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Partially functional linear regression in high dimensions
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SUMMARY

In modern experiments, functional and nonfunctional data are often encountered
simultaneously when observations are sampled from random processes and high-dimensional
scalar covariates. It is difficult to apply existing methods for model selection and estimation.
We propose a new class of partially functional linear models to characterize the regression
between a scalar response and covariates of both functional and scalar types. The new approach
provides a unified and flexible framework that simultaneously takes into account multiple
functional and ultrahigh-dimensional scalar predictors, enables us to identify important features,
and offers improved interpretability of the estimators. The underlying processes of the functional
predictors are considered to be infinite-dimensional, and one of our contributions is to charac-
terize the effects of regularization on the resulting estimators. We establish the consistency and
oracle properties of the proposed method under mild conditions, demonstrate its performance
with simulation studies, and illustrate its application using air pollution data.

Some key words: Functional data; Functional linear regression; Model selection; Principal components; Regularization;
Smoothly clipped absolute deviation.

1. INTRODUCTION

Functional linear regression is widely used to model the prediction of a functional predictor
through a linear operator, often realized via an integral form of a regression parameter function;
see Ramsay & Dalzell (1991), Cuevas et al. (2002), Cardot et al. (2003), Ramsay & Silverman
(2005) and Yao et al. (2005a). To capture the regression relation between the response and a
functional predictor, regularization is necessary. One common approach is functional principal
component analysis, which has been studied by Rice & Silverman (1991), Yao et al. (2005b),
Cai & Hall (2006), Hall et al. (2006), Hall & Horowitz (2007) and Zhang & Chen (2007), among
others. Functional linear models have been extended to generalized functional linear models
(Escabias et al., 2004; Cardot & Sarda, 2005; Müller & Stadtmüller, 2005), varying-coefficient
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models (Fan & Zhang, 2000; Fan et al., 2003), wavelet-based functional models (Morris et al.,
2003), functional additive models (Müller & Yao, 2008) and quadratic models (Yao & Müller,
2010).

Classical functional linear regression is designed to describe the relation between a real-valued
response and one functional explanatory variable. However, in many real-world problems, it is
common to also collect information on a large number of nonfunctional predictors. How to incor-
porate scalar predictors into functional linear regression and perform model selection or regular-
ization is an important issue. For a standard linear regression with scalar covariates only, various
penalization procedures have been proposed and studied, including the lasso (Tibshirani, 1996),
the smoothly clipped absolute deviation (Fan & Li, 2001) and the adaptive lasso (Zou, 2006).

In this work, we develop a class of partially functional linear regression models to handle
multiple functional and nonfunctional predictors and automatically identify important risk fac-
tors by suitable regularization. Shin (2009) and Lu et al. (2014) considered similar partially
functional linear and quantile models, respectively, but did not deal with variable selection or
with multiple functional predictors and high-dimensional scalar covariates. We propose a uni-
fied framework that combines the regularization of each functional predictor as a whole with
a penalty on high-dimensional scalar covariates. Due to the differences between the functional
and scalar predictors, we use two regularizing operations. Shrinkage penalties are imposed on
the effects of both functional predictors and scalar covariates to achieve model selection and
enhance interpretability, while a data-adaptive truncation that plays the role of a tuning parameter
is applied to the functional predictors. We treat the functional predictors as infinite-dimensional
processes; this distinguishes our approach from methods that fix the number of principal com-
ponents (e.g., Li et al., 2010). A main contribution of our work is to quantify the theoretical
impact of functional principal component estimation with diverging truncation, especially when
the number of scalar covariates is permitted to diverge at an exponential order of the sample size.

2. REGULARIZED PARTIALLY FUNCTIONAL LINEAR REGRESSION

2·1. Classical functional linear model via principal components

Let X (·) be a square-integrable random function defined on a closed interval T of the
real line with continuous mean and covariance functions, denoted by E{X (t)} = μ(t) and
cov{X (s), X (t)} = K (s, t), respectively. The classical functional linear model is

