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Structured Functional Additive Regression 583

but introduce noise. Therefore a desirable strategy is to identify ‘important’ components out of
a sufficiently large number of candidates, whereas to shrink those ‘unimportant’ ones to 0.

With these considerations, we seek an entirely new regularization and estimation framework
for identifying the sparse structure of the FAM. Model selection that encourages sparse struc-
ture has received substantial attention in the last decade mostly due to the rapidly emerging high
dimensional data. In the context of linear regression, the seminal works include the lasso (Tib-
shirani, 1996), the adaptive lasso (Zou, 2006), the smoothly clipped absolute deviation estimator
(Fan and Li, 2001) and the references therein. Traditional additive models were considered by
Lin and Zhang (2006), Meier et al. (2009) and Ravikumar et al. (2009); and extensions to general-
ized additive models were studied by Wood (2006) and Marra and Wood (2011). In comparison
with these works, sparse estimation in functional regression has been much less explored. To
our knowledge, most existing works are for functional linear models with sparse penalty (James
et al., 2009; Zhu et al., 2010) or L2-type penalty (Goldsmith et al., 2011). Relevant research for
additive structures is scant in the literature. In this paper, we consider selection and estimation
of the additive components in FAMs that encourage a sparse structure, in the framework of a
reproducing kernel Hilbert space (RKHS). Unlike in standard additive models, the FPC scores
are not directly observed in FAMs. They need to be firstly estimated from the functional covari-
ates and then plugged into the additive model. The estimated scores are random variables, which
creates a major challenge to the theoretical exploration. It is necessary to take into account the
influence of the unobservable FPC scores on the resulting estimator properly. Furthermore, the
functional curve X is not fully observed either. We typically collect repeated and irregularly
spaced sample points, which are subject to measurement errors. Measurement error in data
adds extra difficulty for model implementation and inference. All of these issues are tackled
in this paper. We propose a two-step estimation procedure to achieve the desired sparse struc-
ture estimation in FAMs. For the regularization, we adopt the COSSO (Lin and Zhang, 2006)
penalty because of its direct shrinkage effect on functions in the RKHS. On the practical side,
the method proposed is easy to implement, by taking advantage of existing algorithms of FPCA.

The rest of the paper is organized as follows. In Section 2, we present the proposed approach
and algorithm, as well as the theoretical properties of the resulting estimator. Simulation
results in comparison with existing methods are included in Section 3. We apply the proposed
method to the Tecator data in Section 4, studying the regression of protein content on the
absorbance spectrum. Concluding remarks are provided in Section S, whereas details of the
estimation procedure and technical proofs are deferred to the appendices.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Structured functional additive model regression

Let Y be a scalar response associated with a functional predictor X (f),€ 7, and let {y;, x;(-)}}_;
be independent, identically distributed (IID) realizations of the pair {Y, X(-)}. The trajectories
{xi(#) :1 € T} are observed intermittently on possibly irregular grids t; = (#;1, ..., t,'N,.)T. Denote
the discretized x;(¢) in vector form by x; = (x;1,..., xiNi)T. We also assume that the trajectories
are subject to IID measurement error, i.e. x;; = x;(t;;) + e;; with E(e;j) =0 and var(e;;) = V2.
Following the FPCA of Yao et al. (2005) and Yao (2007), denote by §; o, = (§i1,i2, - )T
the sequence of FPC scores of x;, which is associated with eigenvalues {1, Ap,...} with A; >
A >...20.
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584 H. Zhu, F. Yao and H. H. Zhang

