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 Summary. Functional additive models provide a flexible yet simple framework for regressions
 involving functional predictors. The utilization of a data-driven basis in an additive rather than
 linear structure naturally extends the classical functional linear model. However, the critical issue
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 where X(t) is often assumed to be a smooth and square integrable random function defined on
 a compact domain T, and ß(t) is the regression parameter function which is also assumed to be
 smooth and square integrable. A commonly adopted approach for fitting model (1) is through
 basis expansion, i.e. representing the functional predictor as linear combinations of a basis
 {4>k}'- X(t)=g(t) + H^il ikßkit), where g(t) = £{X(r)}. Model (1) is then transformed to a linear
 form of the coefficients {£*, k = 1,2,...} : È( Y | X) = bo + j £kbk, where bo = fT ß(t) g{t) df and
 bk = Jj- ß(t) <pk(t) dr. More references on functional linear regression can be found in Cardot et al.
 (1999, 2003), Fan and Zhang (2000), etc. Extensions to generalized functional linear models
 were proposed by James (2002), Müller and Stadtmüller (2005) and Li et al. (2010). The basis
 set {0k \ can be either predetermined (e.g. Fourier basis, wavelets or ß-splines), or data driven.
 One convenient choice for the latter is the eigenbasis of the autocovariance operator of X, in

 which case the random coefficients {&} are called functional principal component (FPC) scores.
 The FPC scores have zero means and variances equal to the corresponding eigenvalues (A^, k =
 1,2,...}. This isomorphic representation of X is referred to as Karhunen-Loève expansion,
 and related methods are often called functional principal component analysis (FPCA) (Rice
 and Silverman, 1991; Yao et al., 2005; Hall et al., 2006; Hall and Hosseini-Nasab, 2006; Yao,
 2007). Owing to the rapid decay of the eigenvalues, the orthonormal eigenbasis provides a
 more parsimonious and efficient representation compared with other bases. Furthermore, FPC
 scores are mutually uncorrelated, which can considerably simplify model fitting and theoretical
 analysis. We focus on the FPC representation of the functional regression throughout this paper;
 nevertheless, the proposal is also applicable to other prespecified bases.

 Although widely used, the linear relationship can be restrictive for general applications. This
 linear assumption was then relaxed by Müller and Yao (2008) who proposed the functional
 additive model (FAM). The FAM provides a flexible yet practical framework that accommo
 dates non-linear associations and at the same time avoids the curse of dimensionality that is
 encountered in high dimensional non-parametric regression problems (Hastie and Tibshirani,
 1990). In the case of scalar response, the linear structure was replaced by the sum of non-linear
 functional components, i.e.

 E(Y\X)=b0+ £/*(&), (2)
 *=i

 where {/*(•)} are unknown smooth functions. In Müller and Yao (2008), the FAM was fitted by
 estimating {&} using FPCA (Yao et al., 2005) and estimating {/&} by using local polynomial
 smoothing.

 Apparently regularizing equation (2) is necessary. In Müller and Yao (2008) the regulariza
 tion was achieved by truncating the eigensequence to the first K leading components, where K
 was chosen to explain the majority of the total variation in predictor X. Despite its simplic
 ity, this naive truncation procedure can be inadequate in many complex problems. First, the
 effect of FPCs on the response does not necessarily coincide with their magnitudes specified
 by the autocovariance operator of the predictor process alone. For instance, some higher or
 der FPCs may contribute to the regression significantly more than the leading FPCs. This was
 discussed by Hadi and Ling (1998) in the principal component regression context and later
 was observed in real examples of high dimensional data (Bair et al., 2006) and functional data
 (Zhu et al., 2007). Second, although a small number of leading FPCs might be able to capture
 the major variability in X due to the rapidly decaying eigenvalues, one often needs to include
 more components for better regression performance, especially for the prediction purpose as
 observed in Yao and Müller (2010). However, retaining more than needed FPCs brings the risk
 of overfitting, which is caused by including components that contribute little to the regression
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 but introduce noise. Therefore a desirable strategy is to identify 'important' components out of
 a sufficiently large number of candidates, whereas to shrink those 'unimportant' ones to 0.

 With these considerations, we seek an entirely new regularization and estimation framework
 for identifying the sparse structure of the FAM. Model selection that encourages sparse struc
 ture has received substantial attention in the last decade mostly due to the rapidly emerging high

 dimensional data. In the context of linear regression, the seminal works include the lasso (Tib
 shirani, 1996), the adaptive lasso (Zou, 2006), the smoothly clipped absolute deviation estimator
 (Fan and Li, 2001) and the references therein. Traditional additive models were considered by
 Lin and Zhang (2006), Meier et al. (2009) and Ravikumar et al. (2009); and extensions to general
 ized additive models were studied by Wood (2006) and Marra and Wood (2011). In comparison
 with these works, sparse estimation in functional regression has been much less explored. To
 our knowledge, most existing works are for functional linear models with sparse penalty (James
 et al., 2009; Zhu et al., 2010) or L2-type penalty (Goldsmith et al., 2011). Relevant research for
 additive structures is scant in the literature. In this paper, we consider selection and estimation
 of the additive components in FAMs that encourage a sparse structure, in the framework of a
 reproducing kernel Hilbert space (RKHS). Unlike in standard additive models, the FPC scores
 are not directly observed in FAMs. They need to be firstly estimated from the functional covari
 ates and then plugged into the additive model. The estimated scores are random variables, which
 creates a major challenge to the theoretical exploration. It is necessary to take into account the
 influence of the unobservable FPC scores on the resulting estimator properly. Furthermore, the
 functional curve X is not fully observed either. We typically collect repeated and irregularly
 spaced sample points, which are subject to measurement errors. Measurement error in data
 adds extra difficulty for model implementation and inference. All of these issues are tackled
 in this paper. We propose a two-step estimation procedure to achieve the desired sparse struc
 ture estimation in FAMs. For the regularization, we adopt the COSSO (Lin and Zhang, 2006)
 penalty because of its direct shrinkage effect on functions in the RKHS. On the practical side,
 the method proposed is easy to implement, by taking advantage of existing algorithms of FPCA.

 The rest of the paper is organized as follows. In Section 2, we present the proposed approach
 and algorithm, as well as the theoretical properties of the resulting estimator. Simulation
 results in comparison with existing methods are included in Section 3. We apply the proposed
 method to the Tecator data in Section 4, studying the regression of protein content on the
 absorbance spectrum. Concluding remarks are provided in Section 5, whereas details of the
 estimation procedure and technical proofs are deferred to the appendices.

