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We propose a two-sample test for high-dimensional means that requires
neither distributional nor correlational assumptions, besides some weak con-
ditions on the moments and tail properties of the elements in the random vec-
tors. This two-sample test based on a nontrivial extension of the one-sample
central limit theorem (Ann. Probab. 45 (2017) 2309-2352) provides a prac-
tically useful procedure with rigorous theoretical guarantees on its size and
power assessment. In particular, the proposed test is easy to compute and does
not require the independently and identically distributed assumption, which
is allowed to have different distributions and arbitrary correlation structures.
Further desired features include weaker moments and tail conditions than ex-
isting methods, allowance for highly unequal sample sizes, consistent power
behavior under fairly general alternative, data dimension allowed to be expo-
nentially high under the umbrella of such general conditions. Simulated and
real data examples have demonstrated favorable numerical performance over
existing methods.

1. Introduction. Two-sample test of high dimensional means as one of the key issues
has attracted a great deal of attention due to its importance in various applications, including
[2-5, 10-12, 19, 24-26, 29] and [21], among others. In this article, we tackle this problem
with the theoretical advance brought by a high-dimensional two-sample central limit the-
orem. Based on this, we propose a new type of testing procedure, called distribution and
correlation-free (DCF) two-sample mean test, which requires neither distributional nor cor-
relational assumptions and greatly enhances its generality in practice.

We denote two samplesby X" = {X1, ..., X,}and Y™ ={Y1, ..., Y,,,} respectively, where
X" is a collection of mutually independent (not necessarily identically distributed) random
vectors in R? with X; = (X1, ..., X;p)" and E(X;) = p* = (Mf,...,;@f)/, i=1,...,n,

and Y™ is defined in a similar fashion with E(Y;) = u¥ = (ud, ..., MZ)’ foralli=1,...,m.
The normalized sums S and S, are denoted by SX =n~Y/237_) X; = (SX..... 5%) and
Sp=mH2yM ¥ =(Sry..... ), respectively. Note that we only assume independent

observations, and each sample with a common mean. The hypothesis of interest is
Ho:pnX=p" vs. Hy:pX#u",

and the proposed two-sample DCF mean test is such that we reject Ho : X = u! at signifi-

cance level « € (0, 1), provided that

T, =S¥ - nl/zm_l/zSn}; | oo = cB(@),

where 7, = ||SX — n1/2m=1/25Y |, is the test statistic that only depends on the infinity
norm of the sample mean difference, and cp(«) that plays a central role in this test is a data-
driven critical value defined in (5) of Theorem 3. It is worth mentioning that cp («) is easy to

Received October 2018; revised January 2019.

MSC2010 subject classifications. 62H05, 62F05.

Key words and phrases. High-dimensional central limit theorem, Kolmogorov distance, multiplier bootstrap,
power function.

1304


http://www.imstat.org/aos/
https://doi.org/10.1214/19-AOS1848
http://www.imstat.org
mailto:kaijie@nankai.edu.cn
mailto:fyao@math.pku.edu.cn
http://www.ams.org/mathscinet/msc/msc2010.html

DISTRIBUTION AND CORRELATION-FREE TWO-SAMPLE MEAN TEST 1305

compute via a multiplier bootstrap based on a set of independently and identically distributed
(i.i.d.) standard normal random variables that are independent of the data, where the explicit
calculation is described after (6). Note that the computation of the proposed test is of an order
O{n(p+ N)}, more efficient than O (Nnp) that is usually demanded by a general resampling
method. In spite of the simple structure of 7, we shall illustrate its desirable theoretical
properties and superior numerical performance in the rest of the article.

We emphasize that our main contributions reside on developing a practically useful test
that is computationally efficient with rigorous theoretical guarantees given in Theorem 3-
5. We begin with deriving nontrivial two-sample extensions of the one-sample central limit
theorems and its corresponding bootstrap approximation theorems in high dimensions [9],
where we do not require the ratio between sample sizes n/(n 4+ m) to converge but merely
reside within any open interval (c1, c2), 0 < ¢1 <c¢2 <1, as n, m — oo. Further, Theorem 3
lays down a foundation for conducting the two-sample DCF mean test uniformly over all
a € (0,1). The power of the proposed test is assessed in Theorem 4 that establishes the
asymptotic equivalence between the estimated and true versions. Moreover, the asymptotic
power is shown consistent in Theorem 5 under some general alternatives with no sparsity or
correlation constraints.

The proposed test sets itself apart from existing methods by allowing for non-i.i.d. ran-
dom vectors in both samples. The distribution-free feature is in the sense that, under the
umbrella of some mild assumptions on the moments and tail properties of the coordinates,
there is no other restriction on the distributions of those random vectors. In contrast, exist-
ing literature require the random vectors within sample to be i.i.d. [3-6], and some methods
further restrict the coordinates to follow a certain type of distribution, such as Gaussian or
sub-Gaussian [26, 29]. This feature sets the proposed test free of making assumptions such as
i.i.d. or sub-Gaussianity, which is desirable as distributions of real data are often confounded
by numerous factors unknown to researchers. Another key feature is correlation-free in the
sense that individual random vectors may have different and arbitrary correlation structures.
By contrast, most previous works assume not only a common within-sample correlation ma-
trix, but also some structural conditions, such as those on trace [5], mixing conditions [21]
or bounded eigenvalues from below [3]. It is worth noting that our assumptions on the mo-
ments and tail properties of the coordinates in random vectors are also weaker than those
adopted in literature, for example, [3, 11] and [21] assumed a common fixed upper bound to
those moments, [5] and [19] allowed a portion of those moments to grow but paid a price on
correlation assumptions.

We also stress that the proposed test possesses consistent power behavior under fairly gen-
eral alternative (a mild separation lower bound on X — ¥ in Theorem 5) with neither spar-
sity nor correlation conditions, while previous work requiring either sparsity [26] or structural
assumption on signal strength [5, 11] or correlation [21], or both [3]. Lastly, we point out that
the data dimension p can be exponentially high relative to the sample size under the umbrella
of such mild assumptions. This is also favorable compared to previous work, as [3, 5] and
[21] allowed such ultrahigh dimensions under nontrivial conditions on either the distribution
type (e.g., sub-Gaussian) or the correlation structure (or both) as a tradeoff.

