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SUMMARY

We consider the problem of estimating functional derivatives and gradients in the framework
of a regression setting where one observes functional predictors and scalar responses. Derivatives
are then defined as functional directional derivatives that indicate how changes in the predictor
function in a specified functional direction are associated with corresponding changes in the
scalar response. For a model-free approach, navigating the curse of dimensionality requires
the imposition of suitable structural constraints. Accordingly, we develop functional derivative
estimation within an additive regression framework. Here, the additive components of functional
derivatives correspond to derivatives of nonparametric one-dimensional regression functions with
the functional principal components of predictor processes as arguments. This approach requires
nothing more than estimating derivatives of one-dimensional nonparametric regressions, and
thus is computationally very straightforward to implement, while it also provides substantial
flexibility, fast computation and consistent estimation. We illustrate the consistent estimation and
interpretation of the resulting functional derivatives and functional gradient fields in a study of
the dependence of lifetime fertility of flies on early life reproductive trajectories.

Some key words: Derivative; Functional data analysis; Functional regression; Gradient field; Nonparametric differen-
tiation; Principal component.

1. INTRODUCTION

Regression problems where the predictor is a smooth square integrable random function X (t)
defined on a domain T and the response is a scalar Y with mean E(Y ) = μY are found in
many areas of science. For example, in the biological sciences, one may encounter predictors in
the form of subject-specific longitudinal time-dynamic processes such as reproductive activity.
For each such process, one observes a series of measurements and it is then of interest to
model the dependence of the response on the predictor process (Cuevas et al., 2002; Rice, 2004;
Ramsay & Silverman, 2005). Examples include studies of the dependence of remaining lifetime
on fertility processes (Müller & Zhang, 2005), and a related analysis that we discuss in further
detail in § 5 below. This concerns the dependence of total fertility on the dynamics of the early
fertility process in a study of biodemographic characteristics of female medflies. Here, we observe
trajectories of fertility over the first 20 days of life, measured by daily egg-laying for a sample
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Fig. 1. Egg-laying trajectories (eggs per day) for 50 randomly selected flies, for the
first 20 days of their lifespan.

of medflies, as illustrated for 50 randomly selected flies in Fig. 1, showing the realizations of the
predictor process. The total number of eggs laid over the lifetime of a fly is also recorded and
serves as scalar response.

In this and other functional regression settings, one would like to determine which predictor tra-
jectories will lead to extreme responses, for example by identifying zeros of the functional gradient
field, or to characterize the functional directions in which responses will increase or decrease the
most, when taking a specific trajectory as a starting point. In some applications, these directions
may give rise to specific interpretations, such as evolutionary gradients (Kirkpatrick & Heckman,
1989; Izem & Kingsolver, 2005). The advantage of functional over multivariate analysis for bi-
ological data in the form of trajectories was recently demonstrated in Griswold et al. (2008).
The need to analyze the effects of changes in trajectories in the field of biological evolution and
ecology and to address related questions in other fields motivates the development of statistical
technology to obtain a functional gradient at a function-valued argument, e.g. a particular predic-
tor function. It is thus of interest to develop efficient and consistent methods for the estimation
of functional gradients.

In the framework of functional predictors and scalar responses, derivatives are defined as
functional directional derivatives that indicate how changes in the predictor function in a specified
functional direction are associated with corresponding changes in the scalar response. Similarly
to the classical regression setting of a scalar predictor and scalar response, this problem can be
easily solved for a functional linear regression relationship where the derivative corresponds to
the slope parameter, respectively, regression parameter function, as we demonstrate below. The
problem is harder and more interesting in the nonlinear situation where the classical analogue
would be the estimation of derivatives of a nonparametric regression function (Gasser & Müller,
1984; Zhou & Wolfe, 2000).