 The data that are analysed in the paper and the programs that were used to analyse them can
 be obtained from

 http://wileyonlinelibrary.com/journal/rss-datasets

 2. Structured functional additive model regression

 Let Y be a scalar response associated with a functional predictor X(t), t e T, and let {y,-,x,-(•)}"=[
 be independent, identically distributed (IID) realizations of the pair {T, A(-)}. The trajectories
 [xi(t) :teT} are observed intermittently on possibly irregular grids t,- = (r,i,... ,f,y,)T- Denote
 the discretized x,(t) in vector form by x,- = (xn,..., x,tv,)t. We also assume that the trajectories

 are subject to IID measurement error, i.e. x;j = x!(f,-;) + ?ij with £(e,;-) = 0 and var(ei;) = v1.
 Following the FPCA of Yao et al. (2005) and Yao (2007), denote by £ioo = (&i»£/2>---)t
 the sequence of FPC scores of x,-, which is associated with eigenvalues {Ai, À2, - - -} with Ai ^
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 2.1. Proposed methodology
 As discussed in Section 1, the theory of FPCA enables isomorphic transformation of random
 functions to their FPC scores, which brings tremendous convenience to model fitting and theo
 retical development in functional linear regression. To establish a framework for non-linear
 and non-parametric regression, we consider regressing the scalar responses {>',■} directly on the

 sequences of FPC scores {£/,oo} of {*, }. For the convenience of model regularization, we would
 like to restrict the predictor variables (i.e. FPC scores) to taking values in a closed and bounded
 subset of the real line, e.g. [0,1] without loss of generality. This is easy to achieve by taking a trans

 formation of the FPC scores through a monotonie function $ : i)t -> [0,1], for all {£,*}. In fact
 the choice of T is quite flexible. A wide range of cumulative distribution functions (CDFs) can be
 used; see assumption 2 in Section 2.2 for the regularity condition. Additionally one may choose
 T so that the transformed variables have similar or the same variations. This can be achieved

 by allowing T(-) to depend on the eigenvalues {A^}, where {A^} serve as scaling variables. For
 simplicity, in what follows we use a suitable CDF (e.g. normal), denoted by ik(-,AJt), from a
 location-scale family with zero mean and variance A*. It is obvious that, if ^s are normally
 distributed, the normal CDF leads to uniformly distributed transformed variables on [0,1].

 Denoting the transformed variable of by Qk, i.e. Qk = ^(Qk, AD, and denoting Qjoo =
 (Ol > C'2> • • -)T> we propose an additive model as follows:

 00

 >7 = bo + E fa(Qk) + Si, (3)
 k= 1

 where {e,} are independent errors with zero mean and variance a2, and /o(C;,oc) = ^0 +
 fokiOk) is a smooth function. For each k, let Hk be the /th-order Sobolev Hilbert space on

 [0,1], defined by

 Hk([0,1]) = {g\g("} is absolutely continuous for u = 0,1,...1 \g(l) eL2}.

 One can show that Hk is an RKHS equipped with the norm

 2 ,1

 IMI2  = E { f 9^\t)àt\ + /Vvdt. v=0 {Jo J Jo

 See Wahba (1990) and Lin and Zhang (2006) for more details. Note that Hk has the orthogonal
 decomposition Hk — {1} © H . Then the additive function /o corresponds to T which is a direct

 ,k r rTk
 sum of subspaces, i.e. T={1} © H with fa eH , for all k. It is easy to check that, for any
 f — b + T,kfk € T, we have ||/||2 = b~ + \\fk\\2- In this paper, we take 1 = 2 but the results
 can be extended to other cases straightforwardly. To distinguish the Sobolev norm from the
 L2-norm, we write ||-|| for the former and ||-||L2 for the latter.
 As motivated in Section 1, it is desirable to impose some type of regularization condition

 on model (3) to select important components. An important assumption that is commonly
 made in high dimensional linear regression is the sparse structure of the underlying true model.
 This assumption is also critical in the context of functional data analysis, which enables us to

 develop a more systematic strategy than the heuristic truncation that retains the leading FPCs.
 Although widely adopted, retaining the leading FPCs is a strategy that is guided solely by the
 covariance operator of the predictor X, and therefore it fails to take into account the response
 Y. To be more flexible, we assume that the number of important functional additive components
 that contribute to the response is finite, but not necessarily restricted to the leading terms. In
 particular, we denote 1 the index set of the important components and assume that \T\ < oo,
 where | • | denotes the cardinality of a set. In other words, there is a sufficiently large 5 such that

 lç{l,,..,i}, which implies that /* = 0 as long as k>s. The FAM is thus equivalent to
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 yt = bo + £ fok (Ok) + £i • (4)
 k= 1

 It is noted that the initial truncation s merely controls the total number of additive components
 to be considered, which is different from the heuristic truncation that was suggested by Yao et al.
 (2005) and Müller and Yao (2008) based on model selection criteria such as cross-validation, the
 Akaike information criterion AIC or the fraction of variation explained. In practice we suggest
 choosing 5 large so that nearly 100% of the total variation is explained. This often leads to more
 than 10 FPCs in most empirical cases.

 With this assumption, the regression function /o(C) = bo + £|=1 fok(Çk) lies in the truncated
 subspace F = {1} 0 ££=1 H of T, where ( is the truncated version of (oc, i-e- C = (Cl> • • • > C)T
 with the dependence on s suppressed if no confusion arises. To regularize the unknown smooth
 functions {fok} non-parametrically, we employ the COSSO regularization defined for function
 estimation in RKHS and estimate /o by finding / e F that minimizes

 Q(f\Ci) = - E{y; - /(C)}2 + Tn J(f)> J(f)=i\\Pkf\\, (5)
 n i=l *=i

 I ~ lc
 where P f is the orthogonal projection of / onto H . Here r„ is the only smoothing param
 eter that requires tuning, whereas the common smoothing spline approach involves multiple
 smoothing parameters. The penalty J(f) is a convex functional and is a pseudonorm in F. One
 interesting connection between COSSO and the lasso is that, when fok(Ck) = Ckßok, the penalty

 in expression (5) reduces to S|=1 \(kßok\, which becomes the adaptive lasso penalty (Zou, 2006).
 Different from the standard additive regression models, the transformed FPC scores {£,}
 serving as predictor variables in expression (5) cannot be observed. Therefore we need to estimate

 the FPC scores first before the estimation and structure selection of /. A simple two-step
 algorithm is given as follows.

 Step 1: implement FPCA to estimate the FPC scores {£,],. ■ -,0s} of x;, and then the trans
 formed variables (ik = ^(Ôik,Xk), where Xk is the estimated eigenvalue, and s is chosen to
 explain nearly 100% of the total variation.
 Step 2: implement the COSSO algorithm of Lin and Zhang (2006) to solve

 min ß(/|C) = min - ± {y,- - /(C)}2 + r„2 J{f), J(f) = £ || P*/||. (6)
 fePs feTs n i=1 k=l

 We refer to Appendix A for details in the case of densely or sparsely observed predictor tra
 jectories. We call the proposed method the component selection and estimation for functional
 additive model (CSEFAM).

 2.2. Theoretical properties
 We focus on consistency of the resulting estimator of the CSEFAM for the case when {x, (0}
 are densely observed in this subsection, where the rate of convergence is assessed by using the
 empirical norm. In particular, we introduce the empirical norm and the entropy of Ts as follows.

 Let g € Ts\ the empirical norm of g is defined as ||<?L = V{(l/n)S"=15(C;)2}. The empirical inner
 product of the error term e and g is defined as (s, g)n — (l/n)E"=1 <?(£,■)• Similarly, the empirical

 inner product of / and g in F is (f,g)n = (l/n)E?=1 /((,)/<;)•
 The assumptions on the regression function / and the transformation T(-, •) are listed below
 in assumptions 1 and 2, whereas the commonly adopted regularity conditions on the functional

This content downloaded from 
�������������222.29.65.172 on Tue, 01 Sep 2020 13:47:31 UTC������������� 

All use subject to https://about.jstor.org/terms



 586 H. Zhu, F. Yao and H. H. Zhang

 predictors {jc,-(/)}> the dense design, and the smoothing procedures are deferred to conditions
 1-3 in Appendix B.