Y = μY +
∫

T
{X (t) − μ(t)}β(t) dt + ε, (1)

where the regression parameter function β(·) is assumed to be square-integrable and ε is a random
error independent of X (t). Mercer’s theorem implies that there exists a complete orthonormal
basis {φk} in L2(T ) and a nonincreasing sequence of nonnegative eigenvalues {wk} such that
K (s, t) = ∑∞

k=1 wkφk(s)φk(t) with
∑∞

k=1 wk < ∞. We further assume that w1 > w2 > · · · � 0.
Let {(yi , xi ) : i = 1, . . . , n} be independent and identically distributed observations from (Y, X).
The Karhunen–Loève expansion xi (t) = μ(t) + ∑∞

k=1 ξikφk(t) forms the foundation of func-
tional principal component analysis, where the coefficients ξik = ∫

T {xi (t) − μ(t)}φk(t) dt are
uncorrelated random variables with mean zero and variances E(ξ2

ik) = wk , also called the
functional principal component scores. Expanded on the orthonormal eigenbasis {φk}, the
regression function becomes β(t) = ∑∞

k=1 bkφk(t), and the functional linear model (1) can be
written as yi = μY + ∑∞

k=1 bkξik + εi . The basis with respect to which the regression parameter
b is expanded is determined by the covariance function K . This is not unnatural since {φk} is
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the unique canonical basis leading to a generalized Fourier series which gives the most rapidly
convergent representation of X in the L2 sense.

2·2. Partially functional linear regression with regularization

We now consider functional linear regression with multiple functional and scalar predictors.
Suppose that the data are {Y, X (·), Z}, where Y is a scalar continuous response, X (·) = {X j (·) :
j = 1, . . . , d} are d functional predictors, and Z = (Z1, . . . , Z pn )

T is a pn-dimensional vector of
scalar covariates. This is motivated by commonly encountered situations where both functional
and nonfunctional predictors may affect the response. We assume that the number of functional
predictors d is fixed, while the number of scalar covariates pn may grow with the sample size.
Specifically, we allow pn to be ultrahigh-dimensional, such that log pn = O(nα) for some α >

0. Without loss of generality, we assume that the response Y , the functional predictors {X j :
j = 1, . . . , d} and the scalar covariates {Zl : l = 1, . . . , pn} have been centred to have mean zero.
We then model the linear relationship between Y and (X, Z) by

Y =
d∑

j=1

∫
T

X j (t)β j (t) dt + Z Tγ + ε, (2)

where {β j (·) : j = 1, . . . , d} are square-integrable regression parameter functions,
γ = (γ1, . . . , γpn )

T contains the regression coefficients of nonfunctional covariates, and ε

is the random error, which is independent of {X j (·) : j = 1, . . . , d} and Z with E(ε) = 0 and
var(ε) = σ 2. For convenience, assume that the first qn scalar covariates are significant while
the rest are not. In other words, the true values of the regression coefficients, γ T

0 , are equal to

(γ
(1)T
0 , γ

(2)T
0 ), where γ

(1)
0 is a qn × 1 vector corresponding to significant effects and γ

(2)
0 is a

(pn − qn) × 1 vector of zeros. We also assume that only the first g functional predictors are
significant or, equivalently, that the true values of the regression functions, β j0, are such that
β j0(t) ≡ 0 for j = g + 1, . . . , d. Each functional predictor X j (·) is an infinite-dimensional
process and requires regularization. Therefore the proposed model has a partially functional
structure that combines the multiple functional and high-dimensional scalar components into a
single linear framework.

Let {(yi , xi , zi ) : i = 1, . . . , n} denote independent and identically distributed realizations
from the population (Y, X, Z). Let xi j denote the j th component of xi for j = 1, . . . , d, and let
zil be the lth component of zi for l = 1, . . . , pn . We further write YM = (y1, . . . , yn)

T and Z M =
(z1, . . . , zn)

T. To estimate the functions {β j (·) : j = 1, . . . , d} and the regression coefficients
{γl : l = 1, . . . , pn}, we consider the least-squares loss, which couples β j (t) = ∑

k b jkφ jk(t)
with xi j (t) = ∑

k ξi jkφ jk(t) for each j = 1, . . . , d given the complete orthonormal basis series
{φ jk}k=1,2,...,

L(b, γ |Dn) =
n∑

i=1

⎧⎨
⎩yi −

d∑
j=1

∫
T

xi j (t)β j (t) dt − zT
i γ

⎫⎬
⎭

2

=
n∑

i=1

⎛
⎝yi −

d∑
j=1

∞∑
k=1

b jkξi jk − zT
i γ

⎞
⎠

2

, (3)

where Dn = {(yi , xi , zi ) : i = 1, . . . , n} and b = (bT
1, . . . , bT

d)T with b j = (b j1, b j2, . . .)
T for

each j . It is evident that the loss function (3) should not be directly minimized due to the infinite
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expansions of the functional predictors and high-dimensional scalar covariates, requiring suitable
regularization for both X and Z .