2.1.  Proposed methodology
As discussed in Section 1, the theory of FPCA enables isomorphic transformation of random
functions to their FPC scores, which brings tremendous convenience to model fitting and theo-
retical development in functional linear regression. To establish a framework for non-linear
and non-parametric regression, we consider regressing the scalar responses {y; } directly on the
sequences of FPC scores {; ., } of {x;}. For the convenience of model regularization, we would
like to restrict the predictor variables (i.e. FPC scores) to taking values in a closed and bounded
subset of the real line, e.g. [0, 1] without loss of generality. Thisis easy to achieve by taking a trans-
formation of the FPC scores through a monotonic function ¥ : R — [0, 1], for all {{;}. In fact
the choice of ¥ is quite flexible. A wide range of cumulative distribution functions (CDFs) can be
used; see assumption 2 in Section 2.2 for the regularity condition. Additionally one may choose
VU so that the transformed variables have similar or the same variations. This can be achieved
by allowing ¥(-) to depend on the eigenvalues { A}, where {\;} serve as scaling variables. For
simplicity, in what follows we use a suitable CDF (e.g. normal), denoted by ¥(-, A;), from a
location-scale family with zero mean and variance A. It is obvious that, if &;s are normally
distributed, the normal CDF leads to uniformly distributed transformed variables on [0, 1].
Denotmg the transformed variable of & by (i, i.e. ik =¥ (&, M), and denoting ¢; o, =
(Gi1, ¢, .. )T, we propose an additive model as follows:

=bo+ Z for(Cir) + & (3)

where {¢;} are independent errors with zero mean and variance o2, and J0(Ci, 00) = b0 +
22| for(Gix) is a smooth function. For each k, let H* be the Ith-order Sobolev Hilbert space on
[0, 1], defined by

H*([0,1])={glg" is absolutely continuous for v=0,1,...,/— 1,90 € L2}.

One can show that H* is an RKHS equipped with the norm

-1 1 2 1
ngn2=zo{ /0 g(")(t)dt} + /0 gV dr.

See Wahba (1990) and Lin and Zhang (2006) for more details. Note that H* has the orthogonal
decomposition H*={1} @ A" Then the additive functlon fo corresponds to F which is a direct
sum of subspaces, i.e. F = {1} ® L2 i w1th fox € H for all k. It is easy to check that, for any
f=b+3%ifr € F, we have | f|*= bi Dt fell?. In thlS paper, we take I =2 but the results
can be extended to other cases straightforwardly. To distinguish the Sobolev norm from the
L?-norm, we write ||| for the former and ||| ;2 for the latter.

As motivated in Section 1, it is desirable to impose some type of regularization condition
on model (3) to select important components. An important assumption that is commonly
made in high dimensional linear regression is the sparse structure of the underlying true model.
This assumption is also critical in the context of functional data analysis, which enables us to
develop a more systematic strategy than the heuristic truncation that retains the leading FPCs.
Although widely adopted, retaining the leading FPCs is a strategy that is guided solely by the
covariance operator of the predictor X, and therefore it fails to take into account the response
Y. To be more flexible, we assume that the number of important functional additive components
that contribute to the response is finite, but not necessarily restricted to the leading terms. In
particular, we denote Z the index set of the important components and assume that |Z] < oo,
where | - | denotes the cardinality of a set. In other words, there is a sufficiently large s such that
T<{l,...,s}, which implies that fx =0 as long as k >s. The FAM is thus equivalent to
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Fig. 1. Plots of component selection and estimation from one simulation: (a) generalized cross-validation
versus \g; (b) BIC versus M; (c) empirical L-norms at various M-values ( , i yfoi— — —, fa;
----- s fa;+ -+ -+, f5) (1, tuning parameter chosen in (a)—(c)); (d)—(f) estimated fs (— — =) versus true f;s
) for k= 1,2, 4