 Assumption 1. For any f e!Fs, there are independent {B, }7_ l with E{B2) <oo, such that,
 with probability 1,

 3/(C)
 <Bi\\f\\L2.

 Kik



 Structured Functional Additive Regression 587

 the true values of \Qk} and the true non-vanishing additive components are used. The FAM02
 method is another type of oracle, in which the values of {Ofc} are estimated through FPCA,
 but the true non-vanishing additive components are used. In Section 3.3, we study the perfor
 mance of the CSEFAM when the underlying true model is actually non-sparse, and we compare
 the results with the saturated and truncated FAMs. For each setting, we perform 100 Monte
 Carlo simulations and present the model selection and prediction results for the methods under
 comparison.

 3.1. Dense functional data

 We generate 1000IID trajectories by using 20 eigenfunctions, among which n = 200 are randomly
 allocated to the training set and the other 800 form the test set. The functional predictors
 Xi(t), t e [0,10], are measured over a grid with 100 equally spaced points, with independent
 measurement error ei; ~ N{0, v2), in = 0.2. The eigenvalues of xt(t) are generated by Ak=abk~l
 with a = 45.25 and b = 0.64. The true FPC scores {£,1} are generated from N(0, À&), and the
 eigenbasis {</>*(•)} is taken to be the first 20 Fourier basis functions on [0,10]. The mean curve
 is set to be gx(t) = t + sin(f). We use the normal CDF to obtain the transformed variables:

 = 0,AD, k= 1,...,20. The values of are then generated by y,- = /o(C;) + £;> where
 Si ~ N(0, a2) and o1 = 1. We assume that /o depends on only three non-zero additive components:
 the first, the second and the fourth, i.e. f0(Q = b0 + /01 (0i) + hiiQi) + .MCm), 1= {1,2,4}.
 Here we take b0 = 1.4, /oi(Cl) = X\ ~ 3, /o2(C2) = sin{27r(C2 - 3)}, /o4(C4) == 8(C4 - y)2 - 8/9
 and /ok(Ct) = 0 for k£l. This gives the signal-to-noise ratio (SNR) 2.2, where the SNR is
 defined as SNR = var{/0(O}/var(e), and var{/0(C)} = St el fo fok^k) dC/t = 2.2 given that (k ~
 C[0,1],

 We apply the proposed CSEFAM algorithm to the training data, following the FPCA and
 COSSO steps described in Section 2.1 and Appendix A. For illustration, we pick one Monte
 Carlo simulation and display the component selection and estimation results in Fig. 1. In FPCA,
 the initial truncation is s= 18, accounting for nearly 100% of the total variation, and is passed
 to the COSSO step. The component selection is then achieved by tuning the regularization
 parameters Ao in expression (9) with generalized cross-validation and M in expression (10) with
 the Bayesian information criterion (BIC), illustrated in Figs 1(a) and 1(b) whereas the empirical

 L]-norms of fk (computed by «-1S"=1 \fk(Cik)\ at different M) are shown in Fig. 1(c). In
 Figs 1(d)—1(f), the resulting estimates of fk, k = 1,2,4, are displayed, and {fk,k^ 1,2,4} are
 shrunk to 0 as desired.

 The model selection and prediction results are presented in the top panel of Table 1. We
 implement the FAM procedure in a different manner from that in Müller and Yao (2008).
 Instead of using local polynomial smoothing for estimating each fk separately, we perform a
 more general additive fitting, the generalized additive model, on the transformed FPC scores
 which allows backfitting and also provides a /i-value for each additive component. The only
 reason for doing so is that the generalized additive model algorithm shows more numerical
 stability especially when the number of additive components is large. Owing to the use of the
 true model structure, both oracle methods FAM01 and FAM02 are expected to outperform the
 rest. Because of the estimation error that is induced in the FPCA step, FAM02 is expected to
 sacrifice certain estimation accuracy and prediction power compared with FAM01. The FAMs
 model is the saturated model based on the estimated FPC scores and the leading s terms used
 in the CSEFAM. No model selection is performed in FAMs. The s-values vary from 17 to 19
 which take into account nearly 100% of the total variation of {x, (t)}. The MARS method is
 based on Hastie et al. (2001).
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 «

 (c) (c)

 Fig. 1- Plots of component selection and estimation from one simulation: (a) generalized cross-validation
 versus A0; (b) BIC versus M; (c) empirical Z_i-norms at various /W-values ( , , f2\ ,

 , f4; , f5) (I, tuning parameter chosen in (a)-(c)); (d)-(f) estimated fks ( ) versus true fks
 ( ) for A-= 1,2,4

 It is noted that the subjective truncation based on the explained variation in X is suboptimal
 for regression purpose (for conciseness the results are not reported). Therefore, in Table 1,
 we report (under the 'counts for the following model sizes' columns) the counts of selected
 numbers of non-vanishing additive components in the CSEFAM, and the counts of the number
 of significantly non-zero additive components in FAM, FAMoi and FAMo2- For convenience
 of display, only the counts for model size up to 8 are reported. The 'selection frequencies for
 the following components' columns of Table 1 record the number of times that each additive
 component is estimated to be non-zero for the first eight components. For the MARS method,

 if the y'th component f j is selected in one or more basis functions, we counted it as 1 and 0
 otherwise. Regarding the prediction error (PE), we use the population estimate from the training
 set (e.g. the mean, covariance and eigenbasis) to obtain the FPC scores for both training and
 test set; then we apply the {/jr.} estimated from the training set to obtain predictions for {y,}
 in the test set. The PEs are calculated by E"=1 (y,- — y,)2. From the top panel of Table 1,
 we see that, under the dense design, the CSEFAM chooses the correct models (with model size
 equal to 3) 61% of the time whereas the FAMs method always overselects (a = 0.05 is used to
 retain significant additive components). The PE of CSEFAM is the smallest among the three
 non-oracle models. Compared with the oracle methods, the CSEFAM has less prediction power
 than FAM02 (slightly) and FAMoi, which can be regarded as the price paid by both estimating
 the C and selecting the additive components.

This content downloaded from 
�������������222.29.65.172 on Tue, 01 Sep 2020 13:47:31 UTC������������� 

All use subject to https://about.jstor.org/terms



 Table 1. Summary of the model selection and prediction in 100 Monte Carlo simulations under the dense and sparse design
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 Table 2. AISE for 100 Monte Carlo simulations under the dense and sparse design

 Data Mode! AISEs for the following functions:

 fx  h  h  h  h  h  fl  h  /

 Dense  CSEFAM  0.038  0.117  0.022  0.038  0.005  0.001  0.000  0.001  0.226

 design  FAMs  0.030  0.095  0.050  0.047  0.031  0.018  0.016  0.015  0.476

 FAM02  0.027  0.090  —  0.042  —  —  —  —  0.158

 FAM01  0.007  0.028  —  0.019 — —  —  —  0.054

 Sparse  CSEFAM  0.033  0.22  0.036  0.298  0.055  0.040  0.045  0.001  0.720

 design  FAMs  0.016  0.118  0.032  0.159  0.102  0.121  0.399  2.64  >103
 FAM02  0.026  0.129  —  0.220 —  —  —  —  0.376

 FAM01  0.007  0.016  —  0.013 — —  —  —  0.036

 To assess the accuracy of estimation, the averaged integrated squared errors (AISEs) for the
 first eight additive components and for the overall function / are presented in the top panel of
 Table 2, where ISE is defined by

 ISE(/fc) = EçJ/*(00-/*(CO} = / {fk(t)-fk(t)Yàt.
 Jo

 From Table 2, we see that the CSEFAM provides considerably smaller AISE for the truly zero

 components (fj, j = 3,5,6,7,8) than the FAMs method. For the non-zero components, the
 CSEFAM, FAMs and FAM02 have comparable AISE values.

