY, K2 (X — ) €T
_ WWQO = n nz—l h ? n nz—l h ? % .
R @ WWR= 11 X, ) IS0 K2 (X — ) GeT
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With Lemma S.4, S.5 and S.6, we can show that

hd
—QIWWQ
u2 002f( ) th_lngJQVf(x) O(h?) —i—OP(TL_%h_%) Op(h? +n_%h_%+1)
h2d U9 20'2va( ) h2d_1U,2720'2f(.%')Id Op(h3 + n—%h—%Jrl) Op(h% 4 n—%h—%JrQ)

Combined with (7), the above equation implies that
n o2l (I QTWQ) T (TR QTWW Q) (n T tQTWQ) el = Op(nTthTY). (12)
Also,
n~tole] (NI QTWQ) T gy yxarn (0 QTWQ) e Op (kT T m™F)
:op<m nlhdled(1+h2€dm5+h426dm 5)). (13)

Combining the above result with (10), (11), (12), (13) and the condition on h, gives the following
conditional variance

var{§(z) | 2} = L“;(OU) +0p (n-lh-d(h + n—%h-%)) . (14)
Finally, the rate for E[{§(z) — g(z)}? | 2] is derived from (9) and (14). O

Proof of Theorem 3. The proof is similar to the proof for Theorem 2. Below we shall only
discuss those that are different. Let A = h,..4 to reduce notational burden. We first have

%QTWQ = f(z)vkiv

O(h) + Op(n=3h=3) O(h?) + Op(n~3h—3+1)
O?) +Op(n™Hh=441) O(h) + Op(n~4n™4+2)

where

o |Fitg Fizg| y—— )d v — 10

T [Rlgg Rang TP 22058 k=1 0hly|
Then,

%QTWQ = f(z)vkiv

O(h) + Op(n"3h™%) + Op(h™1<m=F)  O(h?) + Op(n~
O(h?) + Op(n~ 2h™ 241 + Op(h™1dm™B) O(h3) + Op(n~

and also
-1
(7o"Wa) =g

Op(h+ h™2"dm™8 4 "3~ %) Op(l+h_4_€dm_6+n_%h 571)
Op(1+ h™*=dm=8 4+ "2 ™5871) Op(h™t + K5 =F L n~23p7272) |
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This implies that

d@rwaren{e-a [d =], bom

] Op(h™ 7 m ™) 14

Op(h™ 1™l =F).

11

265
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S.4. TECHNICAL LEMMAS

Here we collect some technical lemmas that will be used in the proofs of the main theorems.
The lemma below is used to establish Proposition 1. Its proof depends on Lemma 2 and 3.

LEMMA 1. Suppose hy — 0, and mhy — oo. For any p > 1, assume E|C|P < oco. Under the
assumptions (A1)—(A3), for the estimate X in (3) with a proper choice of §,

(B = XIg | 017 =0 (™ 285"7) {sup X(0)] + Lx } + 0L, ()

where O(-) does not depend on X.

Proof. In order to reduce notations, let h = ho. Denoting A = 15, g, g2 5 With § = m~2,

according to (3), we have

) So(Ro— SoX)  Si(Ri—Si.X) AX
X0 - X(t Lt I,
O =X = 55— +n 5% _—F+A SGm_sra nthth
Therefore,
|X = X|IP < ep(|I1||P + | L2|P + || 13]]7) (18)

for some constant ¢, depending on p only.
For 17, we have

p/2 4

Sa(Ro — Sp.X) }2 / . / ( 1 >
L|P = R S So(Ro — SoX)Ydt [ [ ———
Il [/D{SOSQ—s%JrA = D{ 2(Fo = 50X)} b \ 505 — 52+ A

p/8 1 4 p/4
< S8dt/ Ry — SoX 8dt} / <—> )
_{/D 2 D( 0 0X) p \S0S2 — SZ+ A

This also shows that, for p > 2,

p/4

E([L]" ] X)

< <E{[/DS§dt/D(Ro—SOX)8dtr/4!X})W E / (Sosg—s +A t]
(

1/2

(sl fon- o) (o[ st )
(s s ] [ o () o]

19)
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Let Ey x = E(Ry — SoX | X) and ¢ be the largest integer strictly less than . By Taylor expan-

