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We propose a nonparametric method to perform functional principal components analysis for the case of sparse longitudinal data. The
method aims at irregularly spaced longitudinal data, where the number of repeated measurements available per subject is small. In con-
trast, classical functional data analysis requires a large number of regularly spaced measurements per subject. We assume that the repeated
measurements are located randomly with a random number of repetitions for each subject and are determined by an underlying smooth
random (subject-specific) trajectory plus measurement errors. Basic elements of our approach are the parsimonious estimation of the co-
variance structure and mean function of the trajectories, and the estimation of the variance of the measurement errors. The eigenfunction
basis is estimated from the data, and functional principal components score estimates are obtained by a conditioning step. This conditional
estimation method is conceptually simple and straightforward to implement. A key step is the derivation of asymptotic consistency and
distribution results under mild conditions, using tools from functional analysis. Functional data analysis for sparse longitudinal data enables
prediction of individual smooth trajectories even if only one or few measurements are available for a subject. Asymptotic pointwise and
simultaneous confidence bands are obtained for predicted individual trajectories, based on asymptotic distributions, for simultaneous bands
under the assumption of a finite number of components. Model selection techniques, such as the Akaike information criterion, are used to
choose the model dimension corresponding to the number of eigenfunctions in the model. The methods are illustrated with a simulation
study, longitudinal CD4 data for a sample of AIDS patients, and time-course gene expression data for the yeast cell cycle.

KEY WORDS: Asymptotics; Conditioning; Confidence band; Measurement error; Principal components; Simultaneous inference;
Smoothing.

1. INTRODUCTION

We develop a version of functional principal components
(FPC) analysis, in which the FPC scores are framed as condi-
tional expectations. We demonstrate that this extends the ap-
plicability of FPC analysis to situations in longitudinal data
analysis, where only few repeated and sufficiently irregularly
spaced measurements are available per subject, and refer to this
approach as principal components analysis through conditional
expectation (PACE) for longitudinal data.

When the observed data are in the form of random curves
rather than scalars or vectors, dimension reduction is manda-
tory, and FPC analysis has become a common tool to achieve
this, by reducing random trajectories to a set of FPC scores.
However, this method encounters difficulties when applied to
longitudinal data with only few repeated observations per sub-
ject.

Beyond dimension reduction, FPC analysis attempts to char-
acterize the dominant modes of variation of a sample of ran-
dom trajectories around an overall mean trend function. There
exists an extensive literature on FPC analysis when individ-
uals are measured at a dense grid of regularly spaced time
points. The method was introduced by Rao (1958) for growth
curves, and the basic principle has been studied by Besse
and Ramsay (1986), Castro, Lawton, and Sylvestre (1986),
and Berkey, Laird, Valadian, and Gardner (1991). Rice and
Silverman (1991) discussed smoothing and smoothing parame-
ter choice in this context, whereas Jones and Rice (1992) em-
phasized applications. Various theoretical properties have been
studied by Silverman (1996), Boente and Fraiman (2000), and
Kneip and Utikal (2001). (For an introduction and summary, see

Fang Yao is Assistant Professor, Department of Statistics, Colorado State
University, Fort Collins, CO 80523 (E-mail: fyao@stat.colostate.edu).
Hans-Georg Müller is Professor (E-mail: mueller@wald.ucdavis.edu) and
Jane-Ling Wang is Professor (E-mail: wang@wald.ucdavis.edu), Department
of Statistics, University of California, Davis, CA 95616. This research was
supported in part by National Science Foundation grants DMS-98-03637,
DMS-99-71602, DMS-02-04869, DMS-03-54448, and DMS-04-06430. The
authors thank the associate editor and two referees for insightful comments on
a previous version of this article that led to many improvements.

Ramsay and Silverman 1997.) Staniswalis and Lee (1998) pro-
posed kernel-based functional principal components analysis
for repeated measurements with an irregular grid of time points.
The case of irregular grids was also studied by Besse, Cardot,
and Ferraty (1997) and Boularan, Ferré, and Vieu (1993). How-
ever, when the time points vary widely across subjects and are
sparse, down to one or two measurements, the FPC scores de-
fined through the Karhunen–Loève expansion are not well ap-
proximated by the usual integration method.

Shi, Weiss, and Taylor (1996), Rice and Wu (2000), James,
Hastie, and Sugar (2001), and James and Sugar (2003) pro-
posed B-splines to model the individual curves with random
coefficients through mixed effects models. James et al. (2001)
and James and Sugar (2003) emphasized the case of sparse
data, postulating a reduced-rank mixed-effects model through
a B-spline basis for the underlying random trajectories. In
contrast, we represent the trajectories directly through the
Karhunen–Loève expansion, determining the eigenfunctions
from the data. Perhaps owing to the complexity of their model-
ing approach, James et al. (2001) did not investigate the asymp-
totic properties of the estimated components in relation to the
true components, such as the behavior of the estimated covari-
ance structure, eigenvalues, and eigenfunctions, especially for
the sparse situation. Instead, they constructed pointwise confi-
dence intervals for the individual curves using bootstrap. With
our simpler and more direct approach, we are able to derive
asymptotic properties, using tools from functional analysis. We
can also derive both pointwise and simultaneous bands for pre-
dicted individual trajectories. This requires first obtaining the
uniform convergence results for nonparametric function and
surface estimates under dependence structure that follows from
the longitudinal nature of the data. The dependence is a conse-
quence of the assumed random nature of the observed sample
of trajectories, which sets our work apart from previous results
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where either the observed functions are nonrandom with in-
dependent measurements (Kneip 1994), are random vectors of
large but fixed dimensions (Ferré 1995), or are random trajec-
tories sampled on dense and regular grids (Cardot, Ferraty, and
Sarda 1999).

The contributions of this article are as follows. First, we
provide a new technique, PACE, for longitudinal and func-
tional data, a method designed to handle sparse and irregular
longitudinal data for which the pooled time points are suffi-
ciently dense. Second, the presence of additional measurement
errors is taken into account, extending previous approaches of
Staniswalis and Lee (1998) and Yao et al. (2003). Third, an
emphasis is on the derivation of asymptotic consistency prop-
erties, by first establishing uniform convergence for smoothed
estimates of the mean and covariance functions under mild as-
sumptions. These uniform consistency results are developed
for smoothers in the situation where repeated, and thus depen-
dent, measurements are obtained for the same subject. Then
we couple these results with the theory of eigenfunctions and
eigenvalues of compact linear operators, to obtain uniform con-
vergence of estimated eigenfunctions and eigenvalues. To our
knowledge, there exist only few published asymptotic results
for FPC (Dauxois, Pousse, and Romain 1982; Bosq 1991;
Silverman 1996), and none for functional data analysis in the
sparse situation. Fourth, we derive the asymptotic distribution
needed to obtain pointwise confidence intervals for individual
trajectories, and obtain asymptotic simultaneous bands for these
trajectories.

The main novelty of our work is that we establish the con-
ditional method for the case of sparse and irregular data, show
that this provides a straightforward and simple tool for the mod-
eling of longitudinal data, and derive asymptotic results for this
method. Under Gaussian assumptions, the proposed estimation
of individual FPC scores in PACE corresponds to the best pre-
diction, combining the data from the individual subject to be
predicted with data from the entire collection of subjects. In the
non-Gaussian case, it provides an estimate for the best linear
prediction. The proposed PACE method extends to the case of
sparse and irregular data, provided that as the number of sub-
jects increases, the pooled time points from the entire sample
become dense in the domain of the data. We suggest one-curve-
leave-out cross-validation for choosing auxiliary parameters,
such as the degree of smoothing and the model dimension, cor-
responding to the number of eigenfunctions to be included, sim-
ilar to the approach of to Rice and Silverman (1991). For faster
computing, we also consider the Akaike information criterion
(AIC) to select the number of eigenfunctions.

The remainder of the article is organized as follows. In Sec-
tion 2 we introduce the PACE approach, that is, the proposed
conditional estimates for the FPC scores. We present asymp-
totic results for the proposed method in Section 3, with proofs
deferred to the Appendix. We discuss simulation results that
illustrate the usefulness of the methodology in Section 4. Ap-
plications of PACE to longitudinal CD4 data and time-course
gene expression data for yeast cell cycle genes are the theme
of Section 5, followed by concluding remarks in Section 6 and
proofs and theoretical results in the Appendix.