 3.2. Sparse functional data
 To compare with the dense case, we also conducted a simulation to examine the performance
 of the CSEFAM for sparse functional data. We generated 1200 IID trajectories, with 300 in the
 training set and 900 in the test set. In each trajectory, there are 5-10 repeated observations uni
 formly located in [0,10], with the number of points chosen from 5 to 10 with equal probabilities.
 The other settings are the same as in the dense design. The summaries of the model selection,
 prediction and estimation results are presented in the bottom panel of Table 1 and Table 2. We
 observe a similar pattern to that in the dense design case. Moreover, Table 2 suggests that, for
 the sparse design, the FAMs estimate of fk becomes quite unstable for higher order components
 (e.g. k> 7). The AISE increases rapidly owing to the influence of outlying estimates. This is not
 a surprise, because under the sparse design the high order eigenfunctions and FPC scores are
 difficult to estimate accurately owing to the sparseness of the data and the moderate sample size,

 which lead to inaccurate fk-estimates when the saturated model FAMs is used- In this situation,
 we see that the proposed CSEFAM still performs quite stably, since the COSSO penalty has
 the effect of automatically down weighting the 'unimportant' components. This provides further

 support for the proposed CSEFAM approach.

 3.3. Non-sparse underlying additive components
 To show the model performance when the true additive components are actually non-sparse, we
 conduct an additional simulation with two settings (study I and study II) for the dense design,
 and we compare the CSEFAM with two versions of the FAM: the saturated model FAMs as
 defined in Section 3.1, and the truncated model FAMj with a truncation chosen to retain 99%

 of the total variation. In study I, the true model contains three 'larger' additive components
 {/01 > foi, ./o4j% taking the same form as in Section 3.1 except being rescaled by a constant \. The

 Model AISEs for the following functions:

 fx  h  h  h  fs  h  fl  ft  /

 Dense  CSEFAM  0.038  0.117  0.022  0.038  0.005  0.001  0.000  0.001  0.226

 design  FAMs  0.030  0.095  0.050  0.047  0.031  0.018  0.016  0.015  0.476

 FAM02  0.027  0.090  —  0.042  —  —  —  —  0.158

 FAM01  0.007  0.028  —  0.019 — —  —  —  0.054

 Sparse  CSEFAM  0.033  0.22  0.036  0.298  0.055  0.040  0.045  0.001  0.720

 design  FAMs  0.016  0.118  0.032  0.159  0.102  0.121  0.399  2.64  >103
 FAM02  0.026  0.129  —  0.220 —  —  —  —  0.376

 FAMqi  0.007  0.016  —  0.013 — —  —  —  0.036
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 Table 3. Additional simulation for cases with non-sparse additive components!
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 592 H. Zhu, F. Yao and H. H. Zhang

 rest are 'smaller' additive components, each randomly selected from {/oi, /02, /04} with equal
 probability and rescaled by a smaller constant uniformly chosen from [1/17,1/14], The data
 generated have a lower (more challenging) SNR around 0.60, among which 8.7% are from the
 'smaller' components. The results are listed in the top panel of Table 3, which shows that the
 CSEFAM tends to favour smaller model size than FAMs- We also observe that the model size
 of FAMj tends to be smaller than for the CSEFAM since FAMj adopts more truncation with
 the 99% threshold. It is important to note that the CSEFAM in fact yields PE and AISE that are
 substantially smaller than the FAMs method, and the results of the CSEFAM are comparable
 with that of FAMy. In study II, we replace the three larger components by the smaller ones;
 therefore all additive components have roughly equal small contributions. We select the scaling

 constant uniformly from [g, so that the total SNR is 0.30 on average. The results listed in
 the bottom panel of Table 3 suggest that the CSEFAM now tends to select more components
 (i.e. to produce non-sparse fits) and again yields smaller PE and AISE than both the FAMg
 and the FAMy methods. Overall, this simulation suggests that the proposed CSEFAM is still a
 reasonable option even if the underlying true model is non-sparse. It is also worth mentioning
 that the gain of the CSEFAM is more apparent in the challenging settings with low SNR.

 4. Real data application

 We demonstrate the performance of the proposed method through the regression of protein

 0.2
 850 900 950 1000 1050 850 900 950 1000 1050

 wavelengths (in nm) wavelengths (in nm)
 (a) (b)

 0.2
 850 900 950 1000 1050 850 900 950 1000 1050

 wavelengths (in nm) wavelengths (in nm)
 (a) (b)

 Fig. 2. (a) Near infrared absorbance spectral curves and (b) the first five estimated eigenfunctions (
 0 1 (0; > 02(0; . 03(0; > 04(0; • 0s(O)
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 Structured Functional Additive Regression 593

 content on the near infrared absorbance spectrum measured over 240 meat samples. The data
 set is collected by the Tecator company and is publicly available on the StatLib Web site
 (http://lib.stat.cmu.edu). The measurements were made through a spectrometer
 named the Tecator Infratec Food and Feed Analyzer. The spectral curves were recorded at
 wavelengths ranging from 850 nm to 1050 nm. For each meat sample the data consist of a 100
 channel spectrum of absorbances ( 100 grid points) as well as the contents of moisture (water), fat
 and protein. The absorbance is the negative common logarithm of the transmittance measured
 by the spectrometer. The three contents, measured in percentages, are determined by analytic
 chemistry. Of primary interest is to predict the protein content by using the spectral trajectories.
 The 240 meat samples were randomly split into a training set (with 185 samples) and a test set
 (with 55 samples). We aim to predict the content of protein in the test set by using the training
 data. Fig. 2 illustrates the spectral curves and the first five eigenfunctions estimated by using
 FPCA.

 We initially retain the first 20 FPCs which take into account nearly 100% of the total vari
 ation. The proposed CSEFAM is then applied for component selection and estimation. The
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 594 H. Zhu, F. Yao and H. H. Zhang

 Table 4. Prediction results on the test set compared with several other methodsf

 Results for the following methods:

 CSEFAM  FAM  MARS
 PC20

 Partial
 least

 squares,
 PLD20

 Functional
 linear

 model,
 A1C7

 s=10  s=20  PC5  PC10  PC20

 PE

 4
 2.22
 0.82

 0.72
 0.94

 3.98
 0.68

 2.13
 0.83

 0.84
 0.93

 0.77
 0.93

 1.02

 0.92
 1.50
 0.88

 fPC 10 indicates that 10 FPC scores are used. PLD20 indicates that the number of partial
 least squares directions used is 20. AIC7 indicates that seven FPC scores are used based
 on the Akaike information criterion.