It is noted that the subjective truncation based on the explained variation in X is suboptimal
for regression purpose (for conciseness the results are not reported). Therefore, in Table 1,
we report (under the ‘counts for the following model sizes’ columns) the counts of selected
numbers of non-vanishing additive components in the CSEFAM, and the counts of the number
of significantly non-zero additive components in FAM, FAMq, and FAMq;. For convenience
of display, only the counts for model size up to 8 are reported. The ‘selection frequencies for
the following components’ columns of Table 1 record the number of times that each additive
component is estimated to be non-zero for the first eight components. For the MARS method,
if the jth component f ; is selected in one or more basis functions, we counted it as 1 and 0
otherwise. Regarding the prediction error (PE), we use the population estimate from the training
set (e.g. the mean, covariance and eigenbasis) to obtain the FPC scores for both training and
test set; then we apply the { f,} estimated from the trammg set to obtain predictions for {y;}
in the test set. The PEs are calculated by n~! X i — ,) . From the top panel of Table 1,
we see that, under the dense design, the CSEFAM chooses the correct models (with model size
equal to 3) 61% of the time whereas the FAMg method always overselects (o =0.05 is used to
retain significant additive components). The PE of CSEFAM is the smallest among the three
non-oracle models. Compared with the oracle methods, the CSEFAM has less prediction power
than FAMo; (slightly) and FAMg,, which can be regarded as the price paid by both estimating
the ¢ and selecting the additive components.
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592 H. Zhu, F. Yao and H. H. Zhang

rest are ‘smaller’” additive components, each randomly selected from { fo1, fo2, fo4} with equal
probability and rescaled by a smaller constant uniformly chosen from [1/17,1/14]. The data
generated have a lower (more challenging) SNR around 0.60, among which 8.7% are from the
‘smaller’ components. The results are listed in the top panel of Table 3, which shows that the
CSEFAM tends to favour smaller model size than FAMg. We also observe that the model size
of FAMT tends to be smaller than for the CSEFAM since FAMT adopts more truncation with
the 99% threshold. It is important to note that the CSEFAM in fact yields PE and AISE that are
substantially smaller than the FAMg method, and the results of the CSEFAM are comparable
with that of FAMT. In study II, we replace the three larger components by the smaller ones;
therefore all additive components have roughly equal small contributions. We select the scaling
constant uniformly from [%, %] so that the total SNR is 0.30 on average. The results listed in
the bottom panel of Table 3 suggest that the CSEFAM now tends to select more components
(i.e. to produce non-sparse fits) and again yields smaller PE and AISE than both the FAMg
and the FAMT methods. Overall, this simulation suggests that the proposed CSEFAM is still a
reasonable option even if the underlying true model is non-sparse. It is also worth mentioning
that the gain of the CSEFAM is more apparent in the challenging settings with low SNR.

4. Real data application

We demonstrate the performance of the proposed method through the regression of protein

Fig.2. (a) Nearinfrared absorbance spectral curves and (b) the first five estimated eigenfunctions ( ,
o1(t); » Ga(t); = = = Ba(t);— — —, glt);-- -+ » 05(t))
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Table 4. Prediction results on the test set compared with several other methods+

Results for the following methods:

CSEFAM FAM MARS  Partial  Functional
PC20 least linear
s=10 s=20 PC5 PCI0O PC20 squares, model,

PLD20 AIC7

PE 222 072 398 213 084 077 1.02 1.50
Rg 082 094 068 083  0.93 0.93 0.92 0.88

+PC10 indicates that 10 FPC scores are used. PLD20 indicates that the number of partial
least squares directions used is 20. AIC7 indicates that seven FPC scores are used based
on the Akaike information criterion.

determination of the tuning parameters in the COSSO step is guided by the generalized cross-
validation criterion for )y, which gives Ao =0.0013, and by tenfold cross-validation for M, which
gives M = 10.0. The estimated additive components are plotted in Fig. 3, from which we see that
the CSEFAM selects 12 out of the 20 components, { f1,. .., fs, f10- f13» F 16 f 17}, and the other
components are estimated to be 0. To assess the performance of the method proposed, we report
the PE on the test set in Table 4, where the PE is calculated in the same way as in Section 3. We
also report the quasi-R2 for the test set, which is defined as

Ry=1- 301 = 5%/ S0 = 5

To show the influence of the initial truncation, we also use a smaller value of s, s =10 in the CSE-
FAM, which gives suboptimal results. This suggests that we shall use a sufficiently large s to begin
with. The FAM is carried out with the leading five, 10 and 20 FPCs. An interesting phenomenon
is that, though the high order FPCs (over 10) explain very little variation of the functional
predictor (less than 1%), their contribution to the prediction is surprisingly substantial. Such
phenomena are also observed for the MARS method and partial least squares (which is a
popular approach in chemometrics; see Xu ez al. (2007) and the references therein). One more
comparison is with the classical functional linear model with the estimated leading FPCs served
as predictors, where a heuristic AIC is used to choose the first seven components.