2. FUNCTIONAL PRINCIPAL COMPONENTS
ANALYSIS FOR SPARSE DATA

2.1 Model With Measurement Errors

We model sparse functional data as noisy sampled points
from a collection of trajectories that are assumed to be inde-
pendent realizations of a smooth random function, with un-
known mean function EX(t) = µ(t) and covariance function
cov(X(s), X(t)) = G(s, t). The domain of X(·) typically is a
bounded and closed time interval T . Although we refer to
the index variable as time, it could also be a spatial variable,
such as in image or geoscience applications. We assume that
there is an orthogonal expansion (in the L2 sense) of G in
terms of eigenfunctions φk and nonincreasing eigenvalues λk:
G(s, t) =∑k λkφk(s)φk(t), t, s ∈ T . In classical FPC analysis,
it is assumed that the ith random curve can be expressed as
Xi(t) = µ(t) +∑k ξikφk(t), t ∈ T , where the ξik are uncorre-
lated random variables with mean 0 and variance Eξ2

ik = λk,
where

∑
k λk < ∞, λ1 ≥ λ2 ≥ · · · .

We consider an extended version of the model that incorpo-
rates uncorrelated measurement errors with mean 0 and con-
stant variance σ 2 to reflect additive measurement errors (see
also Rice and Wu 2000). Let Yij be the jth observation of the
random function Xi(·), made at a random time Tij, and let εij be
the additional measurement errors that are assumed to be iid and
independent of the random coefficients ξik, where i = 1, . . . , n,
j = 1, . . . , Ni, k = 1, 2, . . . . Then the model that we consider is

Yij = Xi(Tij) + εij

= µ(Tij) +
∞∑

k=1

ξikφk(Tij) + εij, Tij ∈ T , (1)

where Eεij = 0, var(εij) = σ 2, and the number of measurements
Ni made on the ith subject is considered random, reflecting
sparse and irregular designs. The random variables Ni are as-
sumed to be iid and independent of all other random variables.

2.2 Estimation of the Model Components

We assume that mean, covariance, and eigenfunctions are
smooth. We use local linear smoothers (Fan and Gijbels 1996)
for function and surface estimation, fitting local lines in one
dimension and local planes in two dimensions by weighted
least squares. In a first step, we estimate the mean function
µ based on the pooled data from all individuals. The formula
for this local linear smoother is in (A.1) in the Appendix.
Data-adaptive methods for bandwidth choice are available (see
Müller and Prewitt 1993 for surface smoothing and Rice and
Silverman 1991 for one-curve-leave-out cross-validation); sub-
jective choices are often adequate. (For issues of smoothing de-
pendent data, see Lin and Carroll 2000.) Adapting to estimated
correlations when estimating the mean function did not lead to
improvements (simulations not reported); therefore, we do not
incorporate such adjustments.

Note that in model (1), cov(Yij, Yil|Tij, Til) = cov(X(Tij),

X(Til)) + σ 2δjl, where δjl is 1 if j = l and 0 otherwise. Let
Gi(Tij, Til) = (Yij − µ̂(Tij))(Yil − µ̂(Til)) be the “raw” covari-
ances, where µ̂(t) is the estimated mean function obtained from
the previous step. It is easy to see that E[Gi(Tij, Til)|Tij, Til] ≈
cov(X(Tij), X(Til)) + σ 2δjl. Therefore, the diagonal of the raw
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covariances should be removed; that is, only Gi(Tij, Til), j �= l,
should be included as input data for the covariance surface
smoothing step (as previously observed in Staniswalis and Lee
1998). We use one-curve-leave-out cross-validation to choose
the smoothing parameter for this surface smoothing step.

The variance σ 2 of the measurement errors is of interest in
model (1). Let Ĝ(s, t) be a smooth surface estimate [see (A.2)
in the App.] of G(s, t) = cov(X(s), X(t)). Following Yao et al.
(2003), because the covariance of X(t) is maximal along the
diagonal, a local quadratic rather than a local linear fit is ex-
pected to better approximate the shape of the surface in the di-
rection orthogonal to the diagonal. We thus fit a local quadratic
component along the direction perpendicular to the diagonal
and a local linear component in the direction of the diagonal;
implementation of this local smoother is achieved by rotating
the coordinates by 45 degrees and then minimizing weighted
least squares [similar to (A.2)] in rotated coordinates with local
quadratic and linear components, see (A.3) in the Appendix.

Denote the diagonal of the resulting surface estimate by G̃(t)
and a local linear smoother focusing on diagonal values
{G(t, t) + σ 2} by V̂(t), obtained by (A.1) with {Gi(Tij, Tij)}
as input. To mitigate boundary effects, we cut off the two
ends of the interval to get a more stable estimate, follow-
ing a suggestion of Staniswalis and Lee (1998). Let |T | de-
note the length of T , and let T1 be the interval T1 = [inf{x :
x ∈ T }+ |T |/4, sup{x : x ∈ T }− |T |/4]. The proposed estimate
of σ 2 is

σ̂ 2 = 2

|T |
∫

T1

{V̂(t) − G̃(t)}dt (2)

if σ̂ 2 > 0 and σ̂ 2 = 0 otherwise.
The estimates of eigenfunctions and eigenvalues correspond

to the solutions φ̂k and λ̂k of the eigenequations,
∫

T
Ĝ(s, t)φ̂k(s) ds = λ̂kφ̂k(t), (3)

where the φ̂k are subject to
∫
T φ̂k(t)2 dt = 1 and

∫
T φ̂k(t) ×

φ̂m(t) dt = 0 for m < k. We estimate the eigenfunctions by dis-
cretizing the smoothed covariance, as previously described by
Rice and Silverman (1991) and Capra and Müller (1997).

2.3 Functional Principal Components Analysis Through
Conditional Expectation

The FPC scores ξik = ∫ (Xi(t) − µ(t))φk(t) dt have tradi-
tionally been estimated by numerical integration, which works
well when the density of the grid of measurements for each
subject is sufficiently large. Because in our model the Yij are
available only at discrete random times Tij, reflecting the
sparseness of the data, the integrals in the definition of the FPC
scores ξik accordingly would be approximated by sums, sub-
stituting Yij as defined in (1) for Xi(Tij) and estimates µ̂(tij)

for µ(tij) and φ̂k(tij) for φk(tij), leading to ξ̂S
ik =∑Ni

j=1(Yij −
µ̂(Tij))φ̂k(Tij)(Tij − Ti,j−1), setting Ti0 = 0. For sparse func-
tional data, ξ̂S

ik will not provide reasonable approximations
to ξik, for example, when one has only two observations per
subject. Moreover, when the measurements are contaminated

with errors, the underlying random process X cannot be di-
rectly observed. Substituting Yij for Xi(Tij) then leads to bi-
ased FPC scores. These considerations motivate the alternative
PACE method to obtain the FPC scores.

Assume that in (1), ξik and εij are jointly Gaussian. In all
of what follows, the results pertaining to expectations are al-
ways conditional on the observation times Tij, i = 1, . . . , n,
j = 1, . . . , Ni. For simplicity, the dependence on Tij is sup-
pressed. Write X̃i = (Xi(Ti1), . . . , Xi(TiNi))

T , Ỹi = (Yi1, . . . ,

YiNi)
T , µi = (µ(Ti1), . . . , µ(TiNi))

T , and φik = (φk(Ti1), . . . ,

φk(TiNi))
T . The best prediction of the FPC scores for the ith

subject, given the data from that individual, is the conditional
expectation, which, under Gaussian assumptions [also given
in (A5) in Sec. 3], is found to be (see, e.g., thm. 3.2.4 in Mardia,
Kent, and Bibby 1979)

ξ̃ik = E[ξik|Ỹi] = λkφT
ik�−1

Yi
(Ỹi − µi), (4)

where �Yi = cov(Ỹi, Ỹi) = cov(X̃i, X̃i) + σ 2INi ; that is, the
( j, l) entry of the Ni × Ni matrix �Yi is (�Yi)ii=̄〉 , Ni

√⋂̂{√√⋂˜{√√⋂˜{/√√⋂〈{{˜}⋂⌊{∖⊔√√⋂˜{/]
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the linear functions of Ỹi, we have E[ξ̃K,iξ
T
K,i] = E[ξ̃K,iξ̃

T
K,i],

that is, var(ξ̃K,i − ξK,i) = var(ξK,i) − var(ξ̃K,i) = �K , where

�K = � − H�−1
Yi

HT and � = diag{λ1, . . . , λK}. Then, under
Gaussian assumptions, (ξ̃K,i − ξK,i) ∼ N (0,�K).