We conclude the Introduction by noting relevant work on one-sample high-dimensional
mean test, such as [14-18, 20, 23, 27, 28] and [1], among others. It is relatively easier to
develop a one-sample DCF mean test with similar advantages based on results in [9], thus is
not pursued here. The rest of the article is organized as follows. In Section 2, we present the
two-sample high-dimensional central limit theorem, and the result on multiplier bootstrap for
evaluating the Gaussian approximation. In Section 3, we establish the main result Theorem 3
for conducting the proposed test, and Theorem 4 to approximate its power function, followed
by Theorem 5 to analyze its asymptotic power under alternatives. Simulation study is carried



1306 K. XUE AND F. YAO

out in Section 4 to compare with existing methods, and an application to a real data example
is presented in Section 5. We collect the auxiliary lemmas and the proofs of the main results,
Theorems 3-5 in the Appendix, and delegate the proofs of Theorems 1-2, Corollary 1 and
the auxiliary lemmas to an online Supplementary Material [22] for space economy.

2. Two-sample central limit theorem and multiplier bootstrap in high dimensions.
In this section, we first present an intelligible two-sample central limit theorem in high di-
mensions, which is derived from its more abstract version in Lemma 4 in the Appendix. Then
the result on the asymptotic equivalence between the Gaussian approximation appeared in the
two-sample central limit theorem and its multiplier bootstrap term is also elaborated, whose
abstract version can be referred to Lemma 5.

We first list some notation used throughout the paper. For two vectors x = (x1,...,x,) €
RP and y = (y1,...,yp) e RP, write x <y ifx; <y; forall j=1,...,p. Forany x =
(x1,...,xp) € RP and a € R, denote x +a = (x1 +a,...,x, +a). Forany a,b € R, use
the notation a v b = max{a, b} and a A b = min{a, b}. For any two sequences of constants
a, and b,, write a, < b, if a, < Cb, up to a universal constant C > 0, and a,, ~ b, if

an S b, and b, < a,. For any matrix A = (a;;), define [|A|« = max; ; la;;|. For any function
f iR — R, write || flloc = SUp,cr | f(z)|. For a smooth function g : R” — R, we adopt
indices to represent the partial derivatives for brevity, for example, 9;0,0;g = g ;. For any
a > 0, define the function v, (x) = exp(x®) — 1 for x € [0, 00), then for any random variable

X, define

(1) 1 Xly, =inf{r>0: E{y(1X|/2)} <1},

which is an Orlicz norm for « € [1, o0) and a quasi-norm for « € (0, 1).

Denote F" = {F1, ..., F,} as a set of mutually independent random vectors in R” such
that F; = (Fi1, ..., F;p) and F; ~ N,(uX, E{(X; — p)(X; — pX)}) foralli=1,....n
which denotes a Gaussian approximation to X". Likewise, define a set of mutually inde-
pendent random vectors G = {Gy, ..., G} in R? such that G; = (G;1,...,Gjp)" and
Gi ~ Npy(uY, E{(Y; — u¥)(¥; — Y)Y} forall i =1,...,m to approximate Y™. The sets
X", Y™ F" and G™ are assumed to be independent of each other To this end, de-
note the normalized sums SX, SF, S¥ and S¢ by SX =n=Y23"  X; = (SX. ..., np)’
Sk —n*1/2 Z” 1 Fi=(Sh.... SEY Sy —m*l/zzm (Sml,..., Syp) and S5 =

m~1/2 (Sml, e mp) where SF and SG serve as the Gaussian approximations
for S,f and S,,’j , respectively. Lastly, denote a set of independent standard normal random
variables e" ™™ = {e1, ..., en1m} that is independent of any of X", F", Y™ and G™.

2.1. Two-sample central limit theorem in high dimensions. To introduce Theorem 1, a
list of useful notation are given as follows. Denote

X _ X3 Y _ Y3
L, —1Tja<XpZE |Xij — w5 [)/n, Lm—lTjai(pZE |Yij = i) /m
We denote the key quantity p,%, by

pix = sup |P(SX —n'2uX +8, ,uSY — 8, mm*?u’ € A)
(2) AeARe

— P(SF —n2uX 48, nSG — 8, mm?uY € A)|,
where P(SX —n2uX 48, ,,SY — 8, ,m*?1uY € A) represents the unknown probability of

interest, and P (SF —n/2p X + 8 mSG — 8y mm?uY € A) serves as a Gaussian approxi-
mation to this probability of interest, and oy, Measures the error of approximation over all
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hyperrectangles A e AR®. Note that AR® is the class of all hyperrectangles in R” of the form
{weRP:a; <w; <bjforallj=1,..., p} with —oco <a; <bj <ooforall j=1,...,p.
By assuming more specific conditions, Theorem 1 gives a more explicit bound on 7, com-
pared to Lemma 4.

THEOREM 1. For any sequence of constants 8y, ,, assume we have the following condi-
tions (a)—(e):

(@) There exist universal constants 81 > 82 > 0 such that 82 < |8, m| < 81.
(b) There exists a universal constant b > 0 such that
H X 1/2 X Y 1/2, Y\2
121j|2pE{(Snj —n 15 + 8nm Sy — Sn,mm / wi)}=b.
(C) There exists a sequence of constants By, ,, > 1 such that L,)f < B, m and L,}; <Buym.
(d) The sequence of constants By, », defined in (c) also satisfies
max max E{exp(|X;; — uf|/Bum)} <2,

1<i<nl<j<p

max max E{exp(|Yi; — u}|/Bum)} <2.

l<iz=ml=<j<p
(&) There exists a universal constant c¢1 > 0 such that

Bumlogpm)} /n <c1. (Buw){log(pm)} /m < c1.
Then we have the following property, where py", is defined in (2):

i, < Ka([(Baw){log(pm)}” /0" + [(By.m)?{log(pm)}’ /m]™®),

for a universal constant K3 > 0.

Conditions (a)—(c) correspond to the moment properties of the coordinates, and (d) con-
cerns the tail properties. It follows from (a) and (b) that the moments on average are bounded
below away from zero, hence allowing certain proportion of these moments to converge to
zero. This is weaker than previous work that usually require a uniform lower bound on all
moments [3, 11, 21]. Condition (c) implies that the moments on average has an upper bound
B, that can diverge to infinity without restriction on correlation, thus offers more flexibil-
ity than those in literature that demands either a fixed upper bound or a certain correlation
structure or both. To appreciate this, letting B, ,, ~ n'/3, one notes that all the variances of
the coordinates are allowed to be uniformly as large as B,f/,fl ~ n?/? = oo under condition
(c), while no restriction on correlation is needed. As a comparison, if we assign a common
covariance to two samples, say ¥ = (Zx)1<j k<, With each X jx = n?/°pU#k) for some
constant p € (0, 1), then the trace condition in [5] implies that p = o(1). Compared with a
fixed upper bound on the tails of the coordinates [3, 21], condition (d) allows for uniformly
diverging tails as long as B, ,, — oo. Condition (e) indicates that the data dimension p can
grow exponentially in n, provided that B, ,, is of some appropriate order. These conditions
as a whole set the basis for the so-called “distribution and correlation-free” features.