 determination of the tuning parameters in the COSSO step is guided by the generalized cross
 validation criterion for Ao, which gives Ao = 0.0013, and by tenfold cross-validation for M, which

 gives M = 10.0. The estimated additive components are plotted in Fig. 3, from which we see that
 the CSEFAM selects 12 out of the 20 components, {/],..., /8, /10, /13, f\(>, f\i), and the other
 components are estimated to be 0. To assess the performance of the method proposed, we report
 the PE on the test set in Table 4, where the PE is calculated in the same way as in Section 3. We
 also report the quasi-/?2 for the test set, which is defined as

 Aq = 1- EOi - À;)2/ E(>V - Ä;)2
 i i

 To show the influence of the initial truncation, we also use a smaller value of s, s = 10 in the CSE

 FAM, which gives suboptimal results. This suggests that we shall use a sufficiently large v to begin
 with. The FAM is carried out with the leading five, 10 and 20 FPCs. An interesting phenomenon
 is that, though the high order FPCs (over 10) explain very little variation of the functional
 predictor (less than 1%), their contribution to the prediction is surprisingly substantial. Such
 phenomena are also observed for the MARS method and partial least squares (which is a
 popular approach in chemometrics; see Xu et al. (2007) and the references therein). One more
 comparison is with the classical functional linear model with the estimated leading FPCs served
 as predictors, where a heuristic AIC is used to choose the first seven components.
 From Table 4, we see that, when the initial truncation is set at 10, the proposed CSEFAM
 is not obviously advantageous compared with the FAM. As the number of FPCs increases to
 20, the method proposed provides a much smaller PE and higher than all other methods.
 A sensible explanation is that, for these data, most of the first 10 FPCs (except the ninth) have
 non-zero contributions to the response (shown in Fig. 3); therefore penalizing these components

 does not help to improve the prediction. However, as the number of FPC scores increases, more
 redundant terms come into play, so the penalized method the CSEFAM gains more prediction

 power. We have repeated this analysis for different random splits of the training and test sets,
 and the conclusions stay virtually the same.

 5. Discussion

���S�K�H�Q�R�P�H�29.02 127.92 Tm
ET
1�F�28 103.92 Tm
/F1 7.62 Tf
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 Structured Functional Additive Regression 595

 and estimation of the additive components are performed through penalized least squares using
 the COSSO penalty in the context of RKHS. The method proposed allows for more general
 non-parametric relationships between the response and predictors and therefore serves as an
 important extension of functional linear regression. Through the adoption of the additive struc
 ture, it avoids the curse of dimensionality that is caused by the infinite dimensional predictor
 process. The method proposed provides a way to select the important features of the predictor
 process and to shrink the unimportant ones to 0 simultaneously. This selection scenario takes
 into account not only the explained variation of the predictor process, but also its contribution
 to the response. The theoretical result shows that, under the dense design, the non-parametric
 rate from component selection and estimation will dominate the discrepancy due to the unob
 servable FPC scores.

 A concern raised is whether the sparsity is necessary in the FAM framework. The sparseness
 assumption in general helps to balance the trade-off between variance and bias, which may
 lead to improved model performance. This can be particularly useful when part of the predictor
 has negligible contribution to the regression. Even if the underlying model is in fact non-sparse
 and we care only about estimation and prediction, the proposed CSEFAM is still a reasonable
 option, as illustrated by the simulation in Section 3.3. We also point out that, when all non
 zero additive components are linear, the COSSO penalty reduces to the adaptive lasso penalty.
 An additional simulation (which for conciseness is not reported) has shown that the method
 proposed produces estimation and prediction results that are comparable with those of the
 adaptive lasso. Moreover, the COSSO penalty requires that s <n, which does not conflict with
 the requirement that the initial truncations is chosen sufficiently large to include all important
 features. In practice the number of FPCs accounting for nearly 100% predictor variation is often

 far less than the sample size n owing to the fast decay of the eigenvalues. Finally both simulated
 and real examples indicate that the model performance is not sensitive to s as long as it is chosen
 to be sufficiently large.

 On the computation side, our algorithm takes advantage of both FPCA and COSSO. On
 a desktop with Intel(R) Core(TM) i5-2400 central processor unit with a 3.10-GHz processor
 and 8 Gbytes random-access memory each Monte Carlo sample in Section 3.1 takes 30 s and
 the real data analysis takes about 10 s. As far as the dimensionality is concerned, the capacity
 and speed depend on the particular FPCA algorithm used. We have used the principal compo
 nent analysis by conditional expectation algorithm PACE which can deal with fairly large data
 (http : //anson.ucdavis . edu/~ntyang/PACE/). For dense functional data with 5000
 or more dimensions, pre-binning is suggested to accelerate the computation. An FPCA algo
 rithm geared towards extremely large dimensions (with an identical time grid for all subjects) is
 also available; for instance, Zipunnikov et al. (2011) considered functional magnetic resonance
 imaging data with dimension of the order of 0( 107) through partitioning the original data
 matrix to blocks and performing singular value decomposition using blockwise operation.

 Although we have focused on the FPC-based analysis in this work, the CSEFAM framework
 is generally applicable to other basis structures, e.g. splines and wavelets, where the additive
 components are functions of the corresponding basis coefficients of the predictor process. It
 may also work for non-parametric penalties other than COSSO, such as the sparsity smooth
 ness penalty that was proposed in Meier et al. (2009). The method proposed may be further
 extended to accommodate categorical responses, where an appropriate link function can be
 chosen to associate the mean response with the additive structure. Another possible extension
 is regression with multiple functional predictors, where component selection can be performed
 for selecting functional predictors. In this case the additive components that are associated with
 each functional predictor need to be selected in a group manner.
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 Appendix A: The estimation procedure

 To estimate £, , we assume that the functional predictors are observed with measurement error on a grid
 of T. We adopt two different procedures for functional data that are either densely or sparsely observed.

 (a) Obtain £, in the dense design. If {*,(/)} are observed on a sufficiently dense grid for each subject,
 we apply local linear smoothing to the data {U,*o};= 1 n, individually, which gives the smooth
 approximation j0, (0- The mean and covariance function are obtained by /2(f) = (1/n) £"=l x(t) and

 G(s,t) = (l/n)J2{xi(s)-ß(s)}{xi(t)-ß(t)}
 ;=i

 respectively. The eigenvalues and eigenfunctions are estimated by solving the equation

 G(s,t) cf)k(s)ds = \k ék(t) x<
 for Xk and </>*(•), subject to fT(f>2k(t)dt=\ and fT4>p(t)</>k(t)dt = 0 for m^k, k,m = \,...,s.
 The FPC scores are obtained by = /T {*,■(/) — fi(t)}4>k(t)dt. Finally CDF transformation yields
 Ca = *&; oX).

 (b) Obtain Ç, in the sparse design. We adopt the principal component analysis through the PACE
 algorithm that was proposed by Yao et al. (2005), where the mean estimate fi(t) is obtained by using
 local linear smoothers based on the pooled data of all individuals. In particular,

 fi(t) = Ê É K{(hj ~ t)/h}{xij -ßo-ßi {'- hj)}2
 i= l j= l

 with K(-) a kernel function and b a bandwidth. For the covariance estimation, denote Giß = {*,•; —
 fi(hj)}{xu — fi (tu)} and let K* (■, ■) be a bivariate kernel function with a bandwidth h. One minimizes

 t E K*{(hj ~s)/h, (tu - t)/h}{G,ß -ßoo-ß\i(s- tu) -ßa(t - ta)}2.
 •=i m

 One may estimate the noise variance v2 by taking the difference between the diagonal of the surface

 estimate G(t, t) and the local polynomial estimate obtained from the raw variances G,^) : j =
 1,..., Ni ; j = 1,..., n }. The eigenvalues or eigenfunctions are obtained as in the dense ca^e. Tip esti
 mate the FPC scores, denote x, — (jc,i, ..., xiNl)J, the PACE estimate is given by fjk - \k(j)ilcÊx. (x, -
 ßi), which leads to (ik = V(£ik; 0, \k),k= 1,... ,s. Here <f)ik - (4>k(ta),..., <j>k(tiNi))T, p, = (p(tn),...,
 p(tiNj))T, and the (j,l)th element (£Xl)jj = G(tjj, tu) + v bß with 6ß= 1 if j = l and 5;/ = 0 otherwise,
 and '»'is generic notation for the estimated parameters.