A primary goal for (2) is to extract useful information from Z and X , whereas the classi-
cal functional linear model focuses only on a single functional predictor. It is therefore essen-
tial to select and estimate the nonzero coefficients in γ and nonzero functions in b1, . . . , bd to
enhance model prediction and interpretability. To achieve simultaneous variable selection and
estimation, we introduce a shrinkage penalty function Jλ(·) associated with a tuning parameter
λ. Many penalty choices are available for variable selection. We use the smoothly clipped abso-
lute deviation penalty of Fan & Li (2001), whose derivative is J ′

λ(|γ |) = λ[I (|γ | � λ) + I (|γ | >
λ)(aλ − |γ |)+/{(

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/103/1/147/2389939 by Peking U
niversity user on 01 Septem

ber 2020



Partially functional linear regression 151

using λ jn = λn
( ∑snj

k=1 ŵ jk
)1/2

, which simplifies both the computation and the theoretical anal-

ysis. The estimated regression parameter functions are β̂ j (t) = ∑snj
k=1 b̂ jk φ̂ jk(t).

2·3. Algorithms and parameter tuning

The optimization of (4) can be seen as a group smoothly clipped absolute deviation problem
with different weights on the penalties, and the individual γl can be treated as a group of size 1.
We propose two algorithms to solve the minimization problem (4), depending on the dimension
pn . Generally, when pn is moderately large, say pn < n, we modify the local linear approximation
algorithm (Zou & Li, 2008), which inherits the computational efficiency and sparsity of lasso-
type solutions. For ultrahigh pn , especially pn � n, the local linear approximation algorithm may
not be applicable, and in that case we modify the concave-convex procedure used in Kim et al.
(2008). The Appendix gives the details.

Two sets of tuning parameters play crucial roles in the penalized procedure (4). The parameter
λn in the smoothly clipped absolute deviation directly controls the sparsity of both the functional
and the nonfunctional predictors. Wang et al. (2007) showed that minimizing the BIC can iden-
tify the true model consistently, while generalized crossvalidation may lead to overfitting. The
truncation parameters snj control the dimensions of the functional spaces used to approximate
the true function parameters. In most previous work, each snj was chosen based on the functional
principal component representation, such as leave-one-curve-out crossvalidation (Rice & Silver-
man, 1991) and the pseudo-AIC (Yao et al., 2005a). However, a sensible tuning criterion for snj
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We minimize

AIC(snj : j ∈ D) = log RSS(snj : j ∈ D) + 2n−1
∑
j∈D

snj

with respect to combinations of {snj : j ∈ D}, where

RSS(snj : j ∈ D) =
n∑

i=1

⎧⎨
⎩yi −

∑
j∈D

snj∑
k=1

ξ̂i jk b̂∗
jk(snj ) −

∑
l∈S

zil γ̂
∗
l (snj )

⎫⎬
⎭

2

,

with b̂∗
jk(snj ) and γ̂ ∗

l (snj ) being the refitted values using ordinary least squares.

3. ASYMPTOTIC PROPERTIES

Denote the true values of b(1) and γ by b(1)
0 and γ0, respectively, and similarly for the remaining

parameters. Recall that the boundedness of the covariance functions K j (s, t) and the regression
operators implies that

∑∞
k=1 w jk < ∞ and

∑∞
k=1 b2

jk0 < ∞. We impose mild conditions on the
decay rates of the eigenvalues {w jk} and regression coefficients {b jk0}, similar to those adopted
by Hall & Horowitz (2007) and Lei (2014). We assume:

Condition 1. w jk − w j (k+1) � Ck−a−1 for k � 1, j = 1, . . . , d.

This implies that w jk � Ck−a . As the covariance functions K1, . . . , Kd are bounded, one has
a > 1. Regarding the regression function β j (·), in order to prevent the coefficients b jk0 from
decreasing too slowly, we assume that:

Condition 2. |b jk0| � Ck−b for k > 1, j = 1, . . . , d.

These decay conditions are needed only to control the tail behaviour for large k, and so are not
as restrictive as they appear. Without loss of generality, we use a common truncation parameter sn

in the theoretical analysis. It is important to control sn appropriately. On the one hand, sn cannot
be too large due to increasingly unstable functional principal component estimates:

Condition 3. (s2a+2
n + sa+4

n )/n = o(1).