When tackling this functional differentiation problem, one realizes that the space in which
the predictor functions reside is infinite-dimensional and therefore sparsely populated, so that
estimation techniques will be subject to a rather extreme form of the curse of dimensionality. This
problem arises for a functional regression even before considering derivatives. The conventional
approach to reducing the very high dimensionality of the functional regression problem is through
the well-established functional linear model, which implies strong dimension reduction through
structural assumptions. The structural constraints inherent in these models often prove to be too
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restrictive, just as is the case for ordinary linear regression. A reasonably restrictive yet overall
sufficiently flexible approach to dimension reduction in regression models with many predictors
is additive modelling (Stone, 1985; Hastie & Tibshirani, 1986) and its extension to functional
regression (Müller & Yao, 2008).

Postulating a regression relation that is additive in the functional principal components of
predictor processes, but otherwise unspecified, provides a particularly useful set of constraints
for the estimation of functional derivatives. The resulting functional derivative estimates are
straightforward to implement, even for higher order derivatives, and require nothing more than
obtaining a sequence of nonparametric estimators for the derivatives of one-dimensional smooth
functions, with the principal components of the predictor processes as respective arguments. This
approach is easily extended to the estimation of functional gradient fields and to the case of
higher derivatives and is supported by consistency properties. Functional gradient fields emerge
as a useful tool to aid in the interpretation of functional regression data.

2. ADDITIVE MODELLING OF FUNCTIONAL DERIVATIVES

2·1. Preliminary considerations

To motivate our procedures, first consider the case of a more conventional functional linear
model. Assume the predictor process X has mean function E{X (t)} = μX (t) and covariance
function cov{X (t1), X (t2)} = G(t1, t2), and the response is a scalar Y with mean E(Y ) = μY . We
denote centred predictor processes by Xc(t) = X (t) − μX (t). In the functional linear model, a
scalar response Y is related to the functional predictor X via (Ramsay & Dalzell, 1991)

�L (x) = E(Y | X = x) = μY +
∫
T

β(t)xc(t) ds. (1)

Here, �L is a linear operator on the Hilbert space L2(T ), mapping square integrable functions
defined on the finite interval T to the real line, and β is the regression parameter function,
assumed to be smooth and square integrable. Recent work on this model includes Cai & Hall
(2006), Cardot et al. (2007) and Li & Hsing (2007). Since the functional linear model at (1
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Karhunen–Loève expansion

X (t) = μX (t) +
∑

k

ξXkφk(t), ξXk =
∫

Xc(t)φk(t)dt . (2)

The random variables ξXk are the functional principal components, also referred to as scores.
These scores are uncorrelated and satisfy E(ξXk) = 0 and var(ξXk) = λk (Ash & Gardner, 1975).

The derivative of a Gâteaux differentiable operator �, mapping square integrable functions
to real numbers, evaluated at x = ∑

k ξxkφk , is an operator �
(1)
x that depends on x and has the

property that, for functions u and scalars δ,

�(x + δu) = �(x) + δ �(1)
x (u) + o(δ) (3)

as δ →



Additive modelling of functional gradients 795

should adequately represent predictors X , and the component scores that correspond to the
coordinate values that represent X are independent for Gaussian processes, which is particularly
beneficial in the additive framework. The functional additive regression framework, where the
response depends on predictor processes through smooth functions of the predictor functional
principal components, embodies sensible structural constraints and dimension reduction and
provides a structural compromise that is well suited for the estimation of functional gradients.

The functional additive framework, described in Müller & Yao (2008), revolves around an
additive functional operator 
,


(x) = E(Y | X = x) = μY +
∞∑

k=1

fk(ξxk),

subject to E{ fk(ξXk)} = 0 (k = 1, . . .), for the scores ξXk as defined in (2). Applying (3) and (4)
to 
, for functions x = ∑

k ξxkφk and u = ∑
k ξukφk , we have


(x + δu) = μY +
∑

k

fk(ξxk + δξuk) = 
(x) + δ
∑

k

f (1)
k (ξxk)ξuk + o(δ), (5)

which leads to


(1)
x (u) =

∞∑
k=1

f (1)
k (ξxk)ξuk =

∞∑
k=1

ωxk	k(u), 
(1)
x =

∑
k

f (1)
k (ξxk)	k (6)

and ωxk = f (1)
k (ξxk) for the functional additive model.