 We next estimate /9 e IP by minimizing expression (6), following the COSSO procedure conditional on
 the estimated values Ç,. It is important to note that the target function (6) is equivalent to

 d/») £{y; - /(C)}2 + A0 E II Pkf\\2 + A É Ok,
 1=1 k= 1 k=\

 subject to 6k ß 0 (Lin and Zhang, 2006), which enables a two-step iterative algorithm. Specifically, one first
 finds c 6 ZÏÏ," and b&3% by minimizing

 (y - R„c - M„)T(y - Rwc - bl„) + nA0cTR»c, (9)
 with fixed 0 = (9i,..., 9S)T, where y = (yi,..., yn )T, Aq is the smoothing parameter, 1„ is the n x 1 vector of
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 Structured Functional Additive Regression 597
 • ~~ k .. ..

 Is, Rfl = E£=1 9kRk and Rj is the reproducing kernel of H , i.e. Rk — {Rk((ik, Ç,k)}t^i,j^n- This optimization
 is exactly a smoothing spline problem. We then fix c and b, and find 6 by minimizing

 (z-Q0)T(z-Q0) subject to 0k ^ 0; (10)
 k=1

 where z = y — \n A0c — bln and Q is an n x s matrix with the fcth column being Rkc. This step is the same as
 calculating the non-negative garrotte estimate by using M as the tuning parameter. On convergence, the
 final estimation of / is then given by /(£) = E"=1 c, R§(Çj, 0 + b.

 Regarding the choice of tuning parameters, besides the sufficiently large initial truncation s, the most
 relevant are Ao and M in the COSSO step, whereas the bandwidths in the smoothing step of FPCA are
 chosen by traditional cross-validation or its generalized approximation. For more details, see Fan and
 Gijbels (1996) for the dense case and Yao et al. (2005) for the sparse case. We suggest selecting A0 by using
 generalized cross-validation, i.e. GCV(A0) = (y — y)T(y — y)/{« 1 tr(7 — A)}2 with y = Ay. For choosing
 M, we adopt the Bayesian information criterion BIC, i.e. BIC(Af) = (y-y)T(y-y)/<r2-(-log(n)df where
 df is the degree of freedom in problem (10), whereas an alternative is cross-validation which requires more
 computation.

 Appendix B: Technical assumptions and proofs

 We first lay out the commonly adopted regularity conditions on the functional predictor process X for
 the dense design. Recall that {f,-y,;'= 1,.2V,-;i= 1,.is the grid on the support T over which the
 functional predictor xt(f) is observed. Without loss of generality, let T = [0, a]. Denote ti0 = 0, tiNj = a and
 Td = [-d, a+d] for some d > 0. Denote the bandwidth that is used for individually smoothing the ith
 trajectory as b,.

 Condition 1. Assume that the second derivative X(2){t) is continuous on Td with probability 1 and
 J £'[{Xw(0}4]ch< oo with probability 1 for k = 0,2. Also assume that E(efß <oo, where e(J is the IID
 measurement error of the observed trajectory x;.

 Condition 2. Assume that there exists m = m{n) -> oo, such that min, A, > m as n ->■ oo. Denoting
 Ai=max{tij — tij-i : j= 1,...,Ni +1}, assume that max, A, = 0(m_1).

 Condition 3. Assume that there is a sequence b = b(n), such that cb C min, è, < max, b, ^ Cb for some
 C)c>0. Furthermore, b-* 0 and m -* oo as n -*■ oo in rates such that (mb)~x +b4 + m '2 = 0(n~l), e.g.
 b= 0(/r1/2) and m = 0(n3'2). Also assume that the kernel function K(-) is compactly supported and
 Lipschitz continuous.

 Denote the operator that is associated with the covariance function G(s, t) by G, and define ||G [|| =
 fT JTG2(s,t) dsdt. Denote the smoothed trajectory of X,(t) by using local linear smoothing with band
 width bi by X, and the estimated eigenvalue, eigenfunction and FPC score in the dense design by \k, <j>k
 and £ik respectively. Since the decay of eigenvalues plays an important role, define 5, = Ai - A2 and Sk =
 min^t(Aj_i - A,, A; - A;+i) for k ^ 2.

 Lemma 1. Under conditions 1-3 we have
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 The following lemma characterizes the discrepancy between the underlying and estimated transformed
 variables Qk, as well as the boundedness of the derivative of the resulting estimate /.

 Lemma 2. Under assumption 2 in Section 2.2 and condition 1-3, we have

 10,* - 0*1 = <W{I|X,' - X«llu + (<E' ll^llu +10* I) Il G - Gils}], (14)

 -±(±\L-<#\) =Op(n~l). (15) n ,•= i \k=i J

 Additionally, if assumption 1 holds, let / be the estimate of /o obtained by minimizing expression (6).
 Then there is a constant p > 0, such that

 3/(O
 30*
 ^P, (16)

 uniformly over 1 ^ k ^ .s and 1 ^ i ^ n.

 B. 1. Proof of lemma 2
 From lemma 1 and assumptions 2, we have

 10,* - 0*1 = (Ô*-0*)^-*(0*, AU + (Â* - AUt^-*(0*, AU +op(\ik-t;ik\ + |Âjfc - A,I)
 VÇik OAk

 d d
 ^ IÔ;*— Oi*l Irr^^fô'*, Ajt)| + |Âfc — Afc| Irr-^IO*» Ai)| +Op(|Çrt —0*1 + (|Â* — A^l)

 OÇ,* OAk

 = 0P[A^{||i,-Xi||t2 + (^-1||2f1||t2 + ie*|)||G-G||5}].

 Abbreviate E"=1 to E,, E|=1 to E* and Op{-) to Since E\\Xj -X,||L2 <£(||X; - X,-||22)1/2 = 0(n~l/2),
 it is easy to see that E(n~l E,- ||X, - X,||L2) = E\\Xt — X,-||t2 = 0(n~x/1), To show result (15) for any fixed 5,
 note that

 "_1 e(È IC.-*-Otl) E È IC,*-0*l2
 i \k=l / i k=l

 Then

 - EE (C;* -0*)2~ - ÊÊ Af{||X; - Xi||t2 + (6^ ||Xi||t2 + I0*I)IIG - Gils}2
 n 1=1 *=1 n i=l *=1

 EE \V\\xi-xi\\l2 + - EE A2VP-lli2llG-G||2s
 Wik M i k

 + - EE a^7io*I2IIG-G||| + - EE Af 11E -XillzA"1 iix,mig-ghs
 ft i k ft i k

 + - EE A*7IIE - x,||L216*1 ||G - Gils + - EE EVlO,*ll|AO ||L2 ||G - G||2.
 ft i k ft i k

 Denoting the additive terms in this formula E\-E6, we have

 El = (E A27) E IIE - X.llu) = Op(n-1),

 Ei = Il G - G||2 (ÇA2V) («"' E P.lli:) = Op{n~\

 £3 = ||G-G||2{(l/«)EEA27IOi*l2} = GP(«-1), 1 i k }
 as

 £f«_1EEA*7lOi*l2) =EA*7+I = 0(U
 \ i=l k=\ / k

 For £4, applying the Cauchy-Schwarz inequality,

 £4~HG-G||s fè A*V) (~t ll^-X/lltJll^lltJ \*=i J \n i=i
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 «CIIG-Olk (g w) /{(; g IA-*,'IÏ=) (; g isii.
 = Op(n~]'2) 0(1) Op(n~1'2) 0/1) = 0/n"1).