We construct asymptotic pointwise confidence intervals for

individual trajectories as follows. Let �̂K = �̂ − Ĥ�̂
−1
Yi

ĤT ,

where �̂ = diag{λ̂1, . . . , λ̂K} and Ĥ = (λ̂1φ̂i1, . . . , λ̂K φ̂iK)T .
For t ∈ T , let φK,t = (φ1(t), . . . , φK(t))T , φ̂K,t = (φ̂1(t),

. . . , φ̂K(t))T , and X̂K
i (t) = µ̂(t) + φ̂T

K,t ξ̂K,i. Theorem 4 estab-
lishes that the distribution of {X̂K

i (t)− Xi(t)} may be asymptoti-
cally approximated by N (0, φ̂T

K,t�̂K φ̂K,t). Because we assume
that Xi can be approximated sufficiently well by the first K
eigenfunctions, we may construct the (1−α) asymptotic point-
wise interval for Xi(t),

X̂K
i (t) ± �−1

(

1 − α

2

)√
φ̂T

K,t�̂K φ̂K,t, (7)

where � is the standard Gaussian cdf. These confidence inter-
vals are constructed by ignoring the bias that results from the
truncation at K in X̂K

i .
Next, consider the construction of asymptotic simultaneous

confidence bands. Let XK
i (t) = µ(t) + ∑K

k=1 ξikφk(t). Theo-
rem 5 provides the asymptotic simultaneous band for {X̂K

i (t) −
XK

i (t)}, for a given fixed K. The Karhunen–Loève theorem im-
plies that supt∈T E[XK

i (t) − Xi(t)]2 is small for fixed and suffi-
ciently large K. Therefore, ignoring a remaining approximation
error that may interpreted as a bias, we may construct (1 − α)

asymptotic simultaneous bands for Xi(t) through

X̂i
K(t) ±

√
χ2

K,1−αφ̂T
K,t�̂K φ̂K,t, (8)

where χ2
K,1−α is the 100(1 − α)th percentile of the chi-squared

distribution with K degrees of freedom. Because
√

χ2
K,1−α >

�−1(1 − α/2) for all K ≥ 1, the asymptotic simultaneous band
is always wider than the corresponding asymptotic pointwise
confidence intervals.

We obtain simultaneous intervals for all linear combinations
of the FPC scores analogously. Given K, let A ⊆ 	K be a linear
space with dimension d ≤ K. Then, asymptotically, it follows
from the uniform result in Corollary 2 in Section 3 that for all
linear combinations lTξK,i simultaneously, where l ∈ A,

lTξK,i ∈ lT ξ̂K,i ±
√

χ2
d,1−α lT�̂K l, (9)

with approximate probability (1 − α).

2.5 Selection of the Number of Eigenfunctions

To choose the number of eigenfunctions that provides a rea-
sonable approximation to the infinite-dimensional process, we
may use the cross-validation score based on the one-curve-
leave-out prediction error (Rice and Silverman 1991). Let
µ̂(−i) and φ̂

(−i)
k be the estimated mean and eigenfunctions af-

ter removing the data for the ith subject. Then we choose K so
as to minimize the cross-validation score based on the squared
prediction error,

CV(K) =
n∑

i=1

Ni∑

j=1

{
Yij − Ŷ (−i)

i (Tij)
}2

, (10)

where Ŷ (−i)
i is the predicted curve for the ith subject, com-

puted after removing the data for this subject, that is, Ŷ (−i)
i (t) =

µ̂(−i)(t) +∑K
k=1 ξ̂

(−i)
ik φ̂

(−i)
k (t), where ξ̂ik is obtained by (5).

One can also adapt AIC-type criteria (Shibata 1981) to this
situation. In simulations not reported here, we found that AIC
is computationally more efficient while the results are similar
to those obtained by cross-validation. A pseudo-Gaussian log-
likelihood, summing the contributions from all subjects, condi-
tional on the estimated FPC scores ξ̂ik (5), is given by

L̂ =
n∑

i=1

{

−Ni

2
log (2π) − Ni

2
log σ̂ 2

− 1

2σ̂ 2

(

Ỹi − µ̂i −
K∑

k=1

ξ̂ikφ̂ik

)T

×
(

Ỹi − µ̂i −
K∑

k=1

ξ̂ikφ̂ik

)}

, (11)

where we define AIC = −L̂ + K.

3. ASYMPTOTIC PROPERTIES

We derive consistency and distribution results demonstrating
the consistency of the estimated FPC scores ξ̂ik in (5) for the
true conditional expectations ξ̃ik in (4). Uniform convergence of
the local linear estimators of mean and covariance functions on
bounded intervals plays a central role in obtaining these results
and thus is established first (Thm. 1). Proofs are deferred to the
Appendix.

The data (Tij, Yij), i = 1, . . . , n, j = 1, . . . , Ni, coming from
model (1), are assumed to have the same distribution as (T, Y),
with joint density g(t, y). Assume that the observation times Tij

are iid with marginal density f (t), but that dependence is al-
lowed between observations Yij and Yik, coming from the same
subject or cluster. The following assumptions pertain to the
number of observations Ni made on the ith subject or cluster:

(A1.1) The number of observations Ni made for the ith sub-

ject or cluster is a random variable with Ni
iid∼ N,

where N > 0 is a positive discrete random variable,
with EN < ∞ and P{N > 1} > 0.

The observation times and measurements are assumed to be in-
dependent of the number of measurements, that is, for any sub-
set Ji ⊆ {1, . . . , Ni} and for all i = 1, . . . , n,

(A1.2) ({Tij : j ∈ Ji}, {Yij : j ∈ Ji}) is independent of Ni.

Writing T̃i = (Ti1, . . . , TiN T {i=(

T

i, . . . , i 19791464 0 TD
0 Tci iND 
 - 3 6 4, 4 5 . 5 ( o f ) ] T J 
 / F 4  1 6 5  T D 1  T f 
  0  T D 
 0  T c, , 0 1  T m 
 6 i
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definitions of these smoothers.] Kernel κ1(·) is also used for
obtaining the estimate V̂ for {G(t, t) + σ 2} with the local lin-
ear smoother. Let hµ, hG, and hV be the bandwidths for es-
timating µ̂, Ĝ, and V̂ . Assume that κ1 and κ2 are compactly
supported densities with properties (B2.1a) and (B2.2a) and
(B2.1b) and (B2.2b). We develop asymptotics as the number of
subjects n → ∞, and require the following:

(A2.1) hµ → 0, nh4
µ → ∞, and nh6

µ < ∞.

(A2.2) hG → 0, nh6
G → ∞, and nh8

G < ∞.
(A2.3) hV → 0, nh4

V → ∞, and nh6
V < ∞.

Define the Fourier transforms of κ1(u) and κ2(u, v) by ζ1(t) =∫
e−iutκ1(u) du and ζ2(t, s) = ∫

e−(iut+ivs)κ2(u, v) du dv.
They satisfy the following:

(A3.1) ζ1(t) is absolutely integrable, that is,
∫ |ζ1(t)| ×

dt < ∞.
(A3.2) ζ2(t, s) is absolutely integrable, that is,

∫∫ |ζ2(t,
s)|dt ds < ∞.

Assume that the fourth moment of Y centered at µ(T) is finite,
that is,

(A4) E[(Y − µ(T))4] < ∞.

Then we obtain uniform convergence rates for local linear
estimators µ̂(t) of µ(t) and Ĝ(s, t) of G(s, t) on compact sets
T and T 2.

Theorem 1. Under (A1.1)–(A4) and (B1.1)–(B2.2b) with
ν = 0, � = 2 in (B2.2a) and ν = (0, 0), � = 2 in (B2.2b),

sup
t∈T

|µ̂(t) − µ(t)| = Op

(
1√
nhµ

)

(12)

and

sup
t,s∈T

|Ĝ(s, t) − G(s, t)| = Op

(
1√
nh2

G

)

. (13)

The consistency of σ̂ 2 (2) is obtained as a consequence.

Corollary 1. Under (A1.1)–(A4) and (B1.1)–(B2.2b) with
ν = 0, � = 2 in (B2.2a) and ν = (0, 0), � = 2 in (B2.2b),

|σ̂ 2 − σ 2| = Op

(
1√
n

(
1

h2
G

+ 1

hV

))

. (14)

We note that the rates of convergence provided in (12)
and (13) are slower than the optimal ones known for the
case of smoothing functions or surfaces from sufficiently
densely spaced independent measurements. These rates would
be of order Op(

√
log n/(nhµ) ) for function estimates and

Op(
√

log n/(nh2
G) ) for surface estimates. It is an interesting

question whether these rates remain optimal for the present
dependent-data setting and whether they can be attained in the
situation of dependent and sparse data that we are dealing with.

Next, consider the real separable Hilbert space L2(T ) ≡ H
endowed with inner product 〈 f , g〉H = ∫T f (t)g(t) dt and norm
‖ f ‖H = √〈 f , f 〉H (Courant and Hilbert 1953). Let I ′ denote the
set of indices of the eigenfunctions φk corresponding to eigen-
values λk of multiplicity 1. We obtain the consistency of the λ̂k
in (3) for λk, the consistency of φ̂k in (3) for φk in the L2 norm
‖ · ‖H , by choosing φ̂k appropriately when λk is of multiplic-
ity 1, and furthermore the uniform consistency of φ̂k for φk on
the bounded interval T .