On the other hand, sn cannot be too small, so that the covariances between Z and the unob-
servable {ξ jk : k � sn + 1} are asymptotically negligible:

Condition 4. s2b−1
n /n → ∞ as n → ∞.

Combining Conditions 3 and 4 entails that b > max(a + 3/2, a/2 + 5/2) is a sufficient
condition for such an sn to exist. This implies that the regression function is smoother than the
lower bound on the smoothness of K j . Regarding the dimension of scalar covariates, assume that
the number of significant covariates satisfies:

Condition 5. sa+2
n q2

n/n = o(1).

Such qn = o(n1/2s−a/2−1
n ) does exist and is allowed to diverge with the sample size, given

Condition 3. The dimension of the candidate set, pn , is allowed to be ultrahigh.
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Condition 6. pn = O{exp(nα)} for some α ∈ (0, 1/2).

Finally, we require the following to hold for the tuning parameter λn and the sparsity of γ , in
order to achieve consistent estimation:

Condition 7. λn = o(1), max{n2α−1, n−1(qn + sn)} = o(λ2
n) and minl=1,...,qn |γl0|/λn → ∞.

In the Supplementary Material we give standard conditions on the underlying processes xi j ,
describe how the data are sampled and smoothed, and present auxiliary lemmas and proofs.

To facilitate the theoretical analysis, we reparameterize by writing b̃ jk = w
1/2
jk b jk , so that the

functional principal component scores serving as predictor variables are on a common scale of
variability. This reparameterization is used only for technical derivations and does not appear
in the estimation procedure. Let η̃ = (b̃(1)T, γ T)T, where b̃(1) = (b̃(1)T

1 , . . . , b̃(1)T
d )T with b̃(1)

j =
A j b

(1)
j ; here A j is the sn × sn diagonal matrix with A j (k, k) = w

1/2
jk . Then, minimization of (4)

is equivalent to minimizing

Qn(η̃) =
n∑

i=1

⎧⎨
⎩yi −

d∑
j=1

sn∑
k=1

(ξ̂i jkw
−1/2
jk )b̃ jk − zT

i γ

⎫⎬
⎭

2

+ 2n
pn∑

l=1

Jλn (|γl |) + 2n
d∑

j=1

Jλ jn (‖b(1)
j ‖).

Theorem 1 establishes the estimation and selection consistency for both the functional and
the scalar regression parameters. For a random variable ε with mean zero, ε is said to be a sub-
Gaussian random variable if there exists some positive constant C1 > 0 such that pr(|ε| > t) �
exp(−2−1C1t2) for t � 0. Let b̌(1) denote the estimate of b̃(1).

THEOREM 1. If ε1, . . . , εn are independent and identically distributed sub-Gaussian random
variables, then under Conditions 1–7 and S1–S5 in the Supplementary Material, there exists
a local minimizer η̌ = (b̌(1)T, γ̂ T)T of Qn(η̃) such that ‖η̌ − η̃0‖ = Op[{(qn + sn)/n}1/2] and

pr(γ̂2 = 0, b̌(1) = 0, j = g + 1, . . . , d) → 1.

The estimation consistency result is expressed in terms of b̃(1), not the original parameter
b(1) = (b(1)T

1 , . . . , b(1)T
d )T. For estimation, given b̂(1) = A−1

j b̌(1), it is easy to deduce that ‖β̂ j −
β j0‖2

L2 = Op{sa
n (qn + sn)/n}, where β̂ j = ∑sn

k=1 b̂ jk φ̂ jk and β j0 = ∑∞
k=1 b jk0φ jk . Theorem 2

establishes the asymptotic normality of the qn-dimensional vector γ̂ (1). Write �1 = E(z(1)
i z(1)T

i )

and �̂1 = n−1 ∑n
i=1 zi

(1)zi
(1)T with zi

(1) = (zi1, . . . , ziqn )
T.