It is of interest to extend functional derivatives also to higher orders. This is done by iterating
the process of taking derivatives in (3). Generally, the form of the pth derivative operator is rather
unwieldy, as it depends not only on x , but also on p − 1 directions u1, . . . , u p−1, which are used to

define the lower order derivatives, and its general form will be �
(p)
x ;u1,...,u p−1 = ∑

k γx ;u1,...,u p−1;k	k .
The situation however is much simpler for the additive operators 
, where


(x + δu) = μY +
∑

k

fk(ξxk + δξuk) = 
(x) +
p∑

j=1

1

j!
δ j

{∑
k

f ( j)
k (ξxk)ξ j

uk

}
+ o(δ p).

The separation of variables that is an inherent feature of the additive model implies that one
does not need to deal with the unwieldy cross-terms that combine different u j s, limiting the
usefulness of functional derivatives of higher order in the general case. The straightforwardness
of extending functional derivatives to higher orders is a unique feature of the additive approach,
as pth order derivative operators


(p)
x (u) =

∞∑
k=1

f (p)
k (ξxk){	k(u)}p (7)

can be easily obtained by estimating pth derivatives of the one-dimensional nonparametric func-
tions fk . As in ordinary multivariate calculus, higher order derivatives can be used to characterize
extrema or domains with convex or concave functional regression relationships and also for
diagnostics and visualization of nonlinear functional regression relations. As it enables such
estimates, while retaining full flexibility in regard to the shape of the derivatives, the framework
of additive models is particularly attractive for functional derivative estimation.
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3. ESTIMATION AND ASYMPTOTICS

In order to obtain additive functional derivatives (6), we require estimates of the defining
coefficients ωxk , for which we use ω̂xk = f̂ (1)

k (ξxk). Thus, the task is to obtain consistent estimates

of the derivatives f (1)
k for all k � 1. The data recorded for the i th subject or unit are typically of the

form {(ti j , Ui j , Yi ), i = 1, . . . , n, j = 1, . . . , ni }, where predictor trajectories Xi are observed at
times ti j ∈ T , yielding noisy measurements

Ui j = Xi (ti j ) + εi j = μX (ti j ) +
∞∑

k=1

ξikφk(ti j ) + εi j , (8)

upon inserting representation (2), where εi j are independent and identically distributed mea-
surement errors, independent of all other random variables, and the observed responses Yi are
related to the predictors according to E(Y | X ) = μY + ∑

k fk(ξXk). A difficulty is that the ξik

are not directly observed and must be estimated. For this estimation step, one option is to use
the principal analysis by conditional expectation procedure (Yao et al., 2005) to obtain estimates
ξ̂Xi in a preliminary step. Briefly, the key steps are the nonparametric estimation of the mean
trajectory μX (t) and of the covariance surface G(t1, t2) of predictor processes X , obtained by
smoothing pooled scatter-plots. For the latter, one omits the diagonal elements of the empirical
covariances, as these are contaminated by the measurement errors. From estimated mean and co-
variance functions, one then obtains eigenfunction and eigenvalue estimates (Rice & Silverman,
1991; Staniswalis & Lee, 1998; Boente & Fraiman, 2000).