2.2. Two-sample multiplier bootstrap in high dimensions. Due to the unknown probabil-
ity in p;%, (2) denoting the Gaussian approximation, it limits the applicability of the central
limit theorem for inference. The idea is to adopt a multiplier bootstrap to approximate its
Gaussian approximation, and quantify its approximation error bound. Denote

=X =n_1éE{(
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where X =n~1Y" , X; = (X1,..., X,)’. Analogously, denote ¥, &' and ¥. Now we
introduce the multiplier bootstrap approximation in this context. Let "7 = {e1, ..., €y1m}
be a set of i.i.d. standard normal random variables independent of the data, we further denote

n m
(3) SKX=n12Y e (Xi = X), ST =m VY e (¥, —Y),
i=1 i=1
and it is obvious that E,(S¢X$¢X") = £X and E,(5¢¥ s¢¥") = &Y, where E,(-) means the
expectation with respect to ¢ only. Then, for any sequence of constants 8, ,, that depends
on both n and m, we denote the quantity of interest o2 by

PMB = sup |Po(SEX +8,mSs € A)
) AeARe

- P(S,llr — X 4 8n’mSn(f - 8n,mml/2,uy €A)

where P, (-) means the probability with respect to ¢ only, and Pe(ng +8n,mS§1Y € A) acts
as the multiplier bootstrap approximation for the Gaussian approximation P (S} — nt2uX 4
8n.mSC — 8y mm?1Y € A). In particular, ptB can be understood as a measure of error
between the two approximations over all hyperrectangles A € .AR¢. The following theorem
provides a more explicit bound on ,0%5 in contrast to its abstract version stated in Lemma 5
in the Appendix.

’

THEOREM 2. For any sequence of constants 8y, ,, assume we have the following condi-
tions ()—(e),

(&) There exists a universal constant 81 > 0 such that |8, | < 81.
(b) There exists a universal constant b > 0 such that

. 2
1r<nj|QpE{(S,§§ —n 2 X + Sy m Sy — Snmm™ P )"} > b,

(C) There exists a sequence of constants By, ,, > 1 such that

max 3 E((xy — )/ < B

m

Y4 2
1r§nja§Xpl.:2;E{(Yl] I’Lj) }/mSBn,m'

(d) The sequence of constants By, ,, defined in (c) also satisfies

max max E{exp(|X;; — uf|/Bn,m)} <2,

1<i<nl<j<p

max max E{exp(|¥i; — u}|/Bum)} <2.

1<i=m1<j<p
(€) There exists a sequence of constants oy, € (0, e~ ) such that
BZ ,,109°(pn) log® (1/ctp m)/n < 1,
B2, 10g°(pm) l0og?(1/atym)/m < 1.

Then there exists a universal constant ¢* > 0 such that with probability at least 1 — v,
where

172 .
Yom = (an’m)log(Pn)/S + 3(an’m)|og (pn)/cx« + (an’m)mg(pm)/:%
1/2 3 3

+3(an,m)log (pm)/cx + (an,m)log (pn)/6 +3(an’m)|0g (pn)/cx

3 3
+ (Oln,m)IOg (pm)/6 3(0€n,m)|09 (pm)/c*’



DISTRIBUTION AND CORRELATION-FREE TWO-SAMPLE MEAN TEST 1309

we have the following property, where pMB is defined in (4),

n,m

pMB < 1B2, 10g®(pn) 10g?(1/cty m)/n}"°

+{ B2, 10g®(pm) 10g? (1 /oty m) /m}'°.

Conditions (a)—(c) pertain to the moment properties of the coordinates, condition (d) con-
cerns the tail properties and condition (e) characterizes the order of p. These conditions
have the desirable features as those in Theorem 1, such as allowing for uniformly diverging
moments and tails and so on. Moreover, by combining Theorem 2 with a two-sample Borel-
Cantelli lemma (i.e., Lemma 6), where condition (f) is needed for Lemma 6, one can deduce
Corollary 1 below, which facilitates the derivation of our main result in Theorem 3.

COROLLARY 1. For any sequence of constants 8, ,, assume the conditions (a)—(e) in
Theorem 2 hold. Also suppose that the condition (f) holds as follows:

(f) The sequence of constants y, , defined in Theorem 2 also satisfies
3 Yam < 0o
n m

Then with probability one, we have the following property, where p,%g is defined in (4),

MB < 1B2,, 10g°(pn) l0g?(1/ay ) /n )™

n,m ~

+{B2,,10g° (pm) 10g% (1 /ety m) /m }'°.

3. Two-sample mean test in high dimensions. In this section, based on the theoretical
results from the preceding section, we first establish the main result, Theorem 3, which gives
a confidence region for the mean difference (uX — 1Y) and, equivalently, the DCF test pro-
cedure. We note that the theoretical guarantee is uniform for all « € (0, 1) with probability
one.

THEOREM 3. Assume we have the following conditions (a)—(e):

@) n/(n+m) e (c1, c2), for some universal constants 0 < c1 < ¢ < 1.
(b) There exists a universal constant b > 0 such that

. 2 2
min [E{(5% —n2)?) + E{ (5L, —m¥ 2l )] =

(C) There exists a sequence of constants By, ,, > 1 such that

n
max Y E(|Xi; — u[**?)/n < BX

N n,m>
1=j=p;3

max Y E(|Yi; — uY[**?)/m < Bf

n,m»
forallk=1,2.
(d) The sequence of constants By, », defined in (c) also satisfies

max max E{exp(|X;; — uf|/Bum)} <2,

l<i<nl<j<p

max max E{exp(|Vi; — u}|/Bum)} <2.

1<i<ml1<j<p

)] B,%,m log’ (pn)/n — 0 as n — oo.
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Then with probability one, the Kolmogorov distance between the distributions of the quantity
||S,)f —nl/zm_l/zSg —nY2(uX — 1Y) | oo and the quantity ||S§X —nl/zm_l/ZS,‘;,Y o satisfies

supl (|5 = n/omY25), —nt2(uX ) <)
1>

- Pull5;¥ = n eSS
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It is easy to see that the computation of the DCF test is of the order O{n(p + N)}, compared
with O (Nnp) that is usually demanded by a general resampling method.
According to (6), the true power function for the test can be formulated as

(7 Power(u* — u') = P{|S¥ - nt2m=12gY loo = cB(@) | wX — ).