THEOREM 2. If ε1, . . . , εn are independent and identically distributed sub-Gaussian ran-
dom variables and qn = o(n1/3), then under Conditions 1–7 and S1–S5 in the Supplementary
Material, for the local minimizer in Theorem 1, n1/2 An�̂1(γ̂

(1) − γ
(1)
0 ) → N (0, σ 2 H∗ + B∗)

in distribution, for any r × qn matrix An such that G = limn→∞ An AT
n is positive definite; here

σ 2 = var(ε), H∗ = limn→∞ An�1 An
T and B∗ = limn→∞ An Bn AT

n with

Bn = cov

⎧⎨
⎩

g∑
j=1

sn∑
k=1

∑
v |= k

b jk0(w jk − w jv)
−1〈 j , φ jv〉

∫
(xi j ⊗ xi j )φ jkφ jv

⎫⎬
⎭ ,

where  j = ( j1, . . . ,  jqn )
T, E{X j (t)Zl} =  jl(t) and (xi j ⊗ xi j )(s, t) = xi j (s)xi j (t).
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The asymptotic covariance is inflated by estimating the unobservable functional principal
component scores. The inflation is quantified by a convergent sequence Bn associated with the
truncation size sn .

4. SIMULATION STUDIES

The simulated data {yi : i = 1, . . . , n} are generated from the model

yi =
d∑

j=1

∫ 1

0
β j (t)xi j (t) dt + zT

i γ + εi =
d∑

j=1

∑
k

b jkξi jk + zT
i γ + εi ,

with d = 4 functional predictors and pn scalar covariates; the errors ε1, . . . , εn are indepen-
dent and identically distributed from N (0, σ 2), and γ is the vector of scalar coefficients. The
functional predictors have mean zero and covariance function derived from the Fourier basis
φ2�−1 = 2−1/2 cos{(2� − 1)π t} and φ2� = 2−1/2 sin{(2� − 1)π t} (� = 1, . . . , 25; t ∈ T = [0, 1]).
The underlying regression function is β j (t) = ∑50

k=1 b jkφk(t), a linear combination of the eigen-
basis. The scalar covariates zi = (zi1, . . . , zipn )

T are jointly normal with zero mean, unit variance
and AR(0·5) correlation structure. Next, we describe how to generate the d = 4 functional pre-
dictors xi j (t). For j = 1, . . . , 4, define Vi j (t) = ∑50

k=1 ξ̃i jkφk(t), where {ξ̃i jk : i = 1, . . . , n} are
independent and identically distributed as N (0, 16k−2) for different i and j . The four functional
predictors are then defined through the linear transformations

xi1 = Vi1 + 0·5(Vi2 + Vi3), xi2 = Vi2 + 0·5(Vi1 + Vi3),

xi3 = Vi3 + 0·5(Vi1 + Vi2), xi4 = Vi4.

Here, the first three functional predictors are correlated with each other. To be more
realistic, we allow moderate correlation between Vi1 and zi (i = 1, . . . , n) by giv-
ing ξ̃ = (ξ̃i11, ξ̃i12, ξ̃i13, ξ̃i14)

T and zi = (zi1, . . . , zipn )
T a correlation structure specified by

corr(ξ̃i1k, zil) = r |k−l|+1 (k = 1, . . . , 4; l = 1, . . . , pn) with r = 0·2. For the actual observations,
we assume them to be realizations of {xi j (·) : j = 1, 2, 3, 4} at 100 equally spaced times {ti jl ∈ T :
l = 1, . . . , 100} with independent and identically distributed noise εi jl ∼ N (0, 1).

We use 200 Monte Carlo runs for model assessment. Since inferences on both the paramet-
ric component γ and the functional components β j are of interest, we report the Monte Carlo
averages for the numbers of false nonzero and false zero functional predictors, as well as the func-
tional mean squared error, MSEf = ∑d

j=1 E(‖β̂ j − β j‖2
L2). For the scalar covariates, we report

the Monte Carlo averages of the numbers of false nonzero and false zero scalar covariates, along
with the scalar mean squared error, MSEs = E(‖γ̂ − γ ‖2). The prediction error is assessed using
an independent test set of size N = 1000 for each Monte Carlo repetition, and is defined as
PE = N−1 ∑N

i=1(y∗
i − ŷ∗

i )2 − σ 2 where {x∗
i j , z∗

i , y∗
i : j = 1, . . . , 4} are the testing data generated

from the same model; the predictions are ŷ∗
i = ∑

j

∑
k ξ̂∗

i jk b̂ jk + z∗T
i γ̂ , obtained by inserting esti-

mates from the corresponding training sample.
Design I is for a moderate number of scalar covariates, with sample size n = 200 and error

variance σ 2 = 1. Specifically, for j = 1 or 2, b j1 = 1, b j2 = 0·8, b j3 = 0·6, b j4 = 0·5, b jk =
8(k − 2)−4 for k = 5, . . . , 50, β3 = β4 = 0, and γ = (1T