We implement all necessary smoothing steps with local linear smoothing, using automatic data-
based bandwidth choices. Additional regularization is achieved by truncating representations (2)
and (8) at a suitable number of included components K , typically chosen data-adaptively by
pseudo-BIC or similar selectors, or simply as the smallest number of components that explain a
large enough fraction of the overall variance of predictor processes. We adopt the latter approach
in our applications, requiring that 90% of the variation is explained. Given the observations
made for the i th trajectory, best linear prediction leads to estimates of the functional principal
components ξik , by estimating E(ξik | Ui ) = λkφ

T
ik

−1
Ui

(Ui − μXi ), where Ui = (Ui1, . . . , Uini )
T,

μXi = {μX (ti1), . . . , μX (tini )}T, φik = {φk(ti1), . . . , φk(tini )}T, and the ( j, l) entry of the ni × ni

matrix Ui is (Ui ) j, l = G X (ti j , til) + σ 2
Xδ jl , with δ jl = 1, if j = l, and δ jl = 0, if j � l. One

then arrives at the desired estimates ξ̂ik by replacing the unknown components λk, φk, μX , G X

and σ 2 by their estimates. For densely observed data, a simpler approach is to insert the above
estimates into (2), ξ̂ik = ∫ {X̂i (t) − μ̂(t)}φ̂k(t)dt . These integral estimators require smoothed
trajectories X̂i and therefore dense measurements per sampled curve.

Once the estimates ξ̂ik are in hand, we aim to obtain derivative estimates f̂ (ν)
k , the νth order

derivatives of the component functions fk , k � 1, with default value ν = 1. Fitting a local poly-
nomial of degree p � ν to the data {ξ̂ik, Yi − Ȳ }i=1,...,n , obtaining a weighted local least squares
fit for this local polynomial by minimizing

n∑
i=1

κ

(
ξ̂ik − z

hk

) {
Yi − Ȳ −

p∑
�=0

β�(z − ξ̂ik)�
}2

(9)

with respect to β = (β0, . . . , βp)T for all z in the domain of interest, leads to suitable derivative

estimates f̂ (ν)
k (z) = ν!β̂ν(z). Here, κ is the kernel and hk the bandwidth used for this smoothing

step. Following Fan & Gijbels (1996), we choose p = ν + 1 for practical implementation.
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The following result provides asymptotic properties for this procedure and also consistency of
the resulting estimator for the functional derivative operator (6), i.e.,


̂(1)
x (u) =

K∑
k=1

f̂ (1)
k (ξxk)ξuk, (10)

when K = K (n) → ∞ components are included in the estimate and the predictor scores are
independent. Gaussianity of predictor processes is not needed.

THEOREM 1. Under Assumptions A1–A4 in the Appendix, for all k � 1 for which λ j , j � k
are eigenvalues of multiplicity 1, letting τ j (κ�) = ∫

u jκ�(u)du, as n → ∞, it holds that

(
nh3

k

)1/2

{
f̂ (1)
k (z) − f (1)

k (z) − τ4(κ) f (3)
k (z)h2

k

6τ2(κ)

}
D−→ N

{
0,

τ2(κ2)var(Y | ξXk = z)

τ 2
2 (κ)pk(z)

}
(11)

for estimates (9), where pk is the density of ξXk. Under the additional Assumption A5

sup
‖u‖=1

∣∣
̂(1)
x (u) − 
(1)

x (u)
∣∣ −→ 0, (12)

in probability for estimates (10), at any x ∈ L2(T ), as n → ∞.

For further details about the rate of convergence of (12), we refer to (A1) in the Appendix. For
higher order functional derivatives, obtained by replacing estimates of first order derivatives f (1)

by estimates of higher order derivatives f (p) in (7), one can prove similar consistency results.

4. SIMULATION STUDIES

To demonstrate the use of the proposed additive modelling of functional gradients, we con-
ducted simulation studies for Gaussian and non-Gaussian predictor processes with different
underlying models and data designs. In particular, we compared our proposal with functional
quadratic differentiation, suggested by a referee, where one obtains derivatives by approximating
the regression relationship with a quadratic operator,

�Q(x) = E(Y | X = x) = μY +
∫
T

α(t)x(t)dt +
∫
T

β(t)x2(t)dt . (13)