Theorem 2. Under (A1.1)–(A4) and (B1.1)–(B2.2b) with
ν = 0, � = 2 in (B2.2a) and ν = (0, 0), � = 2 in (B2.2b),

|λ̂k − λk| = Op

(
1√
nh2

G

)

; (15)

‖φ̂k − φk‖H = Op

(
1√
nh2

G

)

, k ∈ I ′; (16)

and

sup
t∈T

|φ̂k(t) − φk(t)| = Op

(
1√
nh2

G

)

, k ∈ I ′. (17)

We remark that the rates (15)–(17) are direct consequences of
the rates (12) and (13), as is evident from the proofs. If the rates
in (12) and (13) are both Op(αn), then the rates in (15)–(17) will
also be Op(αn).

For the following results, we require Gaussian assumptions:

(A5) The FPC scores ξik and measurement errors εij in (1)
are jointly Gaussian.

We also assume that the data asymptotically follow a linear
scheme:

(A6) The number, location, and values of measurements for
a given subject or cluster remain unaltered as n → ∞.

The target trajectories that we aim to predict are

X̃i(t) = µ(t) +
∞∑

k=1

ξ̃ikφk(t), i = 1, . . . , n, (18)

with ξ̃ik as defined in (4). We note that X̃i may be defined as
a limit of random functions X̃K

i (t) = µ(t) +∑K
k=1 ξ̃ikφk(t), as

supt∈T E[X̃K
i (t) − X̃i(t)]2 → 0 (see Lemma A.3 in the App.).

For any K ≥ 1, the target curve X̃i(t) is then estimated by

X̂K
i (t) = µ̂(t) +

K∑

k=1

ξ̂ikφ̂k(t), (19)

with ξ̂ik as in (5).

Theorem 3. Assume (A1.1)–(A6) and (B1.1)–(B2.2b) with
ν = 0, � = 2 in (B2.2a) and ν = (0, 0), � = 2 in (B2.2b). Then

lim
n→∞ ξ̂ik = ξ̃ik in probability, (20)

and for all t ∈ T ,

lim
K→∞ ˆ)
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Applying Theorems 1 and 2, the estimate ω̂K(s, t) is consistent
for ω(s, t) for all t, s ∈ T ; that is, limK→∞ limn→∞ ω̂K(s, t) =
ω(s, t) in probability.

Theorem 4. Assume (A1.1)–(A7) and (B1.1)–(B2.2b) with
ν = 0, � = 2 in (B2.2a) and ν = (0, 0), � = 2 in (B2.2b). For all
t ∈ T and x ∈ 	,

lim
K→∞ lim

n→∞ P

{
X̂K

i (t) − Xi(t)
√

ω̂K(t, t)
≤ x

}

= �(x), (22)

where � is the standard Gaussian cdf.

The number of random components and eigenfunctions K
that are needed in Theorems 3 and 4 to approximate the tra-
jectory X̃i(t) depends primarily on the complexity of the co-
variance structure G(s, t) and on the number and location of
the measurements observed for a given subject. It also de-
pends on the sample size n, through the eigenfunction and
covariance estimates. Although data-based choices for K are
available through (10) and (11) and are successful in practical
applications, results (21) and (22) indicate that for large n, the
number of components K needs to be increased to obtain con-
sistency, but these results do not provide further guidance as to
how K should be chosen in dependence on n.

We next establish (1 − α) asymptotic simultaneous infer-
ence for {X̂K

i (t) − XK
i (t)} on the domain T , where XK

i (t) =
µ(t) +∑K

k=1 ξikφk(t). For these results, we are providing not
functional asymptotics, but instead finite-dimensional asymp-
totics, because the number of included components K is con-
sidered fixed, whereas the sample size n → ∞ as before. If K is
chosen such that only trajectories truncated at the first K com-
ponents XK

i (·) of their expansion are of interest, then the follow-
ing two results provide simultaneous confidence bands, as well
as simultaneous confidence sets for the first K random effects.
Corollary 2 is a variation of Scheffé’s method.

Theorem 5. Under (A1.1)–(A7) and (B1.1)–(B2.2b) with
ν = 0, � = 2 in (B2.2a) and ν = (0, 0), � = 2 in (B2.2b), for
fixed number of components K,

lim
n→∞ P

{

sup
t∈T

|̂XK
i (t) − XK

i (t)|
√

ω̂K(t, t)
≤
√

χ2
K,1−α

}

≥ 1 − α, (23)

where χ2
K,1−α is the (1 − α)th percentile of the chi-squared dis-

tribution with K degrees of freedom.

Assuming K components, let A ⊆ 	K be a linear space with
dimension d ≤ K. By arguments analogous to the proof of The-
orem 5, we obtain the asymptotic simultaneous (1 − α) confi-
dence region for all linear combinations lT ξ̂K,i, where l ∈ A.

Corollary 2. Under the assumptions of Theorem 5,

lim
n→∞ P

{

sup
l∈A

|lT(ξ̂K,i − ξK,i)|
√

lT�̂K l
≤
√

χ2
d,1−α

}

≥ 1 − α, (24)

where χ2
d,1−α is the (1 − α)th percentile of the chi-squared dis-

tribution with d degrees of freedom.

4. SIMULATION STUDIES

To illustrate the implementation of sparse FPC analysis by
PACE, we construct 100 iid normal and 100 iid nonnormal
samples each consisting of n = 100 random trajectories. The
simulated processes have mean function µ(t) = t + sin (t) and
covariance function derived from two eigenfunctions, φ1(t) =
−cos (π t/10)/

√
5 and φ2(t) = sin (π t/10)/

√
5, 0 ≤ t ≤ 10. We

chose λ1 = 4, λ2 = 1, and λk = 0, k ≥ 3, as eigenvalues and
σ 2 = .25 as the variance of the additional measurement er-
rors εij in (1), which are assumed to be normal with mean 0. For
the smoothing steps, we use univariate and bivariate Epanech-
nikov kernel functions, that is, κ1(x) = 3/4(1 − x2)1[−1,1](x)

and κ2(x, y) = 9/16(1 − x2)(1 − y2)1[−1,1](x)1[−1,1]( y), where
1A(x) = 1 if x ∈ A and 0 otherwise for any set A. For an equally
spaced grid {c0, . . . , c50} on [0, 10] with c0 = 0 and c50 = 10,
let si = ci + ei, where ei are iid with N (0, .1), si = 0 if si < 0,
and si = 10 if si > 10, allowing for nonequidistant “jittered” de-
signs. Each curve was sampled at a random number of points,
chosen from a discrete uniform distribution on {1, . . . , 4}, and
the locations of the measurements were randomly chosen from
{s1, . . . , s49} without replacement. For the 100 normal samples,
the FPC scores ξik were generated from N (0, λk), whereas the
ξik for the nonnormal samples were generated from a mix-
ture of two normals, N (

√
λk/2, λk/2) with probability 1/2 and

N (−√
λk/2, λk/2) with probability 1/2.

To demonstrate the superior performance of the conditional
method, Table 1 reports the average mean squared error (MSE)
for the true curves Xi, MSE =∑n

i=1

∫ 10
0 {Xi(t) − X̂K

i (t)}2 dt/n,

where X̂K
i (t) = µ̂(t) + ∑K

k=1 ξ̂ikφ̂k(t) and the ξ̂ik’s were ob-
tained using either the proposed PACE method (5) or the in-
tegration method. The number of eigenfunctions K in each run
was chosen by the AIC (11). In each simulation consisting of
100 Monte Carlo runs (for a total of 400 runs, normal/mixture
and sparse/nonsparse), there were always more than 95 runs in
which two eigenfunctions were chosen.

Another outcome measure of interest is the average squared
error (ASE) for the two FPC scores, ASE(ξk) =∑n

i=1(ξ̂ik −
ξik)2/n, k = 1, 2, also listed in Table 1. We also compared the
two methods for irregular but nonsparse simulated data, where
the number of observations for each curve was randomly cho-
sen from {30, . . . , 40}, with results given in Table 1. We find
that the gains in the sparse situation are dramatic when switch-
ing from the traditional method to the PACE method. For the
case of an underlying normal distribution, the MSE was re-
duced by 43% using the PACE method (5) as compared with

Table 1. Results for FPC Analysis Using Conditional Expectation
(CE, corresponding to PACE) and Integration (IN) Methods for 100
Monte Carlo Runs With N = 100 Random Trajectories per Sample,

Generated With Two Random Components

N = 100
FPC

Normal Mixture

MSE ASE(ξ1) ASE(ξ2) MSE ASE(ξ1) ASE(ξ2)

Sparse CE 1.33 .762 .453 1.30 .737 .453
IN 2.32 1.58 .622 2.25 1.53 .631

Nonsparse CE .259 .127 .110 .256 .132 .105
IN .286 .159 .115 .286 .168 .114

NOTE: Shown are the averages of estimated mean squared prediction error, MSE, and average
squared error, ASE(ξk ), k = 1, 2, as described in Section 4. The number of components for each
Monte Carlo run is chosen by the AIC criterion (11).
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the traditional method; the ASE(ξk) were reduced by 52%/27%
(k = 1, 2). For the mixture distribution case, the decreases were
still 42% for MSE and 52%/28% for ASE(ξk) (k = 1, 2). In
nonsparse situations, the traditional estimates provide reason-
able approximations to the underlying integrals, but neverthe-
less PACE still produces better estimates, with improvements
of 10%/10% for MSE and 20%/21%, 5%/8% for ASE(ξk),
k = 1, 2, for normal/nonnormal samples. We conclude that the
gains obtainable using PACE are substantial for sparse data and
also extend to the case of dense and non-Gaussian data.