5, 0T
15)

T. Hence pn = 20 and qn = 5. To
illustrate the effect of the choice of sn , in Table 1 we exhibit the results for sn ranging from
1 to 16 with λn chosen by BIC. The selection of functional and scalar predictors is quite accurate
and stable for a wide range of sn , but with a very small number of false nonzero scalars. For
functional predictors, the functional mean squared error improves until sn reaches an optimal
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Table 1. Simulation results for sample size n = 200 based on 200 Monte Carlo replicates for
Designs I and II; values reported are Monte Carlo averages with standard errors in paren-
theses. We first use ABIC to choose the tuning parameter λn and a common truncation sn, and
then tune snj jointly with AIC by refitting the selected model using ordinary least squares. In
Design II, step 1 results are based on the original sample in each Monte Carlo run, while step 2
yields improved results by fitting the penalized procedure to the selected model in step 1 with

an additional sample of n = 200
Design sn FZf FNf MSEf FZs FNs MSEs PE

I 1 0·95 0 4·1 (0·03) 0·39 7·1 4·7 (0·15) 27·9 (0·6)
(pn = 20) 2 0·35 0 2·2 (0·10) 0·05 3·2 1·1 (0·06) 7·9 (0·3)

3 0 0 0·6 (0·01) 0 0·91 0·22 (0·013) 1·5 (0·03)
4 0 0 0·12 (0·005) 0 0·36 0·067 (0·005) 0·21 (0·007)
5 0 0 0·14 (0·005) 0 0·38 0·069 (0·004) 0·19 (0·006)
6 0 0 0·19 (0·007) 0 0·44 0·072 (0·004) 0·19 (0·006)
10 0 0 0·65 (0·03) 0 0·38 0·073 (0·004) 0·22 (0·006)
16 0·03 0·08 3·1 (0·13) 0 0·11 0·074 (0·006) 0·54 (0·1)

ŝn = 4·30 (0·050)

ABIC 0 0 0·13 (0·007) 0 0·34 0·067 (0·004) 0·20 (0·006)

ŝn1 = 4·78 (0·075), ŝn2 = 4·87 (0·071)

Tune snj 0 0 0·09 (0·003) 0 0·28 0·065 (0·004) 0·18 (0·006)

II ŝn = 4·07 (0·034)

(pn = 1000) Step 1 0 0·04 0·18 (0·004) 0 7·4 0·36 (0·018) 1·1 (0·032)
Step 2 0 0 0·095 (0·005) 0 0·10 0·047 (0·003) 0·17 (0·004)

ŝn1 = 4·76 (0·066), ŝn2 = 4·62 (0·055)

Tune snj 0 0 0·076 (0·003) 0 0·09 0·046 (0·003) 0·16 (0·004)

FZf , number of false zero functional predictors; FNf , number of false nonzero functional predictors; MSEf , functional
mean squared error; FZs, number of false zero scalar covariates; FNs, number of false nonzero scalar covariates; MSEs,
scalar mean squared error; PE, prediction error.

level, and then deteriorates as sn continues to increase. For the scalar covariates, the mean squared
error and prediction error appear more stable beyond the optimal level. We then use ABIC with a
common sn to select both sn and λn . It yields similar results to those at the optimal mean squared
and prediction errors, selecting an average ŝn = 4·30 with a standard error of 0·050. Refitting the
selected model using ordinary least squares with jointly tuned snj via AIC improves the estimation
of the functional coefficients and the overall prediction.

Design II illustrates the situation where the scalar covariates are of ultrahigh dimension,
γ = (1T

5, 0T
995)

T with pn = 1000, while other settings remain the same as in Design I. The ABIC

yields results similar to those giving the optimal estimation and prediction. The number of false
nonzero scalar covariates, the scalar mean squared error and the prediction error in step 1 become
larger than those in Design I, mainly due to the ultrahigh number of insignificant scalar covariates.
The functional mean squared error is also higher, as the correlation between functional predictors
and scalar covariates becomes greater for larger pn . To improve the estimation and prediction,
for each Monte Carlo run, after obtaining the estimates based on ABIC in step 1, we generate
an additional sample of size 200 and implement the penalized procedure using the significant
variables and sn selected in step 1. The results from step 2, summarized in Table 1, are dramati-
cally improved and become comparable to those for Design I. This hints at a promising two-step
procedure via sample splitting when pn is ultrahigh, in a similar spirit to the approach of Fan
et al. (2012). Further improvement can be achieved by refitting the selected model with jointly
tuned snj using ordinary least squares. Additional simulations are presented in the Supplementary
Material.
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5. APPLICATION