While this model can be implemented with expansions in B-splines or other bases, for the
reasons outlined above, we select the orthogonal functional coordinates that are defined by the
eigenfunctions of X . Inserting α(t) = ∑

k αkφk(t), β(t) = ∑
k βkφk(t), the functional derivative

operator for (13) is seen to be �
(1)
Q,x = ∑

k(αk + 2βkξxk)	k .
Each of 400 simulation runs consisted of a sample of n = 100 predictor trajectories Xi ,

with mean function μX (s) = s + sin (s) (0 � s � 10), and a covariance function derived from
two eigenfunctions, φ1(s) = − cos (πs/10)/ √ 5, and φ2(s) = sin (πs/10)/ √ 5 (0 � s � 10). The
corresponding eigenvalues were chosen as λ1 = 4, λ2 = 1, λk = 0, k � 3, and the measurement
errors in (8) as εi j∼N (0, 0·42) independent. To study the effect of Gaussianity of the predictor
process, we considered two settings: (i) ξik ∼ N (0, λk), Gaussian; (ii) ξik are generated from
the mixture of two normals, N {(λk/2)1/2, λk/2} with probability 1/2 and N {−(λk/2)1/2, λk/2}
with probability 1/2, a mixture distribution. Each predictor trajectory was sampled at locations
uniformly distributed over the domain [0, 10], where the number of noisy measurements was
chosen separately and randomly for each predictor trajectory. We considered both dense and
sparse design cases. For the dense design case, the number of measurements per trajectory was
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Table 1. Monte Carlo estimates of relative squared prediction errors for functional gradients
with standard error in parenthesis, for both dense and sparse designs, based on 400 Monte Carlo
runs with sample size n = 100. The underlying functional regression model is quadratic or cubic
and the functional principal components of the predictor process are generated from Gaussian

or mixture distributions

Design True model Method Gaussian Mixture

FAD 0·134 (0·043) 0·139 (0·038)
Dense

Quadratic
FQD 0·133 (0·023) 0·141 (0·019)
FAD 0·189 (0·047) 0·183 (0·045)Cubic
FQD 0·368 (0·053) 0·337 (0·051)
FAD 0·141 (0·049) 0·139 (0·041)

Sparse
Quadratic

FQD 0·136 (0·033) 0·137 (0·026)
FAD 0·228 (0·055) 0·208 (0·051)Cubic
FQD 0·373 (0·050) 0·349 (0·055)

FAD, functional additive differentiation; FQD, functional quadratic differentiation.

selected from {30, . . . , 40} with equal probability, while for the sparse case, the number of
measurements was chosen from {5, . . . , 10} with equal probability. The response variables were
generated as Yi = ∑

k mk(ξik) + εi , with independent errors εi ∼ N (0, 0·1).
We compared the performance of quadratic and additive functional differentiation for two

scenarios: (a) a quadratic regression relation with mk(ξk) = (ξ2
k − λk)/5; (b) a cubic relation with

mk(ξk) = ξ3
k /5. Functional principal component analysis was implemented as described in § 3.

The functional derivatives were estimated according to (10) for the proposed additive approach
and by a quadratic least squares regression of {Yi − Ȳ } on the principal components of X , then
using the relation f (1)

k (ξxk) = αk + 2βkξxk for the quadratic operator.

The results for the overall relative estimation error of the functional gradients
∑2

k=1 ‖ f̂ (1)
k −

m(1)
k ‖2/‖m(1)

k ‖2/2 in Table 1 suggest that the functional additive derivatives lead to similar
estimation errors as the quadratic model when the underlying regression is of quadratic form,
while the additive modelling leads to substantially improved estimation in all scenarios when the
underlying model is cubic. Comparisons of functional linear derivatives using the operator �

(1)
L ,x

with those obtained for additive derivative operators led to analogous results.

