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1. An Alternative Nonparametric Regression Estimate

An alternative approach for estimating the density ratios is via nonparametric regres-
sion. This is motivated by Bayes’ theorem, as follows,

fin(w) _ pr(Y =11 = up;(af pr(¥ = 1)
fiow) — pr(Y =0 = uw)pj(u] pr(Y =0)
_ pr(Y =1[¢=u ™ _ Topr(Y =11 =u) (1)
prY =0|G=ul 10 Ti(l-pr(Y =1]=u))

where pj(-) is the marginal density of theyth projection. This reduces the construction
of nonparametric Bayes classifiers to a sequence of nonparametric regressions E(Y | § =
u) = pr(Y =11 = u). These again can be implemented by a kernel method (Nadaraya,

1964; Watson, 1964), smoothing the scatter plots of the pooled estimated scores (jjx of
group ,'which leads to the nonparametric estimators

1 n k(U—éka)
~ a fo— i— 5.
B(Y [§=u)=———?

1 ~Eijey
Lo o K ()

where [= ( A\;o + A\g;ff 2}1/2 is the bandwidth. This results in estimates E(Y | Sj =
u) = pr(Y = 1| = u) that we plug-in at the right hand side of (1), which then yields
an alternative estimate of the density ratio, replacing the two kernel density estimates
fi1(u). fjo(u) by just one nonparametric regression estimate E(Y | & = u).

The estimated criterion function based on kernel regression is

2 B(Y | & —
47 (2) =log 2 +  log - 10 (A N - w)
To i<r T{1-EY | =u)}
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2. Perfect Classification when the Mean and the Covariance Functions
are the Same

Let the projection scores (j be independent random variables with mean 0 and variance
;j that follow normal distributions under II; and Laplace distributions under IIy. Then

2

1
4;X)= ' log Wexp(_jj)
/ 1 5]2- — 1/2
= —SlogT— ol 42T @
j=1 J

. e . e S 1/2
Since centred normal and Laplace distributions are in scale families, {; = 7 j/ have a

common standard distribution (g under I, irrespective of }. Denoting the summand
of (2) bw j, this implie¢’ ; = —(log™1 + (JZT 2+ /2|(;| are independent and identically
distributed. Note that Engf 1) = (—logT+ 1) 2+ 1 €0, Enpef 1) =—(logT7+ 1) 2+
T 2)_1/ 2 0, an& 1 has finite variance under either population. So the misclassification
error under Il is

J J J
pry, (@ ;(X)P> 0)=pry, & j—En( & ;7 —En( & )
j=1 j=1 j=1
J o5
varrg ( = i)
— J
En, (5 )
J
_ Jvamf 0
J2EH@’€ 1)2

as J — 0o, where the inequality is due to Chebyshev’s inequality and the last equality is
due t@’ ; are independently and identically distributed. Similarly, the misclassification
error under II; also goes to zero as J — o0o. Therefore perfect classification occurs under
this non-Gaussian case where both the mean and the covariance functions are the same.

3. Simulation Results without Pre-smoothing

The misclassification results when using predictor functions sampled with noise that
are not presmoothed are reported in Table 1. When the covariances are the same but
the means differ, the centroid method is the overall best if we use the noisy predictors
while the Gaussian implementation of the proposed Bayes classifiers has comparable
performance. This is expected because our method estimates more parameters than the
centroid method while both assume the correct model for the simulated data. All meth-
ods gain performance from pre-smoothing due to the presence of noise in the predictor
functions. The logistic method benefits the most from pre-smoothing and becomes the
winner when only a mean difference is present.
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Table 1. Misclassification rates (%), with standard errors in brackets for raw predictors

n o b i Centroid Gaussian NPD NPR Logistic
Scenario A (Gaussian case)