To quantify the power of the DCF test, the expression (7) is not directly applicable since
the distribution of (SX — n'/2m=1/25Y is unknown. Motivated by Theorem 3, we propose
another multiplier bootstrap approximation for Power(u* — ), based on a different set of
standard normal random variables e*"*" = {e], ..., e;_,} independent of ¢"*™ that are used
to calculate cp(«),

Power* (X — 1u¥)
(8)

= P ||| SEX —n2m =288 02 (WX — Y| o = @),

where ¢ X and §¢'¥ are as defined in (3) with ¢*” instead of ¢"*, and P,+(-) means the
probability with respect to ¢*”*™ only. The following theorem is devoted to establishing the
asymptotic equivalence between Power(uX — n¥) and Power*(uX — u¥) under the same
conditions as those in Theorem 3.

THEOREM 4.  Assume the conditions (a)—(€) in Theorem 3 hold, then for any nX — u¥ e
R?, we have with probability one,

|Power* (1% — 1Y) — Power(u* — u¥)| < [ B2, log’ (pn)/n} ™.

By inspection of the conditions in Theorem 4, it is worth mentioning that neither sparsity
nor correlation restriction is required, as opposed to previous work requiring sparsity [3]
for instance. To appreciate this point, the asymptotic power under fairly general alternatives
specified by condition (f) is analyzed in the theorem below.

THEOREM 5. Assume the conditions (a)—(€) in Theorem 3 and that

() Famp={n* €RP 1" RV |1 — 1Mlloo = Ks(Bum log(pn)/n}*/2}, for a suffi-
ciently large universal constant K > 0.

Then for any u* — uY¥ e Fu.m, p» we have with probability tending to one,

Power* (uX — u¥) =1 asn— oo.

The set 7, p in (f) imposes a lower bound on the separation between wX and ¥, which
is comparable to the assumption max; |8,~/o§i/2| > {2Blog(p)/n}*/? in Theorem 2 in [3]. The
latter is in fact a special case of condition (f) when the sequence B, ,, is constant. It is worth
mentioning that the asymptotic power converges to 1 under neither sparsity nor correlation as-
sumptions in the context of our theorem. In contrast, Theorem 2 in [3] requires not only sparse
alternatives, but also restrictions on the correlation structure, for example, condition 1 in that
theorem such that the eigenvalues of the correlation matrix diag (£) /2% diag () /2 is
lower bounded by a positive universal constant. These comparisons reveal that the proposed
DCF is powerful for a broader range of alternatives. We conclude this section by noting that
the theory for the DCF-type test based on L,-norm can also be of interest but is not yet
established, which needs further investigation.
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4. Simulation studies. In the two-sample test for high-dimensional means, methods that
are frequently used and/or recently proposed include those proposed by [5] (abbreviated as
CQ, an Ly norm test), [3] (abbreviated as CL, an L, norm test) and [21] (abbreviated as XL,
a test combining L, and L, norms) tests. We conduct comprehensive simulation studies to
compare our DCF test with these existing methods in terms of size and power under various
settings. The two samples X" = {X;}?_; and Y = {Y;}"" ; have sizes (n, m), while the data
dimension is chosen to be p = 1000. Without loss of generality, we let uX =0 e RP. The
structure of 1 e R” is controlled by a signal strength parameter § > 0 and a sparsity level
parameter 8 < [0, 1]. To construct .Y, in each scenario, we first generate a sequence of i.i.d.
random variables 6, ~ U(—4,6) for k =1,..., p and keep them fixed in the simulation
under that scenario. We set §(r) = {2r log(p)/(n v m)}1/2 that gives appropriate scale of
signal strength [3, 5, 28]. We take u¥ = (61, ...,0p), 0’ )" € RP, where |a] denotes
the nearest integer no more than a, and 0, is the q- dimen5|onarvector of 0’s. Thus the signal
becomes sparser for a smaller value of ﬁ with 8 = 0 corresponding to the null hypothesis
and g = 1 representing the fully dense alternative. The covariance matrices of the random
vectors are denoted by cov(X;) = =%, cov(Yy) ==Y forall i =1,...,n,i'=1,...,m.
The nominal significance level is @ = 0.05, and the DCF test is conducted based on the
multiplier bootstrap of size N = 10

To have comprehensive comparison, we first consider the following six different set-
tings. The first setting is standard with (n, m, p) = (200, 300, 1000), where the elements
in each sample are i.i.d. Gaussian, and the two samples share a common covariance ma-
trix ¥ = (Xj)1<, k<p The matrix X is specified by a dependence structure such that

Sip=>0A+]j - k|)~1/4. Beginning with § = 0.1, where the implicit chosen value r = 0.217
corresponds to quite weak signal according to [3, 28], we calculate the rejection proportions
of the four tests based on 1000 Monte Carlo runs over a full range of sparsity levels from
B =0 (corresponding to null hypothesis) to 8 = 1 (corresponding to fully dense alternative).
Then the the signals are gradually strengthened to § = 0.15, 0.2, 0.25, 0.3. The second set-
ting is similar to the first, except for ¥i =2x%r =2% foralli =1,...,n,i'=1,...,m,
where X is defined in the first setting. These two settings are denoted by “i.i.d. equal (resp.,
unequal) covariance setting.”

In the third setting, the random vectors in each sample have completely different distribu-
tions and covariance matrices from one another. The procedure to generate the two samples

is as follows. First, a set of parameters {¢;; :i =1,...,m, j =1,..., p} are generated from
the uniform distribution U (1, 2) independently, and are kept fixed for all Monte Carlo runs.
In a similar fashion, {¢>* i=1,....,m,j=1,..., p} are generated from U (1, 3) indepen-

dently. Then, for everyz =1,...,n, We define a p x p matrix Q; = (w;jk)1<j.k<p With each
Wijk = (¢lj¢lk)1/2(1 +1j— k|) -i/4, Likewise, forevery i =1, ..., m, definea p x p matrix
@ = (@)1= k=p With each o = (@];9; )1/2(1 +1j— kD~ 14, Subsequently, we gener-
ate a set of i.i.d. random vectors X" = {X;}"_, with each X; = (X;1, ..., X;»)’ € R?, such