5. APPLICATIONS

5.1 Longitudinal CD4 Counts

Because CD4 counts constitute a critical assessment of the
status of the immune system and are used as an important
marker in describing the progress to AIDS in adults, CD4 cell
counts and CD4 percentages (i.e., CD4 counts divided by the to-
tal number of lymphocytes) are commonly used markers for the
health status of human immunodeficiency virus (HIV) infected
persons. The dataset considered here is from the Multicenter
AIDS Cohort Study, which includes repeated measurements
of physical exams, laboratory results, and CD4 percentages
for 283 homosexual men who became HIV-positive between
1984 and 1991. All individuals were scheduled to have their
measurements made at semiannual visits. However, because
many individuals missed scheduled visits and the HIV infec-
tions happened randomly during the study, the data are sparse,
with unequal numbers of repeated measurements per subject
and different measurement times, Tij, per individual. The num-
ber of observations per subject ranged from 1 to 14, with a
median of 6. The trajectories in their entirety are assembled in
Figure 1(a).

That the data from such a classical longitudinal study, with
measurements intended to be spaced at regular 6-month inter-
vals, are quite well suited for analysis by PACE is illustrated by
Figure 2. As this figure shows, the assembled pairs (Tij, Tik)
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(a) (b)

Figure 3. (a) Smooth Estimate of the Variance Function for CD4 Count Data and (b) Smooth Estimate of the Correlation Function, Eliminating
the “Raw” Data Falling on the Diagonal.

early times, decreasing until about 1 year and then increasing
again. Measurements made on the same subject are strongly
correlated, irrespective of the time difference. However, the cor-
relation between very early and late counts dies off relatively
rapidly, whereas for middle and later times, the dependence pat-
terns persist more strongly. These features would be difficult to
anticipate in a traditional parametric model; they would not be
produced, by, for example, linear random-effects models.

Next, consider the eigenfunction decomposition of the esti-
mated covariance surface. Three eigenfunctions shown in the
upper panels of Figure 4 are used to approximate the infinite-
dimensional process. The choice K = 3 emerges as a reasonable
choice, supported both by the AIC (11) and one-curve-leave-out
cross-validation. The first eigenfunction is somewhat similar to
the mean function, the second corresponds to a contrast be-

Figure 4. Smooth Estimates of the First Three Eigenfunctions for
CD4 Count Data (top panels) and Observations (circles) and Predicted
Trajectories (dashed lines) for the Three Individuals With the Largest
Projections on the Respective Eigenfunctions Above, Overlaid With the
Overall Estimated Mean Function (solid lines) (bottom panels).

tween very early and very late times, and the third corresponds
to a contrast between the early and the medium plus later times.
These eigenfunctions account for 76.9%, 12.3%, and 8.1% of
the total variation. Most of the variability is thus in the direc-
tion of overall CD4 percentage level. In exploring such data,
extreme individual cases are difficult to detect by visual exami-
nation due to irregular sampling and substantial noise. One way
to explore the variability in the sample and to single out extreme
cases is to identify cases that exhibit large principal component
scores in the directions of a few leading eigenfunctions (Jones
and Rice 1992). Three such cases, corresponding to the largest
absolute values of the projections on the first three eigenfunc-
tions, are shown in the lower panels of Figure 4.

The predicted curves and 95% pointwise and simultaneous
confidence bands for four randomly chosen individuals are dis-
played in Figure 5, where the principal component scores of

Figure 5. Observations (circles), Predicted (solid lines) Trajectories,
and 95% Pointwise (dashed lines) and Simultaneous (dotted lines)
Bands for Four Randomly Chosen Individuals, for the CD4 Count Data.
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each subject are estimated using the PACE method. The pre-
dicted curves are seen to be reasonably close to the obser-
vations. Even for individuals with very sparse measurements,
one is still able to effectively recover their random trajecto-
ries, combining the information from that individual and the
entire collection. For example, the PACE principle of borrow-
ing strength from the entire sample for predicting individual
trajectories makes it feasible to predict trajectories and con-
struct corresponding prediction bands for those cases where
only one observation available per subject, as exemplified in
the lower left panel of Figure 5. The predictions based on only
one observation per subject work reasonably well, as is demon-
strated in the second example described in Section 5.2 (see the
lower right panel in Fig. 9, where only one single measurement
enclosed in the circle is used for the prediction of the trajec-
tory). Because we need to be able to consistently estimate the
covariance structure, it is, however, not feasible to apply the
method if there is only one observation available per subject
for all subjects. Note that the 95% simultaneous bands show a
widening near the endpoints due to end effects and increased
variance near the ends, and that all observed data fall within
these bands.

5.2 Yeast Cell Cycle Gene Expression Profiles

Time-course gene expression data (factor-synchronized) for
the yeast cell cycle were obtained by Spellman et al. (1998).
The experiment started with a collection of yeast cells, whose
cycles were synchronized (α factor-based) by a chemical
process. There are 6,178 genes in total, and each gene ex-
pression profile consists of 18 data points, measured every
7 minutes between 0 and 119 minutes, covering two cell cy-
cles. Of these genes, 92 had sufficient data and were identified
by traditional methods, of which 43 are related to G1 phase
regulation and 49 are related to non-G1 phase regulation (i.e.,
S, S/G2, G2/M, and M/G1 phases) of the yeast cell cycle; these
genes serve as a training set. The gene expression level mea-
surement at each time point is obtained as a logarithm of the
expression-level ratio.

To demonstrate the usefulness of the PACE method for sparse
functional data, we artificially “sparsify” the measurements
made for the genes in the training data, then compare the results
obtained from this “sparsified” data with those obtained from
the complete data. To sparsify the expression measurements
made for the ith gene expression profile, the number of mea-
surements Ni is randomly chosen between 1 and 6 with equal
probability, and the measurement locations are then randomly
selected from the 18 recorded gene expression measurements
per profile. The median number of observations per gene ex-
pression profile for the resulting sparse data is just 3.

Analyses of both complete and sparsified yeast cell cycle pro-
file data are illustrated in Figures 6–8. The two mean function
estimates for the sparse and complete data, obtained by local
linear smoothing of the pooled data, are close to each other and
demonstrate periodicity [see Fig. 8(a), presenting two cell cy-
cles]. The two smooth covariance surface estimates revealing
the structure of the underlying process are displayed in Fig-
ure 7. Both surfaces are very similar and exhibit periodic fea-
tures. We use the first two eigenfunctions to approximate the

(a) (b)

Figure 6. Complete Measurements (a) of Gene Expression Profiles
and a Randomly “Sparsified” Subset (b) for 92 Yeast Cell Cycles.

expression profiles [Figs. 8(a) and 8(c)]. The estimates of the
first two eigenfunctions obtained from both sparse and com-
plete data are also close and reflect periodicity, explaining ap-
proximately 75% of the total variation.

We randomly select four genes, and present the predicted
profiles obtained from both sparse and complete data and the
confidence bands using only the sparse data in Figure 9. We
note that the trajectories obtained for the complete data are en-
closed in the simultaneous 95% confidence bands constructed
from the sparse data. The predictions obtained from the sparse
data are similar to those constructed from the complete data
and are reasonable when compared with the complete measure-
ments. This demonstrates that the PACE method allows us to
effectively recover entire individual trajectories from fragmen-
tal data.

(a) (b)

Figure 7. Smooth Surface Estimates Ĝ (A.2) of the Covariance Func-
tions Obtained From the Complete Data (a) and From the Sparsified
Data (b) for Yeast Cell Cycle Gene Expression Profiles.
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(a) (b) (c)

Figure 8. Smooth Estimates of the Mean Function (a), the First (b)
and Second (c) Eigenfunctions, Obtained From Sparse (solid lines) and
Complete (dashed lines) Gene Expression Data.

6. CONCLUDING REMARKS

Besides the general application to FPC analysis for sparse
and irregular data, an application of our proposed PACE method
to impute missing data in longitudinal studies is also feasible.
Consider a regular design where for some subjects many data
are missing. The PACE method can then be used to impute the
missing data from predicted trajectories.