From Table 4, we see that, when the initial truncation is set at 10, the proposed CSEFAM
is not obviously advantageous compared with the FAM. As the number of FPCs increases to
20, the method proposed provides a much smaller PE and higher Ré than all other methods.
A sensible explanation is that, for these data, most of the first 10 FPCs (except the ninth) have
non-zero contributions to the response (shown in Fig. 3); therefore penalizing these components
does not help to improve the prediction. However, as the number of FPC scores increases, more
redundant terms come into play, so the penalized method the CSEFAM gains more prediction
power. We have repeated this analysis for different random splits of the training and test sets,
and the conclusions stay virtually the same.

5. Discussion

We proposed a structure estimation method for functional data regression where a scalar
response is regressed on a functional predictor. The model is constructed in the framework
of FAMs, where the additive components are functions of the scaled FPC scores. The selection



Structured Functional Additive Regression 595

and estimation of the additive components are performed through penalized least squares using
the COSSO penalty in the context of RKHS. The method proposed allows for more general
non-parametric relationships between the response and predictors and therefore serves as an
important extension of functional linear regression. Through the adoption of the additive struc-
ture, it avoids the curse of dimensionality that is caused by the infinite dimensional predictor
process. The method proposed provides a way to select the important features of the predictor
process and to shrink the unimportant ones to 0 simultaneously. This selection scenario takes
into account not only the explained variation of the predictor process, but also its contribution
to the response. The theoretical result shows that, under the dense design, the non-parametric
rate from component selection and estimation will dominate the discrepancy due to the unob-
servable FPC scores.

A concern raised is whether the sparsity is necessary in the FAM framework. The sparseness
assumption in general helps to balance the trade-off between variance and bias, which may
lead to improved model performance. This can be particularly useful when part of the predictor
has negligible contribution to the regression. Even if the underlying model is in fact non-sparse
and we care only about estimation and prediction, the proposed CSEFAM is still a reasonable
option, as illustrated by the simulation in Section 3.3. We also point out that, when all non-
zero additive components are linear, the COSSO penalty reduces to the adaptive lasso penalty.
An additional simulation (which for conciseness is not reported) has shown that the method
proposed produces estimation and prediction results that are comparable with those of the
adaptive lasso. Moreover, the COSSO penalty requires that s < n, which does not conflict with
the requirement that the initial truncation s is chosen sufficiently large to include all important
features. In practice the number of FPCs accounting for nearly 100% predictor variation is often
far less than the sample size n owing to the fast decay of the eigenvalues. Finally both simulated
and real examples indicate that the model performance is not sensitive to s as long as it is chosen
to be sufficiently large.

On the computation side, our algorithm takes advantage of both FPCA and COSSO. On
a desktop with Intel(R) Core(TM) 15-2400 central processor unit with a 3.10-GHz processor
and 8 Gbytes random-access memory each Monte Carlo sample in Section 3.1 takes 30 s and
the real data analysis takes about 10 s. As far as the dimensionality is concerned, the capacity
and speed depend on the particular FPCA algorithm used. We have used the principal compo-
nent analysis by conditional expectation algorithm PACE which can deal with fairly large data
(http://anson.ucdavis.edu/~ntyang/PACE/). For dense functional data with 5000
or more dimensions, pre-binning is suggested to accelerate the computation. An FPCA algo-
rithm geared towards extremely large dimensions (with an identical time grid for all subjects) is
also available; for instance, Zipunnikov et al. (2011) considered functional magnetic resonance
imaging data with dimension of the order of O(107) through partitioning the original data
matrix to blocks and performing singular value decomposition using blockwise operation.