that {X;1, ..., Xi 2p/5) are i.i.d. standard normal random variables, {X; 2,/5+1, - ., Xi.p} are
i.i.d. centered Gamma(16, 1/4) random variables, and they are independent of each other. Ac-
cordingly, we construct each X; by letting X; = u* + 91/2X foralli =1,. n. Itis worth
noting that =Xi = ; foralli =1, ..., n, thatis, X;’s have different covariance matrices and
distributions. The other sample Y’” = {Y }iL 4 is constructed in the same way with = Qr
foralli =1,...,m. Then we obtained the results for various signal strength levels of § over
a full range of sparsity levels of 8, and we denote this setting as “completely relaxed.” The
fourth setting is analogous to the third, except that we set (n, m, p) = (100, 400, 1000), where
two sample sizes deviates substantially from each other. Since this setting is concerned with
highly unequal sample sizes, and is therefore denoted as “completely relaxed and highly un-
equal setting.” The fifth setting is similar to the third, except that we replace the standard
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normal innovations in X; and ¥;» by independent and heavy-tailed innovations (5/3) /2 (5)
with mean zero and unit variances, referred to as “completely relaxed and heavy-tailed set-
ting.” The sixth setting is also analogous to the third, while independent and skewed innova-
tions 8~1/2{x2(4) — 4} with mean zero and unit variances are used, denoted by “completely
relaxed and skewed setting.”

We conduct the four tests and calculate the rejection proportions to assess the empirical
power at different signal levels & and sparsity levels 8 in each setting as described above,
based on 1000 Monte Carlo runs. The numerical results of these six settings are shown in
Tables 1-2. For visualization, we depict the empirical power plots of all settings in Figure 1.
We also display the multiplier bootstrap approximation based on another independent set of
size N = 10%, which agrees well with the empirical size/power of the DCF test and justifies
the theoretical assessment in Theorem 4. We see that the empirical sizes of proposed DCF
test agree well with the nominal level 0.05 in all six settings. By comparison, the CQ test is
not as stable, and the CL and XL tests show underestimation of type | error in all settings.

Regarding power performance under alternatives in these six settings, despite all tests suf-
fering low power for the weak signals § = 0.1 and § = 0.15, the DCF test still dominates the
other tests at all levels of 8. When the signal strength rises to § = 0.2, the results in Setting |
indicate that the DCF test outperforms the other tests, except for the CQ test when 8 > 80%
(a very dense alternative). Although the power of CQ test increases above that of DCF test
at 8 = 80%, the gains are not substantial when both tests have high power. Similar patterns
are observed in Settings Il, 111, V, VI with § = 0.25 for 8 ranging between 80% and 83%,
and Settings 11, IV with § = 0.3 for B8 at 80% and 90%, respectively. This phenomenon is
visually shown in the power plot in Figure 1. It is also noted the DCF test dominates the CL
(Lo type) and XL (combined type) uniformly in these settings over all levels of § and 8.
To summarize, except for the rapidly increased power of CQ test in very dense alternatives,
the DCF test outperforms the other tests over various signal levels of § in a broad range of
sparsity levels B, for alternatives with varied magnitudes and signs. Moreover, the gains are
sustainable in the situations that the data structures get more complex, for example, highly
unbalanced sizes, heavy-tailed or skewed distributions.

We further examine alternatives with common/fixed signal upon reviewer’s request
under the “completely relaxed setting,” denoted by Setting VII, where we let ¥ =

(L. ipp). 0, )


https://archive.ics.uci.edu/ml/datasets/eeg+database

TABLE 1
Rejection proportions (%) calculated for four testing methods at different signal strength levels of 8 and sparsity levels of B based on 1000 Monte Carlo runs, where =0
corresponds to the null hypothesis B = 1 to the fully dense alternative, and (n, m, p) = (200, 300, 1000)

Setting I: i.i.d. equal cov

§=01 § =0.15 §=0.2 §=0.25 §=0.3
Test DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ
p=0 420 240 390 580 430 230 240 3.60 450 2.80 3.70 6.00 460 2.70 2.20 3.80 5.00 3.10 3.80 6.10
B=002 500 320 250 340 750 480 370 350 154 105 6.50 3.90 317 233 14.6 4.40 59.0 47.9 32.6 4.90
B=004 580 370 280 360 10.0 6.20 430 390 206 142 8.80 470 406 30.8 20.0 510 720 58.9 415 5.30
p=0.2 990 650 390 450 22.7 15.9 9.10 530 487 373 237 740 845 724 52.0 11.6 99.3 97.1 87.2 23.4
B=04 139 940 530 520 353 254 144 7.80 688 57.1 379 16.5 96.8 91.1 72.7 425 100 100 97.7 96.9
B=06 17.8 118 6.70 560 458 337 203 128 827 718 511 39.9 99.6 97.2 86.8 99.1 100 100 100 100
=08 224 138 9.00 830 555 401 244 231 913 817 615 91.7 100 99.2 95.7 100 100 100 100 100
B= 265 179 109 107 645 481 306 395 950 885 70.1 100 100 99.6 100 100 100 100 100 100
Setting II: i.i.d. unequal cov
§=0.1 §=0.15 §=0.2 §=0.25 §=03

Test DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ
B=0 490 1.8 370 6.10 520 130 220 380 500 160 3.60 6.00 480 120 350 6.30 5,00 1.90 3.90 6.20
B=002 470 100 240 380 6.60 140 270 410 10.7 260 290 4.10 191 6.70 4.80 440 333 144 8.80 4.50
p=0.04 5.80 1.30 250 410 7.90 1.80 280 430 125 3.50 340 450 247 9.30 6.00 460 425 20.3 12.2 5.00
B=0.2 810 190 270 460 15.0 440 380 490 309 112 720 640 576 265 16.3 840 86.8 521 339 11.8
B=04 106 280 310 570 224 720 570 650 473 196 116 100 787 432 26.6 19.1 975 741 532 45.7
B=0.6 13.5 330 3.80 6.70 29.2 960 6.70 8.40 59.0 26.5 17.1 18.7 90.5 56.2 36.7 54.4 99.8 88.1 70.1 99.6
p=08 164 460 450 740 374 119 860 126 709 329 214 396 956 67.0 47.0 Al 5 7 2 1

2
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TABLE 1
(Continued)
Setting I11: completely relaxed
§=0.1 §=0.15 §=0.2 §=0.25 §=0.3