We applied our method to a dataset from the National Mortality, Morbidity, and Air Pollution
Study that contains air pollution measurements and mortality counts for U.S. cities collected
during the census in year 2000. A main goal of the study was to investigate the impact of air
pollution on the nonaccidental mortality rate across different cities in the U.S.A., whilst taking
into account climate patterns and information from the U.S. census. In previous work, a two-
stage analysis was conducted: first the short-term effect of certain air pollutants on the mortal-
ity count for each city was modelled; then the estimates across different cities were combined
(Peng et al., 2005, 2006). By contrast, we apply the partially functional linear regression model
to the data for different cities. In particular, we are interested in studying the effect on mortality
of particulate matter with an aerodynamic diameter of less than 2·5 µm, abbreviated as PM 2·5
and measured in μg m−3, because its negative impact on health, as revealed by toxicological
and epidemiological studies, has brought it to the public’s attention in recent years. Other studies
(Samoli et al., 2013; Pascal et al., 2014) have shown that PM 2·5 has a larger effect on mortality in
warm weather, so we focus on daily concentration measurements of PM 2·5 from 1 April 2000 to
31 August 2000; these, along with daily observations of temperature and humidity, were treated
as the functional predictors. After removing cities with more than ten consecutive missing mea-
surements of PM 2·5, a total of 69 cities were included in our analysis. The response of interest is
the log-transformed total nonaccidental mortality rate in the following month, September 2000,
among individuals of age 65 and older, who account for the majority of nonaccidental deaths. The
scalar covariates available from the U.S. census for each city are land area per individual, water
area per individual, proportion of urban population, proportion of the population with at least a
high school diploma, proportion of the population with at least a university degree, proportion
of the population below the poverty line, and proportion of household owners.

The ABIC was used first to choose significant predictors with a common truncation, and this
was followed by a least-squares refitting using AIC to tune snj jointly. Among scalar covariates,
our analysis shows that only the proportion of household owners has a negative effect (−1·80
with a standard error of 0·41), indicating that household owners tend to have a lower mortality
rate. The standard error was based on 1000 bootstrap samples, obtained by fitting the selected
model using ordinary least squares. Our method also selected two significant functional predic-
tors, PM 2·5 and temperature. The least-squares refitting chose the truncation numbers ŝn1 = 2
and ŝn2 = 2. The estimated regression parameter functions together with their 95% bootstrap
confidence bands are plotted in Fig. 1. We observe that higher PM 2·5 concentrations in the
summer, especially in July and August, can lead to increased mortality in the period imme-
diately afterwards. This coincides with the findings of Samoli et al. (2013) and Pascal et al.
(2014), but needs to be interpreted with caution, as the effect could be partially explained by
the proximity of the pollution period to the time of death. Higher temperatures in the summer,
in contrast to lower temperatures in April, may also increase the mortality rate, agreeing with
the results of Curriero et al. (2002). To better understand the effects of functional predictors, we
fitted a linear regression using only the selected scalar covariate, obtaining R2 = 0·15. Including
temperature leads to R2 = 0·25, and including both temperature and PM 2·5 yields R2 = 0·38.
A heuristic F-test for the significance of two principal component scores of temperature gives a
p-value of 0·01, and adding an extra two principal component scores of PM 2·5 gives a p-value of
0·0008. For comparison, we also fitted the marginal models containing only PM 2·5 or tempera-
ture using classical functional linear regression. The marginal F-tests for temperature and PM 2·5
gave p-values of 0·0001 and 0·004, respectively. The regression parameter functions show sim-
ilar patterns and are omitted. We conclude that, after adjusting for temperature and household
ownership, summer PM 2·5 concentrations have a significant impact on the near-future mortality
rate of elder residents in U.S. cities.
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APPENDIX

Algorithm details

Recall that YM = (y1, . . . , yn)
T and Z M = (z1, . . . , zn)