Although we have focused on the FPC-based analysis in this work, the CSEFAM framework
is generally applicable to other basis structures, e.g. splines and wavelets, where the additive
components are functions of the corresponding basis coefficients of the predictor process. It
may also work for non-parametric penalties other than COSSO, such as the sparsity smooth-
ness penalty that was proposed in Meier ez al. (2009). The method proposed may be further
extended to accommodate categorical responses, where an appropriate link function can be
chosen to associate the mean response with the additive structure. Another possible extension
is regression with multiple functional predictors, where component selection can be performed
for selecting functional predictors. In this case the additive components that are associated with
each functional predictor need to be selected in a group manner.
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Appendix A: The estimation procedure

To estimate ¢;, we assume that the functional predictors are observed with measurement error on a grid
of 7. We adopt two different procedures for functional data that are either densely or sparsely observed.

(a) Obtain ¢, in the dense design. If {x;(1)} are observed on a sufficiently dense grid for each subject,
we apply local linear smoothing to the data {t;;,x;;},=1.., individually, which gives the smooth

,,,,,

approximation ;(t). The mean and covariance function are obtained by /i(r) = (1/n) X1, X and
Gs.0)=(1/m) Yo {£:(s) = Als) Ha: () — Ao}
i=l
respectively. The eigenvalues and eigenfunctions are estimated by solving the equation

/T G (s, ¢ (s)ds =\ p (1)

for A« and ¢ (), subject to [, ¢i()dt=1 and 7 u®di()dr =0 for m#k, kym=1,...,s.
The FPC scores are obtained by £, = fT {£:(") — (1) } ¢, (1) dt. Finally CDF transformation yields
Cie =V (&5 0, \p).

(b) Obtain ¢; in the sparse design. We adopt the principal component analysis through the PACE
algorithm that was proposed by Yao et al. (2005), where the mean estimate /i(f) is obtained by using

local linear smoothers based on the pooled data of all individuals. In particular,

n N;
A =3 > K{(tij—0/b}{xij—o—Bit—1;))}

i=l j=1

with K(-) a kernel function and b a bandwidth. For the covariance estimation, denote G; a={xi—
A(t:;) Hxu — 4@ta) } and let K (-, ) be a bivariate kernel function with a bandwidth . One minimizes

Z{ Z#:l K*{(tij =)/, (ta = )/ H{Gijt = Boo — Bur (s — 1)) = Bralt — 1) }.

i=1j

One may estimate the noise variance v by taking the difference between the diagonal of the surface
estimate G(z, ) and the local polynomial estimate obtained from the raw variances {(z; 5 Gijp)ij=
I,...,Nii=1,...,n}. The eigenvalues or eigenfunctions are obtained as in the dense cqﬁe.lp esti-
mate the FPC scores, denote x; = (x;, ... ,x,»N,.)T, the PACE estimate is given by £, = A\, Xy, (xi—
A;), which leads to C;, = W(£,:0, ), k=1,...,s. Here ¢y = (d (t1), . .., peltin,) T, oy = (u(tin), . . .,
pu(tin,))", and the (j, th element (2y,) ;=G (;j, ta) + V26, with §; =11if j=1and §; =0 otherwise,
and ‘~’ is generic notation for the estimated parameters.

We next estimate fy € F* by minimizing expression (6), following the COSSO procedure conditional on
the estimated values ;. It is important to note that the target function (6) is equivalent to

(1/n)j21{y,~ (Y ;"E s “2“29*’

subject to 8, >0 (Lin and Zhang, 2006), which enables a two-step iterative algorithm. Specifically, one first
finds c € 22" and b € & by minimizing
(y —Rge — b1,)T(y — Rge — b1,) +n)oc Rye, )

with fixed 0= (,,...,0,)T, wherey=(y1,..., y.)T, Ao is the smoothing parameter, 1, is the n x 1 vector of
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A s | LA |
<2CIG -Glis (;l /\;2(75[') ‘/{ (; Zl IIXf~X.~IIiz> <; Z: IIXiIIiz>}

=0,(n""0(1) 0, 0,(1)=0,n™").