Test DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ
B=0 470 200 390 630 450 170 230 350 480 190 370 6.10 460 220 280 390 510 210 3.80 6.20
B=0.02 490 210 320 440 650 270 350 530 940 430 400 560 136 780 620 570 249 129 101 5.90
B=0.04 560 240 350 470 7.60 340 420 540 121 6.00 500 580 191 108 880 6.00 328 191 1338 6.50
B=0.2 750 380 430 580 121 6.00 560 660 239 125 890 750 442 263 16.6 930 716 50.2 321 14.1
B=0.4 940 390 450 6.30 18.4 9.00 800 760 358 199 127 117 623 40.8 264 185 893 69.9 486 315
B=06 115 490 6.20 6.80 24.0 108 890 950 480 282 182 178 768 553 37.0 357 965 83.8 64.6 83.1
B=08 136 6.40 660 700 303 135 117 127 573 364 234 285 867 650 451 812 985 916 774 100
B=0.83 143 710 680 750 310 146 118 131 580 376 239 308 876 66.1 461 880 989 926 79.2 100
B= 16.6 850 7.40 800 350 172 139 173 656 428 283 482 908 757 560 999 99.2 955 957 100

1S31 NV3IN F1dINVS-OML 3344-NOILV 134400 ANV NOIlLNgld1sid

GTET



TABLE 2

Rejection proportions (%) calculated for four testing methods at different signal strength levels of § and sparsity levels of B based on 1000 Monte Carlo runs, where B =0
corresponds to the null hypothesis B = 1 to the fully dense alternative, (n, m, p) = (100, 400, 1000) for Setting 1V, and (n, m, p) = (200, 300, 1000) for Settings V and VI

Setting IV: completely relaxed and highly unequal sample sizes

§=0.1 §=0.15 §=0.2 §=0.25 §=0.3
Test DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ
=0 470 0800 390 6.80 490 0900 380 630 520 0700 390 6.10 450 0.600 350 6.00 49 0500 340 6.10

p=002 520 110 290 470 590 100 360 560 6.70 1.40 460 580 890 240 5.00 580 13.2 4.20 6.20 5.90
p=004 540 120 3.00 480 630 130 450 570 7.80 1.90 500 6.00 11.2 3.30 560 6.10 17.6 5.70 7.10 6.20
p=0.2 660 130 330 540 920 220 510 5.80 149 3.90 570 6.20 253 8.70 700 750 428 165 11.8 8.80
p=04 780 200 430 550 124 340 520 6.10 223 6.60 710 860 38.2 130 9.70 10.7 61.3 2438 170 158
p=0.6 9.10 240 460 580 161 380 550 790 295 100 9.20 108 499 193 143 176 753 337 219 342
p=08 105 250 470 6.10 199 520 6.70 9.20 36.9 127 109 145 60.1 240 193 322 849 46.6 336 782
p=09 113 280 480 640 219 540 7.10 9.90 395 133 126 177 646 26.6 216 438 88.0 486 353 940

B= 121 290 530 730 234 590 7.30 11.0 42.0 146 128 217 686 29.6 245 59.0 909 531 419 994
Setting V: completely relaxed and heavy-tailed
§=0.1 §=0.15 §=0.2 §=0.25 §=0.3
Test DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ
B=0 420 220 380 620 520 250 390 610 470 190 29 6.00 430 200 170 390 450 230 2.00 3.70

p=0.02 550 210 3.70 540 640 250 390 550 950 440 460 6.10 153 740 630 6.10 255 150 103 6.20
p=004 620 230 380 550 720 3.60 420 6.00 12.6 6.60 580 6.20 18.9 980 7.00 650 333 207 13.0 7.10
=02 750 3.60 400 5.80 124 6.80 650 730 235 130 960 890 456 276 179 113 717 526 338 14.1
p=04 950 4.20 4.40 590 181 9.00 830 89 359 213 140 127 644 432 269 185 903 734 520 33.7
p=06 115 510 450 6.00 238 126 101 117 467 292 194 178 775 559 374 389 974 865 656 88.2
p=08 137 730 620 880 294 160 123 141 565 369 249 289 874 691 483 814 992 936 80.0 100
p=083 141 750 630 920 306 173 130 152 581 381 260 320 81 701 495 875 993 941 821 100
B= 16.1 890 7.40 940 349 189 150 172 645 446 305 522 916 751 566 99.8 99.7 965 96.0 100
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TABLE 2
(Continued)
Setting VI: completely relaxed and skewed
§=0.1 §=0.15 §=0.2 §=0.25 §=0.3
Test DCF CL XL C€CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ DCF CL XL CQ
=0 420 210 240 360 490 140 270 380 500 160 250 390 490 240 370 580 470 190 270 3.90
=002 480 130 270 440 620 170 310 470 750 270 380 490 129 580 5.00 500 243 118 8.30 5.00
p=004 530 140 300 460 700 230 330 490 113 520 450 510 17.1 870 7.00 510 322 173 120 5.30
B=0.2 7.40 3.00 330 4.80 128 580 5.00 580 23.0 129 9.20 6.40 424 256 17.7 840 713 486 325 12.4
=04 9.40 450 400 5.10 187 930 680 720 373 219 134 106 629 433 286 173 894 709 5138 30.7
=06 115 570 450 6.20 247 123 960 950 481 298 181 165 757 550 376 348 959 837 645 86.4
=08 142 630 580 660 305 149 105 125 580 376 234 271 867 654 449 802 987 920 775 100
p=083 143 750 6.
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TABLE 3
Shown are the results of four tests based the original dataset, the
bootstrapped samples and the random permutations

p-values of the four tests based on the

dataset
Test DCF CL XL CQ
p-value 0.006 0.1708 0.093 0.0955

Rejection proportions (%) of the four tests
over 500 bootstrapped datasets

Test DCF CcL XL cQ
Rejection proportion 82 65.8 65 58

Rejection proportions (%) of the four tests
over 500 random permutations

Test DCF CL XL cQ
Rejection proportion 4.6 1.8 34 7.4

500 bootstrapped datasets are given in Table 3, which shows that the highest rejection pro-
portion among the four tests is achieved by DCF at 82%. This is in line with the smallest
and significant p-value given by the DCF test based on the dataset itself. We also perform
500 random permutations of the whole dataset (i.e., mixing up two groups that eliminate the
group difference) and conduct four tests over each permuted dataset. From Table 3, we see
that the rejection proportion of the DCF test (0.046) is close to the nominal level « = 0.05,
while those of the other tests differ considerably.

APPENDIX

We first present some auxiliary lemmas that are key for deriving the main theorems. To
introduce Lemma 1, for any g > 0 and y € R”, we define a function Fg(w) as

p
Fg(w)=p"1 |09[Z exp{B(w; — yj)}:|, w e RP,

j=1
which satisfies the property
0< Fg(w) — max (wj—y;) < B tlogp,
<j=p

for every w € R? by (1) in [8]. In addition, we let o : R — [0, 1] be a real valued function
such that ¢g is thrice continuously differentiable and ¢g(z) =1 for z < 0 and ¢o(z) = 0 for
z > 1. For any ¢ > 1, define a function ¢(z) = ¢o(¢z), z € R. Then, for any ¢ > 1 and
y € R?, denote 8 = ¢ log p and define a function « : R? — [0, 1] as

©) K (w) =@o(PpFprogp(w)) = 0(Fp(w)), weR’.