 Similarly, we have £5 = O/n"1) and £6 = Op(n~ '), using the facts that £{(E{=1 Af'IC/)2} ^sE{=1 A*7+1 =
 0(1) and £(E{=1 A^VlC/tl)2 A^+1<5/2 = 0(1). This proves result (15).

 We now turn to inequality (16). For any / g T\ we have

 /(C) = </(•), ä(C> •))*• ^ II/II <*(C, •). *(C, -)>^2 = II/II Ä1/2(C. C),

 where R(-, ■) is the reproducing kernel of space T* and (•, -)jn is the corresponding inner product. Therefore,

 3/(C) / dR(C, ■) \ / 9Ä(C, ) 3(?(C,0\1/2
 "S/fc \ "Silt / jrs \ O^ik d^iic / jps

 Since J(f) is a convex functional and a pseudonorm, we have

 t\\Pkf\\2^J2(f)^t\\Pkf\\2- (17)
 k= 1 k= 1

 We first claim that ||/||<./(/), because ||/||2 = 32 + E{=1 \\Pk f\\2. If 6 = 0, inequality (17) implies that j|/|| <
 /(/). If b / 0, we can write J(f)=b+ J(J) = b+ E{=1 \\Pkf\\. For minimizing expression (5), it is equivalent

 tq substitute J(f) with J(f), and inequality (17) implies that ||/|]2 =b2 + E{=1 \\Pkf\\2 / 3g+ J2(f) C
 J (f). Therefore we have ||/|| < J (J) in general. Secondly, owing to the orthogonality of {H }, we can
 write R{u, v) = R\{u\, i>i) + Riiui, v2) +... + Rs{us, vs) by theorem 5 in Berlinet and Thomas-agnan (2004),
 where Rk(-, •) is the reproducing kernel of the subspace H . For H being a second-order Sobolev Hilbert
 space, we have Rk(s,t) = h\{s)h\{t) + h2(s)h2(t) -ii4(\s -1\), with h\(t) — t—\, h2(t) = {h]{t) - l/12}/2
 and hn{t) = {h\{t) - /i2(t)/2 + 7/240}/24. Therefore Rkis, t) is continuous and differentiable over [0, l]2
 and we can find constants ak and bk such that

 (Rk(u,-),Rk(u,-))jrs<ak,

 3Rk(u,-) 3Rk(u,-)
 du du

 Kbk,
 Fs

 for k = 1 ,s. One can find a uniform bound c with (3/?(C, O/SCvo 9£(C, 0/9Ct)r> Cc. However, an /
 minimizing expression (6) is equivalent to minimizing n"1 E, {y, — /(C)}2 under the constraint that J( f) ^ c
 for some c > 0. Therefore let p = c1/2c; we have

 \ "S ik oÇik / ps aCft

 Before stating lemma 3, we define the entropy of Ts with respect to the ||-||„ metric. For each lo > 0,
 one can find a collection of functions {gi,g2,..., g s} in T5 such that, for each g € P\ there is a j = j(g) e
 {1,2,... W} satisfying ||<? —flqIU Let M(a;,Ps, ||-|L) be the smallest value of N for which such a cover
 of balls with radius w and centres g\,g2, ■ ■ ■ ,gN exists. Then H(uj. Ts, ||-||„) = log{LI(cL,',Ps, |j ■ ||„)} is called
 the w-entropy of Ts.

 _ ~k ~k

 Lemma 3. Assume that Ts = {1} ® E{=1 H , where H is the second-order Sobolev space. Denote the
 ce-entropy of {/eF : J(f) ^ 1} by H{uj, {/ e Ts : J(f) ^ 1}, ||-||„). Then

 H{co, {fer- J(f) < 1}, ||-||„) < AuT1/2, (18)
 for all (j > 0, n ^ 1, and for some constants A > 0. Furthermore, for {k,}"=i independent with finite
 variance and J(fo) > 0,

 l(e»/-/o)n| _n (n-\ß
 II/- /o||n/4{7(/) + 7(/o)}1/4

 SUP-—, ..3/4 = Op(n ' )■ (19)

 Inequality (18) is implied by lemma A.l of Lin and Zhang (2006). As the {e, } satisfy the sub-Gaussian
 error assumption, the same argument as in Van de Geer (2000) (page 168) leads to result (19). We are now
 ready to present the proof of the main theorem.
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 B.2. Proof of theorem 1
 We first centre the functions as in the proof of theorem 2 in Lin and Zhang (2006) so that results ( 18) and

 (19) hold. Write /(Ô = c + /i(Ci)+...+ /J(C) = c + 7(Ô, such that JIJL, fk(Çu) =0, and write /0(O =
 co + /oi (CO +■ ■ •+ /os(C) = co + foiO such that EjL, /or(0,t) = 0 and f(Q = c + 7i (Ci) +...+ /,((,). Since
 the target function can be written as

 Ô(/IC) = - tbi - /(C)}2 + r2„ J(f) = - £{co + 7o(C) + e, - C - /(C)}2 + r2 JfJ)
 n ,=! n i=1

 = (c0 - c)2 + -(c0 - c) £ e, + - £{7o(C) + £i ~ /(C)}2 + £ Z(/),
 n i n j— ]

 we must have that c minimize {(c0 -c)2 + 2n_1(c0 -c)E, e,} and the additive parts of / minimize the rest.
 Therefore we have c-co = £,£,•, implying that |c — col = Op(n~l/2). Denote

 Ô(/IC) = - £{7o(C)+ e, - 7(C)}2 +£ j{f). (20)
 n ,=i

 We can substitute t2 J (f) with r2 J(f) in equation (20). In the rest of the proof we_ suppress the tilde nota
 tion of 70 and/forconvenience. Since/ = argmin/e^ g(/|{C}), we have g(/|{C}) ^ ß(/ol{C}), which
 implies that

 - £{/o(C) + Si - 7(C)}2 + Tn J(f ) C - £{/o(C) + Si ~ /o(C)}2 + £ ■/(/„).
 n i=i n i=i

 Simplification of this inequality gives

 - £ {/o(C)-7(C)}2 + £a7)< - tsi{7(C)-/o(C)} + - E{/o(C)-/o(C)}2 + r2Z(/o). (21)
 n (=i n 1=1 n i=i

 Let g(-) = /(•) — /o(-). Since both / and /o are in J7*, getF". Taylor series expansion of g(-) gives g(Ç) =
 fl(O + flfl(O(C-O + o,(Sî=ilCi-ôtl).foranCe(0,l)',whereDff(O(C-O = SjUi{3ff(C)/3Ct}(Ci-0t)
 Then we have