Eox = B %ZjK( ) ) + ¢ - x|
1 « XO@ +7(Ty — 1) — XO(t
:%;E ( ){ (4 70— 1) <>(Tj_t)z}|X],

where 7; € [0, 1]. Hence, with u,, denoting f_ll K(s)|s|"ds, we have

1 & T —t\ | XOt +75(T; — 1)) — XO (1)
E <—§ EL{K (X ASe) T: —t)*
| 0’)(’_TrLfLJ,:1 { < h >‘ Y4l (Z; =) ’
1 T—t 5 LxCrs .,
< - — 310
_hﬁLXE{K< - >yT ¢ } i hYu (20)

Leto, x = E ([h 'K {(T; — t)/h} {X(T}) + {; — X(t)} — Eo,x|" | X) . Then, for r > 2,

o =5 |15 (B0) (x(@) + 6 - x0) - Bux] 1 %)

<3'E H%K (Tfh_ t) | X (T;) — X(t)\}r \ X] +3"E H%K (Tﬂh_ t) ygj\}r y X} +3"|Eo x|
<o ptvor el (52 oo (i (22 ] s

<2.3" {sup |X(t)|r} W' Ch o+ 3"h T Cr L ElC|” + 3T L Croh ™ ul. 1) s
t

With (20) and (21), by Lemma 2, conditioning on X, we have
E{(Ro — 50X — Eox)' | X} < ex(p)Oify fsupy [X (1) + L¥ul ym ™21, where
¢;(p) denote a constant depending on p only for any j. This implies that

E{(Ro— SoX)" | X} <2"E{(Ry — SoX — Eo.x)" | X} + 2% E {(Eo x)? | X}
(22)
< 2%y (p)C’%g{sup | X ()% + Lﬁ?uﬁp}m_%h_zp + (20T72u,,)4p h4pl'lzo;1?.
t

By a similar argument, we can show that E(Sy — ES2)* < ca(p)m™2Ph~2P. Also, it is easy to
check that Crjup < ESy < Crous with u, denoting f_ll K (u)|u|?du and hence

E(S57) < 2 E(Sy — ESy)™ + 2% |ES,[* < C 2u2 +ca(p)m™PRT® = 0(1).  (23)

The same argument leads to E{SySs — S? — E(SoS2 — S?)}?P < c3(p)m Ph™P. Note that
inf; £(SpS2 — S?) > 0o that { £(SpS2 — S2)} ™! = O(1). By Lemma 3, this also implies that

1 2 o
/DE{<M> }dt—o(lHO(m PR 4 mT) = 0(1).  (24)



325

14 LIN AND YAO

Puting (19), (22), (23) and (24) together, we conclude that
E([I|P | X) = ca(p) [{Sup X (O + LA ym PR 4 hp”f&] : (25)
t

The same rate for I can be obtained in a similar fashion. For I3, we have
/2 2 p/2
AX 2 7 1
I = / — | dt < APgsu ti/<—> dt .
l { D<5052—S%+A> } B tp‘ ) { p \S0S2 — ST + A
Therefore, with (24),

B(IL|/" | X) < A7 sup | X
t < AP?
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(a” + b")h'™" for r > 2. Therefore,
2p

N p
N _ 2p _ _

E , < 9p)471 (2P a2 1 2P a—2p
5203 ) <30 ()0 (2 B
7=1 q=1

P NI
< (20771 (2p)127(a% + b)Y e W1

= (N —q)l¢!
P

< (2p)"7 1 (2p)!p2P (a® + b)Y | NPRIT?P

q=1
< (2p)* "1 (2p)!p2P (a*F + b*P)NPH™P.

Multiplying both sides by N2 yields the conclusion of the lemma. O

LEMMA 3. Suppose D C RP is compact set and Sy (¢) for ¢ € D is a sequence of ran-
dom processes defined on D. For by >0, define on(t) = 2bn1gs()<by}- SUPPOSE for
some constant ¢y, 0 < cg < ESn(t) < oo for all ¢ and sufficiently large N. Also, assume
limy . e inf; p ESN(t) > 0. For asequence of ay — 0and any p > 0, if b/ a; < 1 for some
pandr > 0, and

(1) if E(sup, p|Sn(t) — ES(t)[") = O(dk), then we have

= Olaly + by

Fsu ‘ 1 1
D ISn(®) +on(t)  ESn(t)