50 same diff  49.3 (0.12) 23.8 (0.18) 24.5 (0.21) 26.7 (0.22) 49.4 (0.12)
diff  same 40.2 (0.16) 41.5 (0.16) 43.4 (0.17) 42.4 (0.18) 40.7 (0.16)
diff  diff  37.9 (0.17) 20.8 (0.18) 21.2 (0.20) 23.3 (0.22) 38.8 (0.17)
100 same diff  49.1 (0.13) 17.2 (0.11) 18.6 (0.12) 20.0 (0.13) 49.3 (0.13)
diff  same 37.8 (0.13) 39.2 (0.13) 41.4 (0.15) 40.2 (0.16) 38.3 (0.13)
diff  diff  35.3 (0.14) 14.6 (0.1) 15.8 (0.10) 17.1 (0.12) 35.8 (0.15)
Scenario B (exponential case)
50 same diff  49.0 (0.13) 30.2 (0.19) 31.2 (0.22) 33.5 (0.23) 49.2 (0.13)
diff  same 38.3 (0.21) 40.6 (0.21) 39.5 (0.22) 38.6 (0.21) 38.7 (0.23)
diff  diff  35.0 (0.20) 23.3 (0.18) 23.5 (0.21) 24.3 (0.22) 35.7 (0.22)
100 same diff  48.8 (0.14) 26.0 (0.13) 25.4 (0.14) 26.7 (0.16) 48.9 (0.13)
diff  same 35.8 (0.16) 38.6 (0.19) 36.3 (0.18) 35.7 (0.16) 35.9 (0.16)
diff  diff  32.4 (0.14) 18.7 (0.13) 16.7 (0.13) 17.0 (0.14) 32.7 (0.15)
Scenario C (dependent case)
50 same diff 48.9 (0.14) 33.3 (0.19) 35.3 (0.22) 37.3 (0.22) 49.1 (0.14)
diff  same 39.3 (0.22) 42.1 (0.21) 41.0 (0.22) 40.1 (0.22) 39.2 (0.23)
diff  diff  36.0 (0.21) 27.3 (0.20) 28.6 (0.21) 29.3 (0.23) 36.7 (0.23)
100 same diff  49.1 (0.13) 29.8 (0.14) 30.6 (0.14) 31.8 (0.15) 49.0 (0.13)
diff  same 36.4 (0.17) 39.8 (0.20) 37.9 (0.18) 37.1 (0.17) 36.3 (0.16)
diff  diff  33.3 (0.16) 24.1 (0.15) 22.6 (0.15) 22.9 (0.16) 33.5 (0.16)

Centroid method; Gaussian, NPD, and NPR correspond to the Gaussian, nonpara-
metric density, and nonparametric regression implementations of the proposed Bayes
classifiers, respectively; Logistic, functional logistic regression.

4. Proofs
4.1.  Theorem A1 and Theorem A2

Let S(c) = {z : ||z|| < ¢} be a bounded set of all square integrable functions for ¢> 0,
where || - || is the L? norm. We will use the following lemma:

Lemma 1. Under Conditions A1-A4, for anyy =>1, L 1,

wzté%)c) |fik(25) — fin(x)] = Op g7
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60 Proof. We prove the statement for 3 0; the proof for s analogous. Let the
sample mean of theyth estimated projection j be (. Observe

T z;
sup gjo ~ 1/2 - 9)0 1/2
(EGS(C) 0 0
A Bi— L ~ T ~ T T
< sup gjo Lgpt —G0 15t SUP G 15 — 90 7
/ / / /
z€S(c) 0 0 zeS(c) 0 )
1 . n T2 , n " T1/2
= op{(n )ﬂ 4 0p + =0y (3)

logn

& where the first rate is due to Theorem 3.1 in Delaigle & Hall (2010), and the second to,
for example, Theorem 2 in Stone (1983). Then