An interesting finding from the simulation study is that the
PACE method improves on traditional FPC analysis even under
dense and regular designs. This improvement is due to replacing
integrals by conditional expectations when determining FPC
scores. The conditioning step can be interpreted as shrinkage

Figure 9. Predicted Gene Expression Profiles Obtained From Com-
plete Measurements (thick solid lines) and From Sparse Measure-
ments (solid lines) for Four Randomly Selected Genes. Also shown are
95% pointwise (dashed lines) and simultaneous (dotted lines) bands ob-
tained exclusively from the sparse data. Solid circles indicate the mea-
surements for the complete data, and solid circles enclosed by an open
circle correspond to the randomly sampled sparse data.

of these random effects toward 0. The observed improvement
indicates that PACE can also be used to advantage for regularly
spaced data, which enhances this method’s appeal. We conclude
that the underlying principle of borrowing strength from an en-
tire sample of curves to predict individual trajectories shows
promise in applications.

APPENDIX: PROOFS AND AUXILIARY RESULTS

We assume regularity conditions for the marginal and joint densities
f (t), g(t, y), and g2(t1, t2, y1, y2). Let ν1, ν2, and � be given integers,
with 0 ≤ ν1 + ν2 < �. Then the following conditions apply:

(B1.1) (d�/dt�)f (t) exists and is continuous on T with f (t) > 0
on T .

(B1.2) (d�/dt�)g(t, y) exists and is uniformly continuous on T × 	.

(B1.3) (d�/(dt�1
1 dt�2

2 ))g2(t1, t2, y1, y2) exists and is uniformly

continuous on T 2 × 	2, for �1 + �2 = �, 0 ≤ �1, �2 ≤ �.

The assumptions for kernel functions κ1 :	 → 	 and κ2 :	2 → 	
are as follows. We say that a bivariate kernel function κ2 is of order
(ν, �), where ν is a multi-index ν = (ν1, ν2), if
∫ ∫

u�1 v�2 κ2(u, v) du dv

=





0, 0 ≤ �1 + �2 < �,�1 �= ν1, �2 �= ν2

(−1)|ν||ν|!, �1 = ν1, �2 = ν2

�= 0, �1 + �2 = �,

(A.1)

where |ν| = ν1 + ν2. A univariate kernel κ1 is of order (ν, �) for a uni-
variate ν = ν1, if (A.1) holds with �2 = 0 on the right side, integrating
only over the argument u on the left side.

(B2.1a) κ1 is compactly supported, ‖κ1‖2 = ∫ κ2
1 (u) du < ∞.

(B2.2a) κ1 is a kernel function of order (ν, �).
(B2.1b) κ2 is compactly supported, ‖κ2‖2 = ∫ ∫

κ2
2 (u, v) ×

du dv < ∞.
(B2.2b) κ2 is a kernel function of order (ν, �).

We define the local linear scatterplot smoother for µ(t) by minimiz-
ing

n∑

i=1

Ni∑

j=1

κ1

(
Tij − t

hµ

)

{Yij − β0 − β1(t − Tij)}2 (A.2)

with respect to β0 and β1. The estimate of µ(t) is then µ̂(t) = β̂0(t).
The local linear surface smoother for G(s, t) is defined by minimizing

n∑

i=1

∑

1≤ j �=l≤Ni

κ2

(
Tij − s

hG
,

Til − t

hG

)

× {Gi(Tij, Til) − f
(
β, (s, t), (Tij, Til)

)}2
, (A.3)

where f (β, (s, t), (Tij, Til)) = β0 + β11(s − Tij) + β12(t − Til). Min-
imization is with regard to β = (β0, β11, β12), yielding the estimate
Ĝ(s, t) = β̂0(s, t). To obtain the adjusted estimate of G(s, t) on the di-
agonal [i.e., G̃(t)], we first rotate both the x-axis and y-axis by 45 de-
grees clockwise and obtain the coordinates of (Tij, Tik) in the rotated

axes, denoted by (T∗
ij , T∗

ik), that is,
(

T∗
ij

T∗
ik

)
=
( √

2/2
√

2/2
−√

2/2
√

2/2

)(
Tij

Tik

)
.

We then define the surface estimate Ḡ(s, t) by minimizing the weighted
least squares,

n∑

i=1

∑

1≤ j �=l≤Ni

κ2

(T∗
ij − s

hG
,

T∗
il − t

hG

)

×{Gi(T
∗
ij , T∗

il) − g
(
γ , (s, t), (T∗

ij , T∗
il)
)}2

, (A.4)
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where g(γ , (s, t), (T∗
ij , T∗

il)) = γ0 + γ1(s − T∗
ij) + γ2(t − T∗

ik)2. Min-

imization is with respect to γ = (γ1, γ2, γ3)T , leading to Ḡ(s, t) =
γ̂0(s, t). Because of the rotation, the estimate of the covariance sur-
face on the diagonal, G̃(t), is now indeed Ḡ(0, t/

√
2 ), obtained with

the rotated coordinates.
The following auxiliary results provide the weak uniform con-

vergence rate for univariate weighted averages defined later (cf.
Bhattacharya and Müller 1993). For a positive integer l ≥ 1, let
(ψp)p=1,...,l be a collection of real functions ψp :	2 → 	, that sat-
isfy the following conditions:

(C1.1a) ψp are uniformly continuous on T × 	.

(C1.2a) The functions (d�/dt�)ψp(t, y) exist for all arguments
(t, y) and are uniformly continuous on T × 	.

(C1.3a)
∫

ψ2
p (t, y)g(t, y) dy dt < ∞.

Bandwidths hµ = hµ(n) used for one-dimensional smoothers are as-
sumed to satisfy the following:

(C2.1a) hµ → 0, nhν+1
µ → ∞, nh2�+2

µ < ∞, as n → ∞.

Define the weighted averages

�pn = �pn(t)

= 1

nhν+1
µ

n∑

i=1

1

EN

Ni∑

j=1

ψp(Tij, Yij)κ1

(
t − Tij

hµ

)

, p = 1, . . . , l,

and the quantity

µp = µp(t)

= dν

dtν

∫

ψp(t, y)g(t, y) dy, p = 1, . . . , l.

Lemma A.1. Under (A1.1), (A1.2), (A3.1), (B1.1), (B1.2), (B2.1a),
(B2.2a), (C1.1a)–(C1.3a), and C(2.1a), τpn = supt∈T |�pn − µp| =
Op(1/(

√
nhν+1

µ )).

Proof. Note that E|τpn| ≤ supt |E�pn − µp| + E{supt |�pn −
E�pn|}, where t takes values in T and E|τpn| = O(1/(

√
nhν+1

µ )) im-
plies that τpn = Op(1/(

√
nhν+1

µ )).
Using a Taylor expansion to order �, it is easy to show that E�pn =

µp + O(h�−ν
µ ), where the remainder term is uniform in t, observing

that (d�/dt�)ψp(t, y) and (d�/dt�)g(t, y) are uniformly continuous. It
remains to show that E{supt |�pn − E�pn|} = O(1/(

√
nhν+1

µ )). Re-

call that the inverse Fourier transform is ζ1(t) = ∫ e−iutκ1(u) du. We
may insert κ1((t − Tij)/hµ) = ∫ eiv(t−Tij)/hµζ1(v) dv/(2π) into �pn.
Letting

ϕpn(u) = 1

n

n∑

l=1

1

EN

Nl∑

j=1

eiuTlj ψp(Tlj, Ylj),

we obtain

�pn = 1

nhν+1
µ

n∑

l=1

1

EN

Nl∑

j=1

κ1

(
t − Tlj

hµ

)

ψp(Tlj, Ylj)

= 1

2πhν
µ

∫

ϕpn(u)e−ituζ1(uhµ) du,

and thus

sup
t

|�pn − E�pn| ≤ 1

2πhν
µ

∫

|ϕpn(u) − Eϕpn(u)| · |ζ1(uhµ)|du.

Note that E|ϕpn(u) − Eϕpn(u)| ≤
√

E[ϕpn(u) − Eϕpn(u)]2, and be-

cause {T̃i, Ỹi, Ni} are iid, using the Cauchy–Schwarz inequality,

var(ϕpn(u)) = 1

n
var

{
1

EN

N∑

j=1

eiuTj ψp(Tj, Yj)

}

≤ 1

n
E

{(
1

EN

N∑

j=1

eiuTj ψp(Tj, Yj)

)2}

≤ 1

n
E

{
1

(EN)2

( N∑

j=1

ei2uTj

)( N∑

j=1

ψ2
p (Tj, Yj)

)}

≤ 1

n
E

{
N

(EN)2

N∑

j=1

E
(
ψ2

p (Tj, Yj)|N
)
}

= 1

n
Eψ2

p (T, Y),

implying that

E
{

sup
t

|�pn − E�pn|
}

≤ 1

2πhν
µ

∫

E{|ϕ

E�|2(EN)|N 

√(
T , Y),|

N

2(

TugN

{〉h

n

|
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Proof of Theorem 1

From (A.2), the local linear estimator µ̂(t) of the mean function
µ(t) can be written explicitly as

µ̂(t) = β̂0(t)

=
∑

i
1

EN
∑

j wijYij
∑

i
1

EN
∑

j wij
−
∑

i
1

EN
∑

j wij(Tij − t)
∑

i
1

EN
∑

j wij
β̂1(t), (A.5)

where

β̂1(t) =
(∑

i

1

EN

∑

j

wij(Tij − t)Yij

−
(∑

i

1

EN

∑

j

wij(Tij − t)
∑

i

1

EN

∑

j

wijYij

)

/(∑

i

1

EN

∑

j

wij

))

×
(∑

i

1

EN

∑

j

wij(Tij − t)2

−
(∑

i

1

EN

∑

j

wij(Tij − t)

)2/(∑

i

1

EN

∑

j

wij

))−1
.