(2) if [, E(|Sn(t) — ESN(1)[P) dt = O(aﬁ’v) then we have

/ ESn(t _17"
SN +5N

Proof. From now on, we shall supress /N when there is no confusion raised. Let S(t) = S(t) +
0(t) and v(t) = ES(t) — E§(t) = ES(t). For a fixed ¢ that is suppressed below,

dt = O(aly + bly).

v 1r< 1S — | 1. 1S — | 1.
R W {15—vi=v/2y T 5 {5—vl>v/2}
< (v/2)7" |5 - U‘ +by |5 —v Lgg—v>v/2y
< (v/2)7"|S = ESI" + ¢ (v/2) 776 + by |S — v Lg—v|>v/23
= Il + _[2 + I3,

where ¢, > 0 is a constant independent of ¢.
(1) By assumption, E'sup, I1 = O(dy). Since |§| < 2by, we have E sup, Iy = O(bly). Also,

Esup I3 < cpby sup(v/2) PE(sup |S — v[P™" 4+ sup [§]P1") = O(by ai'") = O(aly + bly)
t t t t

for a sufficiently large p, and a constant ¢, > 0.
(2) By the assumption, [ I;dt = O(dy). Since 6] < 2by, we have [ Iodt = O(bYy). Also,

/Igdt < by /{v )/2} PE|S(t) — o(t) Pt = O(by a%T) = Oldly + by).

345

350
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Therefore, the conclusion of part (2) follows. O

In order to state the following lemmas, we shall first establish some notations and

convention. Let ug :f[BR(O) K9(||lullga)llullf du. We also identify T, M with R Let
1

D, denote the set {# € R?: exp,(#) € BM(z)}, where exp, denotes the exponential map
at x. Let Kll,q = fh_l[Dthq(HuH[Rd)du, K12,q,j = fh_lDthq(HuHRd)deu and K22,q.5.k =
Jn-1p, K9 (P710llga) 6;65d6, where 6; denotes the jth component of 6. Let 74— denote the

volume of the unit sphere S¢~1. The following three lemmas are based on Lemma A.2.5 of
Cheng & Wu (2013) and hence their proofs are omitted.

LEMMA 4. Suppose K is a kernel function compactly supported in [—1, 1] and continuously
differentiable in [0, 1]. Let & > hypeq.

1. If z € M\ My, then

SY

n X, —
'y hTIKY <%> = ugof(z) + O(h?) + Op(n~2h72)
=1

2. Ifx € M, then

SY

n X, —
nt S Rk (%) = f(2)k114 + O(h) + Op(n"2h7%2).
i=1

LEMMA 5. Suppose K is a kernel function compactly supported in [—1, 1] and continuously
differentiable in [0, 1]. Let & > hy,., and ¢y, be the estimate in Theorem 1. Then,

(1) ifz € M\ My,

I [Xi — ]2 .
- pdge (2t 2L ) ox
o o () o

— D2ug1d "V, f(x) + Op(h® +n72h ™54 4 B2h3/2 4 hPhyey).

pca

Q) if z € My,

Q- [Xi — ], .
—> hTIKI X; —
n pa ( h < 5'3,8019>

= hiyagp(@) + Op(h2 + 0 2h™5H 4 BR324 B2hye,).

pca

LEMMA 6. Suppose K is a kernel function compactly supported in [—1, 1] and continuously
differentiable in [0, 1]. Let & > hypeq.

(1) If x € M\ My, then

n X —
n—l Z h_qu <%> <X’L -, ¢j><XZ -, ¢k>
=1

h2ugod L f(z) + Op(hs +n 2h™5%2) if1<j=k<d
Op(h% +n"2h™272) otherwise.
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(2) If z € My, then
n
-1 —d [ X — x| R R
ot St (R ) 06 ) 06—
—1., _d

= h2f(1')lﬁl22,q,j7k(.%') + Op(h3 +n 2h 212 + thf;ég)

In order to prove Theorem 1, we establish the following auxiliary lemmas.

LEMMA 7. Let G = G+ A and G = G + A with A = 1/logm. Then E|log G — log G| =
o(1). This result also holds for C;z, if z is independent of X,...,X,, and that {E||z —
z|[P}VP = O(m™?) for all p > 1.