- R 1 R :ﬁj — :"J 1 l’j
sup |fjo(25) = fio(zj)l = sup  F750j0 —G7~ —Tm%90 i/
z€S(c) z€S(c) S0 S0 0 0
< 1 “ :ﬁj — E’ € T 1 1
S SUp - m 950 T T 90 im0 90 SR T T i
Z‘ES(C) ‘j‘() \j‘O ‘j‘() \j‘O \j‘o \j‘o
“ :ﬁj — 3 € 1 1
=0p  sup gjo 12 90 T + 0y 12~ 12
CCES(C) ‘j‘O \j,o \j‘O \jao
n —1/2
70 - O ” n
P logn

where the second equality follows from the consistency of A\;O and Condition A4, and the
third equality follows from (3) and the fact that 4o converges at a root-n rate. O

Proof of Theorem Al. For simplicity we consider the case where the supports of g;o
and gj1 are in common. The case where the supports differ can be proven in two step:
s First consider classifying elements x whose projections x; are in the intersection of the
supports of gjo and g;1; next consider classifying an element = for which a projection
score x; is not contained in the intersection of the supports, in which case 4 J(x) will
be +o00, whence 4 J(x) will also diverge to oo, respectively, and thus consistency is
obtained.
»  Now fix & 0. Set ¢ be such that pr(|| X[ ¢) = pr{X € S(c)} <7< 2. First we prove
there exists an evenw’ such that 4 ;(X) —4#;(X) — 0 ow’ with pef > 1— ¢ By
Lemma 1 there exists M jk> 0 such that the event

n —1/2
5 o ~ n p)
¢ oe= s (fula) — Lee) < M % y-12 5 Boy
ze€S(c) logn
has probability pl i) >1-— 9~ (+2) ¢ Letting & = ;5o j& N

jzl,k:O,l{‘fj e supp(fjr)} N{||X][| < ¢}, we have pef ) >1— ¢ where supp means
e the support of a density. Let a, be some increasing sequence such that a,, — oo and
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an{ KB (n’"log n)~/2} = o(1). Define Uj, = {x : xj e supp(fjr)}, U = i1 k=01 Uik
My,

d;;; = min{1. inf w(z)}, J= J'>1: I <
ik = min{ xeél?c)muf]k(x])} sup > | a < a,
J<J' k=0,1

The djj, are bounded away from 0 by Condition A5, and J is nondecreasing and tends
to infinity as n — oo. Ow’ we have

J J n —1/2
1 P My, n
—— swp |fr(d;) — )l < —= ~- 1
j=1 jk z€8(c) j=1 ik ogn
n n —1/2
< ap logn = 0(1) (4) %

where the first and second inequalities are due to the property of’ and J, respectively,
and the last equality is by the definition of a,,.
From (4) we infer that ow’

sup | fin(@;) — fi(zy)] < dji 2 (5)
z€S(c)

eventually and uniformly for ally” < J. Then ow’ it holds that

4,(X)-8;X) < sup [B(x)—B,) o5
zeS(c)nd
< sup | log fix(2;) — log fik(z;)]
J<J k=0,1 zeS(c)nU
A 1
< sup |fixe(%5) — fir(z))l:
i< k0,1 7ES(0) T P Nint e s(onu =Sk
. 2
< sup | fk(25) = fin(wj)l 7
§<J,k=0,1 z€S8(c) Jk
= o(1).

where the third inequality is by Taylor’s theorem, ={;;, is between f;.(x;) and fjk(@-), 100
the last inequality is due to (5) which holds for large enough n, and the equality is
due to (4). We conclude that pef N [I{#;(X) >0} # I{#;(X)>0}]) = 0as n — oo
by noting that 4 ;(X) converges to 4 ;(X) and thus has the same sign as 4 ;(X) as
n — oo. Notice that 4 ;(X) has a continuous density and thus pr{d ;(X) =0} = 0 by
Condition A4. O s
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Proof of Theorem A2. Recall we assume 71 =-73. Then