5. APPLICATION TO TRAJECTORIES OF FERTILITY

To illustrate the application of functional additive derivatives, we analyze egg-laying data from
a biodemographic study conducted for 1000 female medflies, as described in Carey et al. (1998).
The goal is to determine shape gradients in early life fertility trajectories that are associated with
increased lifetime fertility. The selected sample of 818 medflies includes flies that survived for at
least 20 days. The trajectories corresponding to the number of daily eggs laid during the first 20
days of life constitute the functional predictors, while the total number of eggs laid throughout
the entire lifetime of a fly is the response. As a pre-processing step, a square root transformation
of egg counts was applied.

Daily egg counts during the first 20 days of age are the observed data and are assumed to
be generated by smooth underlying fertility trajectories. For 50 randomly selected flies, fitted
predictor trajectories, obtained by applying the algorithm described in § 3, are shown in Fig. 1.
Most egg-laying trajectories display a steep rise towards a time of peak fertility, followed by a
sustained more gradual decline. There is substantial variation in the steepness of the rise to the
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Fig. 2. Smooth estimates of mean function (a) and first (solid) and second (dashed) eigenfunction
(b) of the predictor trajectories, explaining 72·1% and 18·6% of the total variation, respectively.

maximal level of egg-laying, and also in the timing of the peak and the rate of decline. Some
trajectories rise too slowly to even reach the egg-laying peak within the first 20 days of life.
Overall, the shape variation across trajectories is seen to be large.

The total egg count over the entire lifespan is a measure for reproductive success, an important
endpoint for quantifying the evolutionary fitness of individual flies. It is of interest to identify shape
characteristics of early life reproductive trajectories that are related to evolutionary fitness, i.e.,
reproductive success. Functional derivatives provide a natural approach to address this question.
For the predictor processes, the smooth estimate of the mean fertility function is displayed in
Fig. 2(a), while the estimates of the first two eigenfunctions are shown in Fig. 2(b), explaining
72·1% and 18·6% of the total variation of the trajectories, respectively. These eigenfunctions
reflect the modes of variation (Castro et al., 1986) and the dynamics of predictor processes. Two
components were chosen, accounting for more than 90% of the variation in the data.

We compared the 10-fold crossvalidated relative prediction errors for functional differentiation
based on linear, quadratic and additive operators, with resulting error estimates of 0·163 for
linear, 0·154 for quadratic and 0·120 for additive approaches. These results support the use of the
additive differentiation scheme. For functional additive differentiation, nonparametric regressions
of the responses on the first two functional predictor scores are shown in the upper panels of
Fig. 3, overlaid with the scatter-plots of observed responses against the respective scores. The
estimated first derivatives of these smooth regression functions are in the lower panels, obtained
by local quadratic fitting, as suggested in Fan & Gijbels (1996). We find indications of nonlinear
relationships. Both derivative estimates feature minima in the middle range and higher values near
the ends of the range of the scores; their signs are relative to the definition of the eigenfunctions.

A natural perspective on functional derivatives is the functional gradient field, quantify-
ing changes in responses against changes in the predictor scores. Functional gradients lend
themselves to visualization if plotted against the principal components, which is useful if
these components explain most of the variation present in the predictor trajectories. The func-
tional gradient field for the eigenbase as functional coordinate system is illustrated in Fig. 4.
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The base of each arrow corresponds to a test trajectory x at which the gradient
{
(1)

x (φ1), . . . , 
(1)
x (φK )} = { f (1)

1 (ξx1), . . . , f (1)
K (ξx K )} is determined, inserting estimates (10) for

K = 2. The length of each arrow corresponds to the size of the gradient and its direction to the di-
rection u of the functional gradient. If one moves a small unit length along the direction of each ar-
row, the resulting increase in the response is approximately proportional to the length of the arrow.