Lemma 1 is devoted to characterize the properties of the function « defined in (9), which can
be also referred to Lemmas A.5 and A.6 in [7].

LEMMA Ll. Forany¢ > landy € R?, we denote B = ¢ l0g p, then the function k defined
in (9) has the following properties, where k ji; denotes 9;0;d;«. For any j, k,I1=1,..., p,
there exists a nonnegative function Q ji; such that.
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(1) |kjr(w)| < Qju(w) for all w e RP,

2 S Y Y Qju(w) S (93 + 2B + ¢p%) S ¢ for all w € R,

@) Qjuw) S Qjuw + w) S Qju(w) for all w € RP and w € {w* € R? :
maxi<j<p [w}|B <1}.

To state Lemma 2, a two-sample extension of Lemma 5.1 in [9], for any sequence of
constants 8, ,, that depends on both » and m, we denote the quantity p, , by

pum=sup sup |P{u2(S} —n 2 4 5,8y — Summ* Pt
vel0,1] yeRP

(10) +1- v)l/z(S,f — nl/ZMX + 5n,m53 - 5n,mml/2MY) = y}

— P(SnF — I”ll/z,bLX + 3n,mSn(1; - Sn,mml/zluy =< y)|

Lemma 2 provides a bound o1] p,_,, under some general conditions.

> 1 and any sequence of constants 8y, assume the following

) There exists a universql consiant b > 0 such that

min E{(

1/2 X Y 1/2 Y\2
\min E{(3) =02+ 8nn Sy = Snam211)°} = b.

nj J

Then we have

Pnm S 0292 (log p)
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Then we have
Prm < K*[n" 292 (log p)* (L3 o + Ly (l0g )2 + g1 M, (g1)
+m 295109 p)?18n,ml* (2L 05 i + Ly (109 p)V/2 + 2y (92))
+ (min{gs, g2}) " (log p)*/?],
up to a universal constant K* > 0 that depends only on b, where p,, ,, is defined in (11).

Before stating the next lemma, for any ¢ > 1, we denote M, (¢) = MX(¢) + M} (¢),
where MX(¢) and M} (¢) are given as follows, respectively,

n

-1 X3 X 1/2

n ElE[lrSnja;(p|X,'j — W ! 1{121,?sxp|xij — M | >n / /(4¢|09P)}],
iz

n

-1 F3 F 1/2

n X;E[lrfnjagpmj —uf 1[1rgjafxp|F,-_,- —uh|>n 12 [ (4¢ Iogp)}],
1=

similar to those adopted in [9]. Likewise, for any ¢ > 1 and any sequence of constants 8, ,,
that depends on both n and m, we denote M (¢) = MY (¢) + MY (¢) with MY (¢) and
MY (¢) as follows, respectively,

m
— 3
7t e P ¥ g o )] |

m
— 3
3 E|max Gy — kP max G = = m  Hdnmig g )|
2

Recalling the definition of o in (2), Lemma 4 gives an abstract upper bound on p;”, under
mild conditions as follows.

LEMMA 4. For any sequence of constants 8, ,, assume we have the following conditions
(@)-(b):

(@) There exists a universal constant b > 0 such that

min E{(Sji — I’ll/zﬂf + (Sn,mS - 8n,mml/2M§)2} =z b.

Y .
1<j<p "

_ (b) There exist two sequences of constants L} and L% such that we have L} > LX and
Ly > L,ﬁ, respectively. Moreover, we also have

¢r = Ki{(L¥)?(log p)*/n}H° > 2,
¢ = K1{(LE)2(log p)* (8, ml®/m) 8 > 2,

for a universal constant K1 € (0, (K* Vv 2)71], where the positive constant K* that depends
on n as defined in Lemma 3 in the Appendix.

Then we have the following property, where p;* is defined in (2),
Prn < K2[{(L3)*(l0g p)T /n}° + (M (97)/L3)

+{(L3)210g p)180,m1®/m} Y + (M (@37)/ L3},

for a universal constant K > 0 that depends only on b.
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To introduce Lemma 5, for any sequence of constants 4, ,, that depends on both » and m,
denote a useful quantity A, nm = =¥ —2X 452, (7 — 2V)||». Lemma 5 below gives an
abstract upper bound on ,0 'B defined in (4).

LEMMA 5. For any sequence of constants 8, n,, assume we have the following condition
(a):

(@) There exists a universal constant b > 0 such that

X 1/2 X 1/2, Y
anjlng{(S X+ 8umSy; — Snmm /,Lj) }>0.
Then for any sequence of constants An,m > 0, on the event {An,m < An,m}, we have the
following property, where ,0%5 is defined in (4),
ot B < (Anm)3(log p)?/3.

}’ZH’LN

Lastly, we present two-sample Borel-Cantelli lemma in Lemma 6.

LEMMA 6. Let{Apm:n=>1,m=>1 (n,m) e A} be a sequence of events in the sample
space 2, where A is the set of all possible combinations (n, m), which has the form A =
{(n,m):n>1,meon)} where o(n) is a set of positive integers determined by n, possibly
the empty set. Assume the following condition (a):

(a) Z?lo:l Zmea(n) P(An,m) < Q.

Then we have the following property:

o0 o0 o8}
ANAU U a0
k1=1ko=1n=k1 meo(ky)No (n)

where o(k2) ={k : k € Z,k > ko}.

Note that if m € o(n) = @, we just delete the roles of those A, ,, and Aj ,, during any
operations such as union and intersection, and the same applies to P (A, ) and P(Aj, )
during summation and deduction.

Before preceding, we mention that the derivations of Theorems 1-2 essentially follow
those of their counterparts in [9], but need more technicality to employ the aforesaid Lemmas
4-5 to address the challenge arising from unequal sample sizes. The derivation of Corollary 1
is based on Theorem 1 as well as a two-sample Borel-Cantelli lemma (Lemma 6) that first
appears in this work as far as we know.

Theorems 3-5 regarding the DCF test are newly developed, while no comparable results
are present in literature. Thus we present the proofs of Theorems 3-5 below, while the proofs
of Theorems 1-2, Corollary 1 and the auxiliary lemmas are delegated to an online Supple-
mentary Material for space economy.