Proof. By Jensen’s inequality and the concavity of log(-),
X - A X - X-X[+A
plX el I ol + )X - X+
| X —z|| + A |1X —z|| + A
<log(l+AT'E|X — X|) = ay

E(log G —log G) < log E% = log

with a,, > 0 and a,, — 0. For the other direction, we first observe that

_\ 1/4
G 1 ~1/4 1 5 1/4 1/4
E|= —FE{——F Y < BE|—E{IX - X X —
<G> {G1/4 (G )}_ [Gl/‘l {ll 75+ (X =zl +A)7" | X}

O m =B (X))
G1/4

<E +1] <1+A7V4E [011/4m-/3/4{n(X)}1/4]

=140 (m_ﬂ/4(logm)1/4)

where C] > 0 is some constant. This implies that

1 a\"! a\'""
— o — g — — < — = n
4E(logG log G) = Elog (G) <logE (G) 1

with b,, > 0 and b,, — 0, or equivalently,
E(log G —log G) > —b,.

Therefore E|log G — log G| < an + by = o(1). Following almost the same lines, we can deduce

the same result for G(Z), i.e., the quantity G(x) when = is replaced with Z. O

LEMMA 8. Let Z be an estimate of z such that Z is independent of X and X, and that { ||z —
z||P}/P = O(m™P) for all p > 1. Suppose 0 < a < B, h > m™® and hy = h +m~F+a)/2,

Let Z = 1{)‘( BE2 (2)} and V = 1{X [Bﬁi @)} If F'is a positive functional of X and X such

that E{F(X,X)V} = O(h?) for some b > 0, and E{F(X,X)}9 < oo for some ¢ > 1, then

we have E{F(X,X)|Z — V|} = O(h®) and E{F (X, X)Z} = O(h®). Also, E{F(X,X)|Z —

Z|} = o(h®) with Z denoting 1k B2y
h

Proof. Letx = m~(#+®)/2and V =1 B2 (73 Choose r > 1 such that r~l4+¢ 1 =1.To

X By (@)}
reduce notational burden, we simply use I’ to denote F'(X, X ).
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We shall first establish that E(F|V — V|) = O(h"). To this end, we observe that

E(F|V —V|) < E(FV1y_,) + E(FV1y_).

For the first term, for any fixed s > 2rab/( — a), we have

E(FV1\7:0) =E{F1 x_, <h, X—% >n}

< E{Fl T—x =Kk, X—z <h +F1h—/@$ X—x Sh}
< E{Fl I—z 25} +E{FV}
< {BF}Ypr (|7 — 2| > 5)'" 4+ O(h?)

1/r
< (EF1}V/a (m8<ﬁ+a>/2Eng - mHS> +O(RY)
= O(msB+a)/@n=sB/r 4 pby — O(RY).

Similar result can be derived for the second term. Thus, we prove that E(F|V — V]) = O(R?).

Define h— = h — &,

U=1 x BE 2y Note that U < V. Then, by Holder inequality, we have
Ly o) + E(Fl;_oly_y) + E(Flz_¢1y_415_)
SEF1; 1y o)+ EFL;_(l_,) + E(FV15_,)

< 2ABFN)YYpr(||X — X|| > m™ IR L O(n?)
“ 1/r
< 2(EF9)Y/4 (ms<5+a>/2EHX - XHS> i O(h?)

~-0 <ms(6+a)/(2r)—sﬁ/r> +O(hY) = O(R).

Then E(F|Z —V|) < E(F|Z - V|)+ E(F|V = V|) = O(). Since |E(FZ) — E(FV)| <
E(F|Z — V), the result E(FZ) = O(h®) follows. O

LEMMA 9. Suppose {v,}7> , is an orthonormal basis of # and = € M is fixed. Assume that
Y1, ..., 14 Span the tangent space 7., M. Let m4—1 be the volume of the d — 1 dimensional unit
sphere S¢~1 and C, the sample covariance operator based on N 2(h,z) for some h > m™@

with 0 < a < . Then,

sup sup
j=d k=d+1

<éij,wk> =0Op (hd+4 + T V2pd/243 m_ﬁhdH) 7

sup | (Catbj, k)| = Op (hdJr4 T 2pd 2 m_ﬁhd“) ;
j,k=d+1
sup  |{Cathj, )| = Op (hd+3 T 2pdES m_ﬁhd“) ;
l=<j=k=d
for1 <k<d: (Cothpe, Vi) = a1 f(x)d " h*2 + Op <n—1/2hd/2+2 + m_Bhd“) :
The above results hold also for C;, if % is independent of X1,...,X,, and that {E|z —

z|P}/P = O(m™P) for all p > 1.
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Proof. Denote Z; = 1 Then C, can be written as C, = n™ Z?:l(f(z — fig) ®