Similarly, we have E5 =0,(n"")and E¢=0 (n"), using the facts that E{(X}_ /\§7|§,~k|)2} <sT /\27“ =
O(l) and E(Z;_, \"67 1|g,k|)2 <STo_ /\27“5,( = 0(1). This proves result (15)
We now turn to inequality (16). For any f € F*, we have

FCH =), RCi, N s TFIRC;s )y RECo, N = 1FI RV ),

where R(., -) is the reproducing kernel of space F* and (-, -) #s is the corresponding inner product. Therefore,

. . I\ 12
9f(C) <f() ARG )> <|If||<3R(C" ) IR, )> '
Fs Fs

e ik M B
Since J(f) is a convex functional and a pseudonorm, we have
X |1P"f||2<12<f)<s2 1P £11. a7

We first claim that || f|| < J(f), because || f 1I2=b+%5_, |l P"f 2. Ifb=0, mequahty (17) 1mplles that || ]| <
J(). Ifb#0, we can write J(f) =b+ J() =b+X;_, |I P"f ||I. For minimizing expression (5), it is equivalent
tg substitute J(f) with J(f), and inequality (17) implies that || f?=b%+X_, IP*fII> < V? & JHH <
J(f). Therefore we have || f|| < J(f) in general. Secondly, owing to the orthogonallty of {H }, we can
write R(u, v) = Ry (u1,v1) + Ra(uz, v2) +. .. + Ry (us, v5) by theorem 2 in Berlinet and Thomas-agnan (2004),
where R, (-, ) is the reproducing kernel of the subspace H'.For H being a second order Sobolev Hilbert
space, we have Ry(s,t) =h;(s) h(¢) + ha(s) hy(t) — h4(|s—t|), with hi() =t — hz(t)— {m3(®) —1/12}/)2
and hy() = {h}(®) — h2(1)/2 + 7/240}/24. Therefore Ry(s,?) is continuous and "differentiable over [0, 17
and we can find constants a; and b, such that

(Ri(u,-), Re(u, ) 7= < ay,

<3Rk(u") aRk(ua')> <bk
FS '

w ~ Ou

fork=1,...,s. One can find a uniform bound c with (3R((;, ) /3y, aR(c,, 2)/8Cx) 7= < c. However, an f
mlmmlzmg expressmn (6)is equivalent to minimizingn ' %; {y; — f(( )}? under the constraint that J(f) <¢

for some ¢ > 0. Therefore let p=c'/?¢; we have
Q) R BRCIN" _ .
R R D
i i Fs

Before stating lemma 3, we define the entropy of F* with respect to the ||-||, metric. For each w >0,
one can find a collection of functions {gi, g2, ..., gy} in F* such that, for each g € 7, there is a j= j(g) €
{1,2,..., N} satisfying |lg — g;ll» <w. Let N(w, F*, ||-||) be the smallest value of N for which such a cover
of balls with radius w and centres g, g2, . . ., gy exists. Then H(w, 7, ||-|,) =log{N(w, F*, ||-|l,) } is called
the w-entropy of F*.

Lemma 3. Assume that 7 ={1}® X;_, A", where H" is the second-order Sobolev space. Denote the
w-entropy of { f € F*: J(f) <1} by H(w, {f € F*: J(f) <1}, |I-ll)- Then

Hw, {feF: JN< 1} I1-ln) S Aw™2, (18)

for all w>0, n > 1, and for some constants A >0. Furthermore, for {¢;}!_, independent with finite
variance and J(fy) >0,

(ea f fO)n
sup 3/4 1/4
rers | f = folld {J(H + J(fo)}
Inequality (18) is implied by lemma A.1 of Lin and Zhang (2006). As the {¢;} satisfy the sub-Gaussian

error assumption, the same argument as in Van de Geer (2000) (page 168) leads to result (19). We are now
ready to present the proof of the main theorem.

0,(n™'). (19)
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