1 < _é
o it K7

E(Y ’ “}j =u) = 1_ éy
ng u—&;ik
k=0 i:kl K( thk)

MK (S

K k()
fi(u) + fio(u)

1o where fjk are the kernel density estimators with bandwidth ;, implying

J ~ A .
4}}(95) = log E(}/ [ — %)
j=1 {1_E(Y| &j :‘%J)}
J A N
A /116
7j=1 JO(‘%J)

Observe that 4? has the same form as 4, so this result follows from Theorem Al. [

4.2.  Theorem 1

1s The proof of Theorem 1 requires the following key lemma, which is an extension of
Lemma 1, changing the rate from 7 (n" "logn)~"?to % (n” "logn)~1/2 4 (g 2/5 7)~1.
The remainder of the proof is omitted, since it is analogous to that of Theorem Al.

Lemma 2. Under Conditions A1-A4 and A6-A9, for anyy > 1, £, 1,

n —1/2

~. P N . . = 7 " 2/5 -
xig?cﬂfak(%) Fie(z)l = 0p % logn s )

Proof. Given x € S§(¢), by triangle inequality

\Fin(@5) — Fir(@)| < |Fi(@5) — Fiu(@)| + | Fin(@5) — Fin(zy)]

120 The rate for the second term can be derived from Lemma 1, so we focus only on the
first term. For fixed}. &nd fk = ”\71,]/627
oy o (X (1) — 2())® () at (X7 (1) — 2} (1) at
\fin(@;) — fin(@) = — K L ’." . -K L 7 -
Nk jk i=1 ik Ik
I > (k o k )
< (X0 = 20750 - (X7 1) - 2050 dt - [K ()|
"k ko T
ng
€3 k e k 2]
<ot X050 - (300 - 20} 0 d
=1
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for a constant ¢3> 0, where the first inequality is by Taylor’s theorem, =f;;, is a mean s
value, and the last inequality is by Condition A4. The summand in (6) is

54 Qo

T{Xf’f’ (1) — 2} ;) — (X () — 2(1)}? () dt
= &0 - XDy + (300 - 2040 - i) a
< | ) - xP )y de + T{Xﬁ) (1) — a(®) () = % ()} dt
< N1XE — PN+ 11X — 215 - %)
<IX® = xPU+ 0xPH+ ol =251,

where the second and third inequalities follow from Cauchy—Schwarz inequality and from
||z|] < e, respectively. Plugging the previous result into (6),

~ B R . c3 1 Nk - (K & o 0 1 Nk K
@) = Fr@)l < =5 —  IXE = xPU 1P =50 11X+
"k oy Mk i
) ™)
Since (Xi(k). Xi(k)) are identically distributed ( = 1.  .ng), and by Condition A6 the
first term in the brackets has expected value equal to 135

E(IXY = XN = By {B= (1% = X1 X)) = Ol w)™” +u?} = 0L, =),

where more details about the second equality can be found in the Supplementary Material
of Kong et al. (2016). Also E(n; ! 7%, HXZ(k)H +¢) = O(1) by Condition Al. So

nk n

1 1

k
S(k k _ k
o 1XH — xB)| = 0,88 /). - 1XP|| 4 ¢ = 0,(1) (8)
i=1 =1

It remains to be shown Hl)j - Qj]\ = Opls ~2/%). Let Ay = Gy — Gy and for a square-
integrable function A(s.t) denote |[Allr ={ , -A(s.t)*ds dt}'/? be the Frobenius
norm. In their Supplementary Material, Kong et al. (2016) show that ||[Agl|lr = o

Opls ~2/%), s0 ||A||F = ||Ao + Ay||F 2 = Opls ~2/%). By standard perturbation theory
for operators (Bosq, 2000), for a fixed y’
¢ All— A _
175 =75l = O(lAllF iip!\gh— wl) = Opls 72%) 9)
j