(A.6)

Here wij = κ1((t − Tij)/hµ)/(nhµ), where κ1 is a kernel function of
order (0, 2) satisfying (B2.1a) and (B2.2a), and β̂1(t) is an estimator
for the first derivative µ′(t) of µ at t.

Considering the Nadaraya–Watson estimator of µ, µ̂NW (t) =
(
∑

i
∑

j wijYij/EN)/(
∑

i
∑

j wij/EN) and f̂ (t) = ∑i
∑

j wij/EN, we
choose ν = 0, � = 2, l = 2, ψ1(t, y) = y, and ψ2(t, y) ≡ 1 in
Lemma A.1. Obviously, µ̂NW (t) = H(�1n,�2n), with H(x1, x2) =
x1/x2 and f̂ (t) = �2n. Using Slutsky’s theorem and Lemma A.1, it fol-
lows that supt∈T |µ̂NW (t) − µ(t)| = Op(1/(

√
nhµ)) and

supt∈T | f̂ (t) − f (t)| = Op(1/(
√

nhµ)).
For the uniform consistency of β̂1 as an estimator of the deriva-

tive µ′, define �pn, 1 ≤ p ≤ 3, σ 2
κ1

= ∫ u2κ1(u) du, and the kernel

function κ̃1(t) = −tκ1(t)/σ 2
κ1

; furthermore, ψ1(u, y) = y, ψ2(u, y) ≡ 1

and ψ3(u, y) = u − t. Observe that κ̃1 is of order (1, 3), supt∈T | f̂ (t)−
f (t)| = Op(1/(

√
nhµ)), and define

H̃(x1, x2, x3) = x1 − x2µ̂NW (t)

x3 − h2
µx2

2/f̂ (t) · σ 2
κ1

and

H(x1, x2, x3) = x1 − x2µ(t)

x3
.

Then

β̂1(t) = H̃(�1n,�2n,�3n)

=
[

H(�1n,�2n,�3n) + �2n(µ(t) − µ̂NW (t))

�3n

]

× �3n

�3n + h2
µ�2

2n/f̂ (t) · σ 2
κ1

.

Note that µ1 = (µ′f + mf ′)(t), µ2 = f ′(t), and µ3 = f (t), im-
plying that supt∈T |�pn − µp| = Op(1/(

√
nh2

µ)), for p = 1, 2, 3,
by Lemma A.1. Using the uniform version of Slutsky’s theorem,
supt∈T |H(�1n,�2n,�3n) − µ′(t)| = Op(1/(

√
nh2

µ)) follows.

Considering the uniform convergence of β̂0 for µ, note that

β̂0(t) = µ̂NW (t) + �2nβ̂1(t)

f̂ (t)
h2

µ.

Because supt∈T |�2n − f ′(t)| = Op(1/(
√

nh2
µ)), supt∈T |β̂1(t) −

µ′(t)| = Op(1/(
√

nh2
µ)), and supt∈T |f̂ ′(t) − f (t)| = Op(1/(

√
nhµ)),

we have supt∈T |�2nβ̂1(t)h2
µ/f̂ (t)| = Op(h2

µ) = Op(1/(
√

nhµ)), as

nh6
µ < ∞. As supt∈T |µ̂NW (t) − µ(t)| = Op(1/(

√
nhµ)), the re-

sult (12) follows.
We proceed to show (13). In the local linear estimator for the co-

variance G(s, t), we used the raw observations, Gi(Tij, Tik) = (Yij −
µ̂(Tij))(Yik − µ̂(Tik)), instead of G̃i(Tij, Tik) = (Yij − µ(Tij))(Yik −
µ(Tik)). Note that

Gi(Tij, Tik) = G̃i(Tij, Tik) + (Yij − µ(Tij))(µ(Tik) − µ̂(Tik))

+ (Yik − µ(Tik))(µ(Tij) − µ̂(Tij))

+ (µ(Tij) − µ̂(Tij))(µ(Tik) − µ̂(Tik)).

Because supt∈T |µ̂(t) − µ(t)| = Op(1/(
√

nhµ)) by (12), letting
θ1(t1, t2, y1, y2) = ( y1 − µ(t1))( y2 − µ(t2)), θ2(t1, t2, y1, y2) = y1 −
µ(t1), and θ3(t1, t2, y1, y2) ≡ 1, then supt,s∈T |�pn| = Op(1), for
p = 1, 2, 3, by Lemma A.2. This implies that supt,s∈T |�2n|Op(1/

(
√

nhµ)) = Op(1/(
√

nhµ)) and supt,s∈T |�3n|Op(1/(
√

nhµ)) =
Op(1/(

√
nhµ)). Because supt∈T |µ̂(t) − µ(t)|2 = Op(1/(nh2

µ)) are

negligible compared with �1n, the local linear estimator, Ĝ(s, t), of
G(s, t) obtained from Gi(Tij, Tik) is asymptotically equivalent to that

obtained from G̃i(Tij, Tik), denoted by G̃(t, s). Analogously to the
proof of (12), using Lemma A.2 and the uniform version of Slutsky’s
theorem, we obtain the uniform consistency of the local linear estima-
tor Ĝ(s, t).

Proof of Corollary 1

Because V̂(t) is a uniformly consistent estimator of {G(t, t) + σ 2},
analogously to (12), (14) follows by applying (13).

Proof of Theorem 2

Define the rank-one operator f ⊗ g = 〈 f , h〉y for f , h ∈ H, and de-
note the separable Hilbert space of Hilbert–Schmidt operators on H
by F ≡ σ2(H), endowed by 〈T1, T2〉F = tr(T1T∗

2 ) =∑j〈T1uj, T2uj〉H

and ‖T‖2
F = 〈T, T〉F , where T1, T2, T ∈ F, T∗

2 is the adjoint of T2 and
{uj : j ≥ 1} is any complete orthonormal system in H. The covariance
operator G (resp. Ĝ) is generated by the kernel G (resp. Ĝ), that is,
G( f ) = ∫T G(s, t)f (s) ds [resp. Ĝ( f ) = ∫T Ĝ(s, t)f (s) ds]. It is obvi-
ous that G and Ĝ are Hilbert–Schmidt operators, and (13) implies that
‖Ĝ − G‖F = Op(1/(

√
nh2

G)).
Let Ii = { j : λj = λi}, I ′ = {i : |Ii| = 1}, where |Ii| denotes the

number of elements in Ii. To obtain (16), let Pj = ∑
k∈Ij

φk ⊗
φk and P̂j = ∑

k∈Ij
φ̂k ⊗ φ̂k denote the true and estimated or-

thogonal projection operators from H to the subspace spanned by
{φk : k ∈ Ij}. For fixed 0 < ρ < min{|λl − λj| : l /∈ Ij}, let �ρ,j =
{z ∈ C : |z − λj| = ρ}, where C stands for the complex numbers.
The resolvent of G (resp. Ĝ) is denoted by R (resp. R̂), that is,
R(z) = (G − zI)−1 [resp. R̂(z) = (Ĝ − zI)−1]. As R̂(z) = R(z)[I +
(Ĝ − G)R(z)]−1 = R(z)

∑∞
l=0[(Ĝ − G)R(z)]l, ‖R̂(z) − R(z)‖F ≤

(‖Ĝ − G‖F‖R(z)‖F)/(1 − ‖Ĝ − G‖F‖R(z)‖F). Note that Pj =
(2π i)−1 ∫

�ρ,j
R(z) dz, P̂j = (2π i)−1 ∫

�ρ,j
R̂(z) dz. Let Mρ,j =

sup{‖R(z)‖F : z ∈ �ρ,j} < ∞, and let ε be such that 0 < ε <

1/(2Mρ,j); then

‖P̂j − Pj‖F ≤
∫

�ρ,j

‖R̂(z) − R(z)‖F dz/(2π)

≤ ρ
‖Ĝ − G‖FMρ,j

1 − ‖Ĝ − G‖FMρ,j
≤ 2ρMρ,jε.
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Considering φk corresponding to k ∈ I ′, choose φ̂k such that
〈φ̂k, φk〉H > 0. Then

‖P̂k − Pk‖2
F = 2

(
1 − 〈φ̂k ⊗ φ̂k, φk ⊗ φk〉H

)

= 2
(
1 − 〈φ̂k, φk〉2

H
)≥ ‖φ̂k − φk‖2

H,

and (16) follows. Note that λk = 〈φk, G(φk)〉H and λ̂k = 〈φ̂k,

Ĝ(φ̂k)〉H ; then (15) follows by applying Slusky’s theorem. To ob-
tain (17), for fixed k ∈ I ′,

|λ̂kφ̂k(t) − λkφk(t)|

=
∣
∣
∣
∣

∫ T

0
Ĝ(s, t)φ̂k(s) ds −

∫ T

0
G(s, t)φk(s) ds

∣
∣
∣
∣

≤
∫ T

0
|Ĝ(s, t) − G(s, t)| · |φ̂k(s)|ds

+
∫ T

0
|G(s, t)| · |φ̂k(s) − φk(s)|ds

≤
√
∫ T

0
(Ĝ(s, t) − G(s, t))2 ds +

√
∫ T

0
G2(s, t) ds‖φ̂k − φk‖H .

Due to (13) and (16), assuming λk > 0 without loss of generality,
we have |λ̂kφ̂k(t)/λk − φk(t)| = Op(1/(

√
nh2)), uniformly in t ∈ T .