The functional gradient field is seen to be overall quite smooth in this application. Increases
in total fertility occur when the first functional principal component score is increased and the
second score is decreased; the size of the effect of such changes varies locally. Relatively larger
increases in the fertility response occur for trajectories with particularly small values as well as
large values of the first score, upon increasing this score. Increases of the second score generally
lead to declines in reproductive success, and more so for trajectories that have mildly positive
second scores. The gradient field also shows that there are no extrema in these data. It is thus
likely that biological constraints prevent further increases of fertility by moulding the shapes of
early fertility, specifically, in the direction of increasing first and decreasing second scores. The
evolutionary force that will favourably select for flies with trajectories that are associated with
overall increased fertility is thus likely in equilibrium with counteracting constraints.

Given that the most sustained increases in fertility are associated with increasing the first
predictor score, it is of interest to relate this finding to the shape of the first eigenfunction. This
eigenfunction is seen to approximately mimic the mean function, see Fig. 2, so that the increases
in total fertility that result from increasing the first predictor score are obtained by increased
egg-laying activity over the entire domain, paralleling the mean function. This can be viewed
as multiplying the mean function by increasing factors; see Chiou et al. (2003) for a discussion
of related multiplicative models for functional data. The second eigenfunction corresponds to a
sharper early peak, followed by an equally sharp decline, so it is not surprising that the functional
derivative in this direction is negative, indicating that a fast rise to peak egg-laying is detrimental
to overall fertility, which is likely due to a high cost of early reproduction. We find that both
changes in timing and levels of egg-laying are reflected in the functional gradient field, which
delineates in compact graphical form the shape changes that are associated with increases in
reproductive success.

It is instructive to compare given predictor trajectories with gradient-induced trajectories
that are obtained when moving a certain distance, defined by the length of the arrow in the
gradient field, along the functional gradient. The shape change from the starting trajectory to
the gradient-induced trajectory then provides a visualization of the shape change represented
by the functional gradient, corresponding to the shape change that induces the largest gain in
lifetime fertility. For this analysis, we select nine test trajectories, which correspond to the bases
of the corresponding arrows in the gradient field plot, representing subjects that have all possible
combinations of the scores ξ1 = {−7, 0, 7} and ξ2 = {−5, 0,−5}. The resulting trajectories are
depicted in Fig. 5, arranged from left to right as ξ1 increases, and from top to bottom as ξ2

increases. The nine test trajectories, drawn as solid curves, are given by x = μ̂ + ∑2
k=1 ξxk φ̂k ,

with the values of ξx1, ξx2 obtained by forming all combinations of the above values. The gradient-
induced trajectories are x∗ = μ̂ + ∑2

k=1{ξxk + ρ f̂ (1)
k (ξxk)}φ̂k , where the scaling factor is ρ = 10

for enhanced visualization.
For all scenarios, the functional gradients point towards fertility trajectories that feature en-

hanced postpeak reproduction. For test trajectories with late timing of the initial rise in fertility,
the gradients point towards somewhat earlier timing of the initial rise, as seen in the plots of the
first column with ξ1 = −7. These are also trajectories with relatively high peaks. For early steep
rises, however, the gradients point towards delayed timing of the rise, seen for the combinations
of ξ1 = 0, 7 and ξ2 = −5, 0. For the test trajectories with ξ1 = 0, 7 and ξ2 = 5, the timing of the
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f (1)
k (ξyk)| → 0. This property is implied by the Cauchy–Schwarz inequality and the following

assumption.

Assumption A1. For all k � 1 and for all z1, z2 it holds that | f (1)
k (z1) − f (1)

k (z2)| � Lk |z1 − z2| for a
sequence of positive constants Lk such that

∑∞
k=1 L2

k < ∞.

We consider integral estimators of the functional principal components and a fixed design with the ti j s
increasingly ordered. Write T = [a, b], �i = max{ti j − ti, j−1 : j = 1, . . . , ni + 1}, where ti0 = a and
ti, ni +1 = b for all subjects. We make the following assumptions for the design and the process X , denoting
T δ = [a − δ, b + δ] for some δ > 0 and mini and maxi taken over i = 1, . . . , n. Bandwidths bi = bi (n)
refer to the smoothing parameters used in the local linear least squares estimation steps for obtaining
smoothed trajectories X̂i and 	 denotes asymptotic equivalence.