 - Ê£/5(C)=- è£if(C)+- Ê«/{ôff(C)(c--c)+°p (é iCt-Cti)), n i=l n i=l n i=l l \*=1 / J
 and we plug it into the right-hand side of inequality (21), leading to the upper bound

 -£ci{7(C)-/o(C)} + -X>
 n ,=i n l=i

 {d/(C)-o/o(C)}(C-C)+M £ IC«—C-jfcl
 jt=t

 + - £ {/o(C) - /o(C)}2 + £ Z(/o). (22)
 « i=i

 Applying lemma 3, we can bound the first term in expression (22) as follows:

 - t Si{hQ-MQ}=2(s, f - f0)n^Op(n-l'2)\\f - fofn/4{J(f) +
 n i= 1

 For the left-hand side of inequality (21 ), applying the Taylor series expansion, /(C) = /(C) + D /(C) (C ~~
 C) + Op(S*=1 ICk - Oil), to the first term

 - £
 n ,•=i
 £ {/o(C)-7(C)}2 = - tluQ-fiQ-DhCMi-Q-oJ£ IC*-C*l)} i=i « i=i I \t= l /J

 =-£[{/o(C)-7(C)}2+{ö7(C)(C-C)}2-2{/o(C)-7(C)}ß7(C)(C-C)+Ä,],
 « i=i

 where

 *f={o"(éiCt-Cti)} -«P(É iâ-cii){/o(c)-7(o-ô7(c)(c-c)}
 Substituting the terms on both sides of inequality (21), we obtain
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 II/ - /oil2 + - Ê [{D/(CXÔ - C)}2+2{/(C) - -O + Ril+h J(j)
 n i=i

 C oP(n-l'2)\\f-f0\\l'*{j(f) + j(f0)}1'4 +l-t {MO ~ MÔY+r2 J{fb)
 n 1=1

 2 "
 + -E Si

 n f=i  {dhO-dMOHCi-O+oP(e iE-0*l)
 Dropping the positive term n~x £,■ {D/(C,)(C ~ C)}2 on the left-hand side and rearranging the terms,

 II/-/oil2 +r„2/(/) ^ Op(n-122)||/- /o||2/4{7(/) + X/o)}1/4 + r2 J(f0) + 7", + T2 + T3 + - £ e/2,
 « ,=1

 + - E «1/ (23)
 « ;=i

 where

 r, - -2«-1 E{/(C) - MO}DhO(Ci - O,
 i

 T2 = 2nx Zd[{DHO-DMOKCi-Ol
 i

 h=n~lE{MO-MÔ}2,

 Ru=oP (e iE - c,ii){/o(C) - ho -Dhod - o>
 and R2i=op(Esk=l\Çik — (ii(\)

 For T\, by the Cauchy-Schwarz inequality and lemma 2, we have that h <2/(11/-/o||2A), where

 a = - t{ E ^(E-O*)}^- e(e ICtt-&l)2 = Op(n"1), n ,=i ( i=i oQh ) n i=i \k=\ )

 i.e. T\ — II/-/oL Op(n~l/2)-From assumption 1 and result (16) of lemma 2, there are independent random
 variables {B,} with E(Bj) < 00 such that max^ia/fQ/aC* - 9/o(C)/90*l} < 5.11/ - /oil 12- Also note that
 WçWn ^ IIbIIi.2 almost surely by the strong law of large numbers. Therefore we have, for some constant c,

 /c- E N E W-/oME-&l=2||/-/0||*(- £ ls/,1 £ lE-Gd) « i=l *= 1 V" i=l k=l /

 <c||/-/o||„  ^Î>/b2)Ue(£iE-0*I " ;=l J ln i= 1 V/fc=l
 = 11/-Zolin Op(«"1/2),

 1 n
 T3 = - e

 n ,=i  Jk=l »Si*

 2 C n / s * \ 2
 <"£ £IC*-0*I = Op(n~1)
 n i=i \*=i /

 For the remaining terms, n 1 £"=1 £,fl2i = op{T2), and

 1£ Ru-= l- £ oP(£ iE -0k\){MO - /(C)} --±Op(± iE -0*1 )ö/(C)(C -C) « 1=1 » 1=1 \*=i / n i= 1 V*=i

 Co„(ri) +  ^ £ We iE-0*1)} ^ E{ö/(0(C-C)}2 .« i=i i v*=i /j « 1=1

 -1/2

 = °p(Ti) +o„(n ').

 We can now simplify inequality (23) as follows:

 11/- Zoll2 +T2 /(/) < Op(n"1/2)||/-/ollf {•/(/) + X/o)}1/4 + 11/-Zolin Op(n~l/2) + O^1) + r2 7(/0).

 If Op(n-'/2)||/-/o||2/4{7(/) + 7(/o)}1/4 > || / - ML Op(n~1'2) + Op{n~x) +r2 7(/0), we have

 II/- /oll2 +E /(/) C Op(n~l'2)\\f- M\l/4{J(f) + J(fo)Yh (24)
 otherwise,
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 II/" Ml +r2n J(f) SS II/- fo\\n Op(.n'l/2) + Op(n~l) + 2T2 J(f0). (25)

 The proof will be completed by solving them separately. For the case of inequality (24), there are two
 possibilities.

 (a) If J(f) ^ 7(/0), inequality (24) implies that r„273/4(/) ^ Op(n~l,2)\\f - /0||3/4, and

 Op(n-1/2)||/-/o||f}I/3 = Op(n-,/6)||/-/o||y4r„-2/3.

 Therefore,

 11/ - /oil* ^ 0P(«"1/2)ll/ - /ollf JX'\f ) ^ Op(n-2/3)||/-/oil«/2'3,

 i.e.

 Il/-/olln = 0p(«"2/3) Op(r„-2/3),

 7(/) = Op(n-4/3)Op(r„-10/3).

 (b) If /(/) < /(/o), then /(/) = Op{7(/o)}Op(l), and inequality (24) implies that

 II/- /o II* < Op(n -1/2)||/ - /„||3/4 J]1/4(/„),

 which leads to

 II/- /oL = Op(n-2/5) y1/5(/0),

 Xf) = J(fo) Op( 1).

 Note that results (26) and (27) are equivalent under condition (7).

 For the case of inequality (25), if \\f-fo || OJn ~1/2) >Op(n'l) + Irl 7(/0), we have || / - /0||2 + r2 /(/) ^
 II/ — /oL Op{n~l/2y otherwise ||/ - /0||2 +rf J(f) < (/(rT1) + 4r2 7(/0). The first inequality implies that

 (26)

 (27)

 J(f)= Op(n~l) Op(t~2).
 (28)

 For the second inequality, if Op(n ') < 4r2 7(/0), we have ||/ - /oil2 + r2 7(/) < 8r2 7(/0), implying that

 ll/-/oll„ = Op(r„)7I/2(/o),

 — Op(l).

 If Op(n-') >4r2 J(/o) and ||/- /oil2 +r„2 //) < O^n"1), then

 ll/-/olU = 0P(n'1/2),

 J(f)=Op(n-]呭ਯ䘱‷⸶‸⸷‸⸷㤠呦ਨ J(fp(t~2).⥔樱㐀᐀ఀᄀ
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