T, where zi = (zi1, . . . , zipn )
T. In addition, M j is

a n × sn matrix with (i, k)th element ξi jk , M = (M1, . . . , Md), and N = (M, Z M) = (N1, . . . , Nn)
T is a

n × (dsn + pn) matrix. Further, η = (b(1)T, γ T)T. The solution to (4) is equivalent to

arg min
η

{
(2n)−1‖YM − Nη‖2 +

R∑
r=1

Jλr (‖ηr‖)
}

where R = d + pn . The tuning parameter is λr = λrn with group size Kr = sn if r = 1, . . . , d, and λr = λn

with group size Kr = sn if r = d + 1, . . . , d + pn .
When pn is moderately large, say pn < n, one can modify the local linear approximation algorithm of

Zou & Li (2008), which inherits the computational efficiency and sparsity of lasso-type solutions. Denote
the initial estimate from the ordinary least-squares solution by η̂(0), and solve η̂(1) = arg minη{(2n)−1

‖YM − Nη‖2 + ∑R
r=1 J ′

λr
(‖η(0)

r ‖)‖ηr‖}. Since some of the J ′
λr

(‖η(0)
r ‖) are zero, we use a similar algorithm

proposed by Zou & Li (2008). Write V = {r : J ′
λr

(‖η(0)
r ‖) = 0}, W = {r : J ′

λr
(‖η(0)

r ‖) > 0}, N = (NV , NW )

and η(1) = (η
(1)T

V , η
(1)T

W )T. Our algorithm is as follows.

Algorithm 1.

(i) Reparameterize the response vector by Y ∗
M = Nη(0), and reparameterize the observed data matrix by

N ∗
r = Nr K 1/2

r /J ′
λr

(‖η(0)
r ‖) for r ∈ W and N ∗

r = Nr for r ∈ V .
(ii) Let PV denote the projection matrix of the space {N ∗

r : r ∈ V }, where PV = NV (N T
V NV )−1 NV

T. Then,
calculate Y ∗∗

M = Y ∗
M − PV Y ∗

M and N ∗∗
W = N ∗

W − PV N ∗
W .

(iii) Find η̂∗
W = arg minβ{(2n)−1‖Y ∗∗

M − N ∗∗
W η‖2 + ∑

r∈W K 1/2
r ‖ηr‖}.

(iv) Compute η̂∗
V = (N ∗T

V N ∗
V )−1 N ∗T

V (Y ∗
M − N ∗

W η̂V ( YVK1/2
r/ J�
λr(‖η(0)

r‖forr
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MÜLLER, H.-G. & YAO, F. (2008). Functional additive models. J. Am. Statist. Assoc. 103, 1534–44.
PARIKH, N. & BOYD, S. (2013). Proximal algorithms. Foundat. Trends Optimiz. 1, 123–231.
PASCAL, M., FALQ, G., WAGNER, V., CHATIGNOUX, E., CORSO, M., BLANCHARD, M., HOST, S., PASCAL, L. &

LARRIEU, S. (2014). Short-term impacts of particulate matter (PM10, PM10–2·5, PM2·5) on mortality in nine
French cities. Atmosph. Envir. 95, 175–84.

PENG, R. D., DOMINICI, F., PASTOR-BARRIUSO, R., ZEGER, S. L. & SAMET, J. M. (2005). Seasonal analyses of air
pollution and mortality in 100 US cities. Am. J. Epidemiol. 161, 585–94.

PENG, R. D., DOMINICI, F. & LOUIS, T. A. (2006). Model choice in time series studies of air pollution and mortality.
J. R. Statist. Soc. A 169, 179–203.

RAMSAY, J. O. & DALZELL, C. J. (1991). Some tools for functional data analysis (with Discussion). J. R. Statist. Soc.
B 53, 539–72.

RAMSAY, J. O. & SILVERMAN, B. W. (2005). Functional Data Analysis. New York: Springer, 2nd ed.
RICE, J. A. & SILVERMAN, B. W. (1991). Estimating the mean and covariance structure nonparametrically when the

data are curves. J. R. Statist. Soc. B 53, 233–43.
SAMOLI, E., STAFOGGIA, M., RODOPOULOU, S., OSTRO, B., DECLERCQ, C., ALESSANDRINI, E., DÍAZ, J.,
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YAO, F., MÜLLER, H.-G. & WANG, J.-L. (2005a). Functional data analysis for sparse longitudinal data. J. Am. Statist.

Assoc. 100, 577–90.
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