PrRoOF oF THEOREM 3. First of all, we define a sequence of constants 8, ,, by
(12) Snm = —n?m=12,
Together with condition (a), it can deduced that

(13) ¥ < |8n,m| < 81,
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with 81 = {c2/(1 — c2)}¥/2 > 0and 82 = {1 /(L — c1)}/? >
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PROOF OF THEOREM 4. Given any (u*X — u¥), we have
Power* (u* — pu¥)
= P {8 = a2 V28T 4 20X Y| = cp(@)
=1-— Pe*{HS,‘i*X — nl/szl/zSﬁl*Y +n1/2(uX — ;LY)HOO <cp(@)}
— 1= P {=n2(uX — 1Y) = cpla) < SX — pl/2 1258
—nM? (X = u¥) + cp(@))
— 1= P {—n2(uX — 1Y) = cpla) < SCX — pl/2m 1258
—nt2(uX = u¥) + cp(@))
4 P{=nM2(uX — 1Y) = ep(a) < SX — nl2m 128"
S 20X YY) < 20K — )+ ep(a)
C P2 (X — 1Y) = epla) < SX — nM2mL28Y
C 200X 1Y) < 20K — )+ ep(a)

>1— sup |P(|SX —nl/2m=Y2sY
AeARe

=0 (X — )| € A) = Per (| 577% =0 Zm V2SI € A)|

(22)

— P — M 2L < ep@)
= Power(u* — u¥)

— sup [P(|Sy —n'2m= YRSy —nt P (uX — V)] € A)
AcARe

— P (|87 = n'Pm 28| € A)].
Likewise, given any (u* — 1Y), we have
Power(u* — 1u")
= P{|Sy —n'Pm 125, | = cp@)
=1-P{[sy —n"2m7 25| < cp(@)
=1—- P{—cp(a) < S,)f - nl/zm_l/zSnz <cp()}
— 1t P —n 2 (X — Y) = cpla) < SEX — 21280
—n (X — ") + ep(@)) — P{=nP(u* — u¥) — cpl@)
23) < SX =gV V28Y 12X Yy < 200X ) L ep (@)
P2 (X = 1) = epla) < SEX — M2 125EY
<—n?(uX — 1) + cp(@)}

=1 sup |P(ISK —n2m V2SE — (X — )]
AcARe

= Per(|877% = n2m =255 € A)|

€ A)

o0
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— PSS X =0t Pm2SEY 4ntP(uX — )| < (@)
= Power* (X — uY)

— sup |P(|S) —n'/2m Y28y —n P (uX — V)] € A)
AecARe

= Pec(| 85X —nt 28| € A)).
Putting (22) and (23) together indicates that
|Power* (uX — ) — Power(u* — ut)|

0 = sup |P(IS) ~ w28~ - )] € )
AcARe

— PSS = Mo HEST|e ))

1325

Moreover, by similar argument as in the proof of Theorem 3, one can show that with proba-

bility one,
sup [P([ Sy —n2m =28y —nt (X — u")| € A)
AcARe
(25) = P (|85 = ntPm TS| € A))

< (B2, log” (pn)/n}M®.

Finally, by combining (24) with (25), for any uX — u' € R”, we have that with probability

one,

|Power* (X — 1Y) — Power(u® — u¥)| < {B2,, log” (pn)/n}™®,

which completes the proof. O

PROOF OF THEOREM 5. First of all, on the basis of (8) and the triangle inequality, it is

clear that
Power*(uX — V) > P {|SE°X — n*2m =125 |

(26)
< |[n2 (X — ") — c@)}.

At this point, with some abuse of notation, we denote {e; : j < p} as the natural basis for R”.
Then it follows from union bound inequality and concentration inequality that for any ¢ > 0,

Por{[[ S5 —nPm =285 7 | = 1)
<3 Pe{|Se X — ntPm 25 Y | > 1)

(27) »
< Z 2 exp[—tz/{Ze’j (=X + nm_lﬁy)ej H

<2pexp(—1/|2 Tg}))({e}(f?x +nm 1Y )ej ).

By plugging t = cp (@) into (27), it follows from the definition of cp(«) that

cp@) < [2 log(2p/e) rpj;{e}(ix + nm—liy)ej}]l/2

(28)

k)

. A 172
< [4|0g(pn) Tﬁﬁ{e/f‘(zx +nm 1Zy)ej}]
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for sufficiently large n. To bound the quantity max;<,{e’;(S* 4+ nm~15¥)e;}, first notice
that

/-(f]X +nm_1fly)ej}

max{e’;

J<p
@ g,
<[|EX -2 +um Y EY -2V + =X +amTIDY|
For the term | X — X + nm~1(EY — 7)), inequalities (53) and (54) from the Supple-

mentary Material together with (12), (17) and condition (a) entails that there exists a universal
constant ¢; > 0 such that

(30) ||ZA]X —nX —I—nm_l(fly — ZY)HOO < cl{Bim |0g3(pn)/n}1/2,
with probability tending to one. Regarding the term || =¥ + nm 1Y | o, one has
[=* +nm 2T

< [2¥ ] +nmTHEY [ < [2¥] o + 2 27

m

— 12
—Jg]angE }/n+cz1@]a<poE Yij— i) }/m
n
X\ 12
(31) slrgjagp;[E{(Xu Wi )
m 4411/2
Y
ez max SO[E((V - )] m

for some universal constants c2, c3 > 0, where the second inequality is by condition (a), the
third inequality is based on Jensen’s inequality, the fourth inequality holds from the Cauchy-
Schwarz inequality and the last inequality follows from condition (c). To this end, by com-
bining (30), (31), (e) with (29), it can be deduced that there exists a universal constant ¢4 > 0
such that

(32) max{e’j(ﬁx + nm_lfly)ej} <c4By.m,

J=p
with probability tending to one. Together with (28), it can be verified that
(33) cp(e) < {4ca By m log(pm)}/2,

with probability tending to one. Now, we set the constant K in (f) as K = 4c1/2 and it then
follows from (f) and (33) that

(34) |22 (X — 1Y) o, — cB(@) > {4caBnmlog(pn)} /2,
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with probability tending to one. Hence, it can be deduced that with probability tending to
one,

Power* (X — uu¥)
> Pe[||SSX = n2m=Y288Y || < {4caBym log(pn)}?]
=1— P[] Sﬁ*x — nl/zm_l/zS,ijHoo > {4caBn.m |Og(pn)}l/2]

> 1 2pexp(—4caBy m log(pn) /|2 Tg{e;@x +am L5 e Sy
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