X B (@)}
(Xi — [iz)Z;, where fi, = > | X;Z;. For any y, z such that ||y|| 2 = ||z||_2 = 1, we have

(Cay, 2) = 122 ® (Xi — fe)y, 2) = n 12 — fias Y)(Xi — i, 2)Zi s
n~t Z - Mz, Y — oy 2) Zi + n”! Z((XZ = Xi) = (fz — Nm),y><Xz — fiz, 2) Z;
=1

n! Z((Xz’ — Xi) = (fie — o) (X = X3) = (i — i), 2) Zi

=h + L+ 13+ I,

where p, = > | X;Z;. Before we proceed to analyze Iy, I5, I3 and I4, we prepare some cal- s
culations.
First, it can be checked that

:00d[(+)4]13100d[(1)424]i310420i31]1(1)2ed[(20)1202d[23

e — pa]| = Z{ )) odoopol® BBl B 607 FoBo BoT58808F068 R 00 9 Fo8H 5o oo BoT5 B8R
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from triangle inequality, and the fifth is based on (28). Now, let h; = h + m~(6+9)/2 and

V; = 1{X1- [lez(gc)}. Based on the assumption (B3), E/(
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forl <5 <d,

n

n_l Z<Xz — Mz, ¢J><Xz — Mz, ¢k>Zz

i=1

n 12 Xzﬂ/’] <Xl7wk>

=1

+ FE sup |n IZ s W) )b, V) Zi

k=d+1 i—1
=1, + L. (36)

E sup |25 <E sup
k=d+1 k=d+1

<FE sup
k=d+1

495

It is seen that I; is the dominant term, which we evaluate below (utilizing the fact that IT,.(0, 0) L

T, M):

L =E TN (X)X, < E Xi, ) (Xi,
1= kitég)rl n ; Vi) (X, Yn) Z; Z;;%RJ Vi) (X, Yr) Zi|
- Eki%p ‘(Xlaw]><Xla1/}k>Z ‘ =F Sllp ’<Xl7wj><P2Xza1/}k>Z ‘ 500
E ((Xi, Yi) 1P Xl Zs) - (37)

Since by Lemma A.2.4 of Cheng & Wu (2013),
E (X, ¥j)||P2X || Vil
h1
<[] P60 fexpleo)rt~ deds + O+
sd=1Jg
= O(hd+3), 505

we can apply Lemma 8 to conclude E (|(X;, ¥;)|||P2X;[Z:) = O(h?*3), and hence with (37),
we assert that ; = O(h®+3). This proves (31). The result (32) is obtained in a similar way.

For (33), by the same argument that leads to (36), we can show that for 1 < j # k < d, EE;;,
is dominated by

En™"Y (X, (X k) Zi = B{(X, ) Xi, ) Zi.
i=1
Now, because
Xzﬂ/’] Xlawk>
h1
-/ / (10, 05) (10, ) [ () + 1 £ ()11 10 + O()
Shd+3

where the second equality is based on the fact that the second fundamental form is self-adjoint, s
by Lemma 8, (33) follows. The result (34) is dervied in a similar fashion.

5
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Let xix =n" "X, ;) (X;, ) Zi. Then =5 => 1, Xik- Then by Theorem 11.1 of
Boucheron et al. (2016), we have

n n
var | sup Z; | = var | sup E Xik | < E E sup X3, =nE sup x%. (38)
k=d+1 k=d+1 ;] S k=d+l k=d+1

The term E supy=4.1 X? ;; can be computed as follows:

_ 2
E sup xip=FE sup [n7NX;, ;) (PaXi, vi) Zi)
k=d+1 k=d+1

< n_QEkilélj:l Xl PP X2 151 117 Z; = n ™2 B X5 || P Xl Zi
Since
ha
BIXIPIPXY = [ [ IOPIR L0, 0)7 fexpleo))eidra0 + O™ = 0 ().

we apply Lemma 8 to conclude E||X;||?(|P2X;||2Z; = O(h®*°). Therefore, E supy=q.1 X7, =
O(n~2h4*%). With (38), we show that

var | sup Zji | =0 <n_1hd+6>.
k=d+1

Other results are dervied in the same way. O
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