Ud

Inserting (8) and (9) into (7) we arrive at the conclusion. O

4-3.  Theorem 2

Assuming X is Gaussian under £o. 1, whence the criterion function & ;(x) defined s
in (3) in the main text becomes

J

1 1 1
4?(3}) = B (log o — log \3.1) - - (l‘j —as j)2 —— 2 >0 (10)

i 4l o 7
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Letting ¢ = 5 \%2, then

¢~ N(0.1) under IIy.  { ~ Nig j.rj_l) under IT;.
J

1
25(X) = 5 ogry—1(§ s NEERS:
j=1

Under Gaussian assumptions, our Bayes classifier is a special case of the quadratic dis-
criminant, a non-Bayes classifier because it uses two different sets of projections. The
perfect classification properties for the functional quadratic discriminant were discussed
in Delaigle & Hall (2013) in the context of truncated functional observations or fragments.
We use the following auxiliary result.

Lemma 3. Assume the predictors come from Gaussian processes. If ;‘;1.4, ? <« 0 and

‘;‘;1(7"]- —1)? € 00, then 4§(X) converges almost surely to a random variable as J —
oo, in which case perfect classification does not occur. Otherwise perfect classification
0CCUTS.

This lemma is similar to Theorem 1 of Delaigle & Hall (2013), but uses more transpar-

ent conditions and a proof technique based on the optimality property of Bayes classifiers
which will be reused in the proof of Theorem 2. Lemma 3 states perfect classification oc-
curs for Gaussian processes if and only if there are sufficient differences between the two
groups in the mean or the covariance functions. This perfect classification phenomenon
arises for the non-degenerate infinite dimensional case because we have infinitely many
independent projection scores ( for classification.
Proof of Lemma 3. Case 1: Assume ;’;1(7‘]- —1)2 = 0o and that there exists a sub-
sequence rj; of r; that goes to oo or 0 as , — oco. Correspondingly take a subse-
quence rj, — 00.7j” 1 or rj — 0.r; <1 for all , =1.2. . Denoting the summand
(log o —log ) — {(& =+ j1)% ju — {]% o} of (10) a#’ JG, for anyy” < J the misclassi-
fication rate pr[/{#F(X) > 0} # Y] is smaller than or equal to pr{&f ]G > 0) # Y}, since
the former is the Bayes classifier using the first J projections, which minimizes the mis-
classification error among the class. Thus the misclassification rate of 4§(X ) is bounded
above by that of the classifier I{logr; —7;({ —4 j)* + (]2 2> 0} for anyy” < J. Let pryy,
denote the conditional probability measure under group ."If there exists rj, — 0,

pry, {logrj, — 15, (G, =4 j,)* + ¢ > 0} < pryg, (logrj, + ¢ > 0) — 0.

observing (le ~ x% under 1lp and log r;, — —oo.
If there exist rj — oo, then there exists a sequence M — oo such that (logr; +
MY rj, — 0. For any} =1.2.

pri,{logrj —15(¢G =4 j)* + G = 0} < pryg,{logry —15(¢G 4 j)* + M > 0} + pry, (¢

logr; + M
= b, {(G = )% < 2L o)

J
logrj—l—M 1/2

Ty
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Plugging the sequence r;, for r; into (11) we have {(logr; + M} 7}/ = 0 as, — oo
and M — oco. Since (; are standard normal and thus have uniformly bounded densities,
(11) goes to zero and we have pryy, {logrj, — 75, (§, =4 j,)* + (le >0} — 0as, — oo and
M — co. Using similar arguments we can also prove pr, {log rj, — r;,(§, =4 j,)* + (f-l <«
0} — 0 as, — co. By Bayes’ theorem pr{f f >0)#Y} =pr(Y =0)pwf JC; >0]Y =
0) + pr(Y = 1)pwf JGL <0|Y =1) — 0as, — oo. Therefore

pr[{85(X) >0} £Y]<pr{¥f §>0)#£Y}—=0. J— oo,

which means perfect classification occurs.