Assumption A2. Assume that X (2)(t) is continuous on T δ;
∫
T E[{X (k)(t)}4]dt < ∞, k = 0, 2;

E(ε4
i j ) < ∞; the functional principal components ξxk of X are independent.

Assumption A3. Assume that mini ni � m � Cnα for some constants C > 0 and α > 5/7; maxi �i =
O(m−1); there exists a sequence b 	 n−α/5, such that maxi bi 	 mini bi 	 b.

Assumption
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the 3 × 1 unit vector with the second element equal to 1 and 0 otherwise. Define the hypothetical estimator
f̃ (1)
k (z) = eT

2S−1
n Tn .

To evaluate | f̂ (1)
k (z) − f̃ (1)

k (z)|, one needs to bound the differences D j,1 = ∑
i (ŵi ξ̂

j
ik − wiξ

j
ik), D�,2 =∑

i (ŵi ξ̂
�
ik − wiξ

�
ik)Yi ( j = 0, . . . , 4, � = 0, . . . , 2), where D j,1 = ∑

i {(ŵi − wi )ξ
j

ik + (ŵi − wi )(ξ̂
j

ik −
ξ

j
ik) + wi (ξ̂

j
ik − ξ

j
ik)} ≡ D j,11 + D j,12 + D j,13. Modifying the arguments in the proof of Theorem 1 in

Müller & Yao (2008), without loss of generality considering D0,1 and applying Lemma 1, for generic
constants C1, C2,

hk D0,1 � C1

nhk

∑
i

|ξ̂ik − ξik |{I (|z − ξik | � hk) + I (|z − ξ̂ik | � hk)},

� C2

nhk

∑
i

‖X̂i − Xi‖I (|z − ξik | � hk) + ‖Ĝ − G‖S

δk

1

nhk

∑
i

‖Xi‖I (|z − ξik | � hk). (A4)

Applying the law of large number for a random number of summands (Billingsley, 1995, p. 380) and the
Cauchy–Schwarz inequality, the terms in (A4) are bounded in probability by

2pk(z)
[{E(‖X̂i − Xi‖2)}1/2 + δ−1

k ‖Ĝ − G‖S {E(‖Xi‖2)}1/2
]
.

Under Assumption 3, it is easy to see that b2 + (mb)−1/2 = o{h2
k + (nh3

k)−1/2} and E‖Ĝ − G‖S = o{h2
k +

(nh3
k)−1/2}. Analogously one can evaluate the magnitudes of D j,1 and D�,2 for j = 0, . . . , 4, � = 0, 1, 2,

which leads to | f̂ (1)
k (z) − f̃ (1)

k (z)| = op{| f̃ (1)
k (z) − f (1)

k (z)|}. Combining this with standard asymptotic

results (Fan & Gijbels, 1996) for f̃ (1)
k (z) completes the proof of (11).

To show (12), observe
∫
T φk(t)u(t) dt � 1 and

∫
T {φ̂k(t) − φk(t)}u(t) dt � ‖φ̂k − φk‖ for ‖u‖ = 1 by

the Cauchy–Schwarz inequality and the orthonormality constraints for the φk . Then

sup
‖u‖=1

∣∣
̂(1)
x (u) − 
(1)

x (u)
∣∣ �

K∑
k=1

{∣∣ f̂ (1)
k (ξxk) − f (1)

k (ξxk)
∣∣ + ∣∣ f̂ (1)

k (ξxk) − f (1)
k (ξxk)

∣∣‖φ̂k − φk‖

+ ∣∣ f (1)
k (ξxk)

∣∣‖φ̂k − φk‖
} +

∞∑
k=K+1

∣∣ f (1)
k (ξxk)

∣∣,
whence Lemma 1 and E(‖φ̂k − φk‖) = o[δ−1

k {h2
k + (nh3

k)−1/2}] imply (12).
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