Case 2: Assume ;-’il(rj —1)? = oo, and there exists M; and My such that 0 €« M; < o
r; < My < oo for ally > 1. Letting Ep, and varp, be the conditional expectation and
variance under group ,Tespectively, we have

Eny{logrj — (G =4 j)* + G} =logrj — (rj — 1) =g 7rj.

Er{logrj —rj(G =g j)° + ¢} = —logry "+ (rj" = 1) 4 5.
varm, {logrj = (G =4 j)° + G} =2(1 = r))* +da 317, 195
Val“l'[1 {log T‘j — T’j((j ) j)2 + (;} = 2(7‘;1 — 1)2 + 441 ?rj_l
Then
J J 2 2,92
':1{2(1 —1j)° +4g i
pIyp {logrj —1;({ = j)2 + (2} >0 < Jj
R ’ {— joi(rj =1 —logr; +mg 575)}
{201 = rj)? + 4M3s 2
— J
|y — 12 + Mg 2}
J
_ 4MZ M,y y j—1{2(1 - rj)? +4MZs 3} .
J J
jzl{Mi2(7‘j —1)2 + My, ?} j:1{4%(7‘j — 1) + 4Mzs, ?}

4MZ M,y
J
jeitan (= 1% + Mag 3}

where Chebyshev’s inequality is used for the first inequality, and Taylor expansion in the
second inequality. Analogously the misclassification rate under II; also can be proven to
go to zero.

Case 3: Assume 2, (rj — 1)?2 € 00 and
same as in Case 2.

Case 4: Assume ;‘;1(7‘)' —1)? €.o0 and ]Oil,,g, 3 < 00. Then the mean and variance

—0. J—=0.

faiw) ? = 00. The proof is essentially the s

of 4§(X ) converges, SO 4§(X ) converges to a random variable under either population
by Billingsley (1995). Therefore misclassification does not occur. O

We can then proceed to prove Theorem 2, which does not assume Gaussianity. 210

Proof of Theorem 2. Case 1: Assume ;‘;1(7‘)' —1)2 = 0o and there exists a subse-
quence rj, of r; that goes to 0 or oo as, — oo. By the optimality of Bayes classifiers,
the Bayes classifier I{& ;(X) > 0} using the first J components has smaller misclassi-
fication error than that of & ; > 0), where’ ; is the}th component in the summand
of (3) in the main text, for all} < .J. Since i ; > 0) is the Bayes classifier using only s
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they'th projection, it has a smaller misclassification error than the non-Bayes classifier

M ¢ >0), whera’ & =logrj —rj({ =4 j)* + ¢ is the yth summand in (10). Under

Conditions A10-A11, we prove that the misclassification error converges to zeros by
adopting the same argument as in Lemma 3 Case 1.

Case 2: Assume ]O-il(rj —1)? = 0o, and there exists M; and My such that 0 <€ M; <
rj < My < oo for all}” > 1. By some algebra,

J

(G = )2+Cjz}zlogrj—(rj—l) — ?Tj.
Emy{logr — (G 4 j)° + G = —logr; "+ (rj" —1) +ug 5.
(CJ ) )2

Eny{logr; —r;

j
varp, {logr; —r; 57+ (jz} < (2Cy —1)(1 — rj)2 +4(Chr + L)g j2r]2

varp, {log 7y — (G =4 ;)7 + ¢} < (200 —1)(r; ' = 1) + 4(Car + 1)g Fri '

The expectations are the same as in the Gaussian case because the first two moments of
¢; do not depend on distributional assumptions. The inequalities in the variance calcula-
tion are due to 2ab < a® + b? for all a.b € R. The same Chebyshev’s inequality argument
can be applied as for Theorem Al.

Case 3: Assume ;';l(rj —1)? €0 and ]O';I,,g, ? = 00. The proof is essentially the
same as that for Case 2. O
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