Then (17) follows by applying (15).
The next result ensures that the target trajectory X̃i is well defined.

Lemma A.3. For the positive definite covariance operator G gener-
ated by the continuous symmetric function G(s, t) on T 2, as K → ∞,

sup
t∈T

E[X̃K
i (t) − X̃i(t)]2 −→ 0. (A.7)

Proof. Because the covariance operator G generated by the contin-
uous symmetric function G(s, t) is positive definite, by Mercer’s theo-
rem,

∑∞
k=K λkφk(s)φk(t) converges to 0 uniformly in (s, t) ∈ T 2. Note

that X̃i,K(t) − X̃i(t) = E[∑∞
k=K+1 ξikφk(t)|Ỹi]. From

sup
t∈T

var

( ∞∑

k=K+1

ξikφk(t)

)

= sup
t∈T

{

E

[

E

[ ∞∑

k=K+1

ξikφk(t)|Ỹi

]2]

+ E

[

var

( ∞∑

k=K+1

ξikφk(t)|Ỹi

)]}

= sup
t∈T

∞∑

k=K+1

λkφ2
k (t) −→ 0,

and E[var(
∑∞

k=K+1 ξikφk(t)|Ỹi)] ≥ 0, (A.7) follows.

Proof of Theorem 3

Recall that ξ̂ik = λ̂kφ̂T
ik�̂

−1
Yi

(Ỹi − µ̂i), where the ( j, l)th entry of the

Ni ×Ni matrix �̂Yi is (�̂Yi)j,l = Ĝ(Tij, Til)+ σ̂ 2δjl with δjl = 1 if j = l
and 0 if j �= l. Applying Theorems 1 and 2, Corollary 1, and Slutsky’s
theorem, (20) follows. We next prove (21) for each fixed t ∈ T . Let
X̃K

i (t) = µ(t) +∑K
k=1 ξ̃ikφk(t), where ξ̃ik is as defined in (4). Note

that

|̂XK
i (t) − X̃i(t)| ≤ |̂XK

i (t) − X̃K
i (t)| + |̃XK

i (t) − X̃i(t)|.
Lemma A.3 implies that X̃K

i (t)
p→ X̃i(t) as K → ∞. For fixed K, ob-

serving that ξ̂ik
p→ ξ̃ik as n → ∞, supt∈T |̂XK

i (t) − X̃K
i (t)| p→ 0 as

n → ∞ by (12), (17), and Slutsky’s theorem. This implies that for

given ε, δ > 0, there exists K0 such that for K ≥ K0, P{|̃XK
i (t) −

X̃i(t)| > ε/2} ≤ δ/2. For each K, there exists n0(K) such that for
n ≥ n0(K), P{|̂XK

i (t) − X̃K
i (t)| ≥ ε/2} ≤ δ/2. Thus for K ≥ K0 and

n ≥ n0(K), P{|̂XK
i (t) − X̃i(t)| ≥ ε} ≤ P{|̂XK

i (t) − X̃K
i (t)| > ε/2} +

P{|̃XK
i (t) − X̃i(t)| ≥ ε/2} ≤ δ, which leads to (21).

Proof of Theorem 4

Under the Gaussian assumption, for any fixed K ≥ 1, from Sec-
tion 2.4, we have (ξ̃K,i − ξK,i) ∼ N (0,�K). Observing (12), (17),

and (20), limn→∞ supt∈T |̂XK
i (t) − X̃K

i (t)| p→ 0. Because X̂K
i (t) −

XK
i (t) = X̂K

i (t) − X̃K
i (t) + X̃K

i (t) − XK
i (t) for fixed K, it follows that

{X̂K
i (t) − XK

i (t)} D→ ZK ∼ N (0,ωK(t, t)). Under condition (A7), let-

ting K → ∞ leads to ZK
D→ Z ∼ N (0,ω(t, t)). From the Karhunen–

Loève theorem, |XK
i (t) − Xi(t)| p→ 0, as K → ∞. Therefore,

limK→∞ limn→∞{X̂K
i (t)−Xi(t)} D= Z. From Theorems 1 and 2, it can

be shown that ω̂K(t, t)
p→ ωK(t, t) as n → ∞. Under condition (A7),

it follows that limK→∞ limn→∞ ω̂K(t, t) = ω(t, t) in probability. Ap-
plying Slutsky’s theorem, (22) follows.

Proof of Theorem 5

We first prove

P

{

sup
t∈T

|̃XK
i (t) − XK

i (t)|√
ωK(t, t)

≤
√

χ2
K,1−α

}

≥ 1 − α. (A.8)

It is obvious that X̃K
i (t) − XK

i (t) = φT
K,t(ξ̃K,i − ξK,i). Due to or-

thogonality, F = {φK,t : t ∈ T } is a K-dimensional compact set.
Because �K is positive definite, there exists a K × K nonsingular
matrix U such that U�KUT = IK . Let θ = UξK,i and θ̃ = Uξ̃K,i;

then (θ̃ − θ) ∼ N (0, IK). This leads to (θ̃ − θ)T (θ̃ − θ) ∼ χ2
K and

P{(θ̃ − θ)T (θ̃ − θ)} = 1 − α. We use the following result, known from
linear algebra.

Lemma A.4. For a fixed p-vector x and a constant c > 0, xT x ≤ c2

if and only if |aT x| ≤ c
√

aT a, for all a ∈ 	p.

Hence P{|aT (θ̃ −θ)| ≤
√

χ2
K,1−α

aT a : for all a ∈ 	K} = 1−α. Let
E = {a ∈ 	K : φK,t = UT a, t ∈ T }, which is a compact subset of 	K .

Then P{|aT (θ̃ − θ)| ≤
√

χ2
K,1−α

aT a : for all a ∈ E} ≥ 1 − α, that is,

P
{|φT

K,t(ξ̃K,i − ξK,i)|

≤
√

χ2
K,1−αφK,tU

−1(UT )−1φK,t : for all t ∈ T
}

≥ 1 − α.

Observing that U�KUT = IK , (A.8) follows.
To prove (23), note that

sup
t∈T

|̂XK
i (t) − XK

i (t)|√
ωK(t, t)

≤
(

sup
t∈T

|̂XK
i (t) − X̃K

i (t)|√
ωK(t, t)

+ sup
t∈T

|̃XK
i (t) − XK

i (t)|√
ωK(t, t)

)

sup
t∈T

√
ωK(t, t)

ω̂K(t, t)
.

Let A = supt∈T |̂XK
i (t) − X̃K

i (t)|/√ωK(t, t), B = supt∈T |̃XK
i (t) −

XK
i (t)|/√ωK(t, t), and C = supt∈T

√
ωK(t, t)/ω̂K(t, t). Because

ωK(t, t) is a continuous positive definite function on the bounded in-
terval T , it is bounded from above and below, say 0 < a ≤ ωK(t, t) ≤
b < ∞. Because supt∈T |̂XK

i (t) − X̃K
i (t)| p→ 0 as n → ∞, we have

A
p→ 0 as n → ∞. In the proof of (22), we established that ω̂K(t, t)

p→
ωK(t, t), as n → ∞, implying that C

p→ 1. We now show that

lim
n→∞ P

{
(A + B)C ≥ (ε +

√
χ2

K,1−α

)
(1 + ε)

}≤ α. (A.9)
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Note that
{
(A + B)C ≥ (ε +

√
χ2

K,1−α

)
(1 + ε)

}

⊆ {(A + B) ≥ (ε +
√

χ2
K,1−α

)}∪ {C ≥ (1 + ε)}

⊆ {A ≥ ε} ∪ {B ≥
√

χ2
K,1−α

}∪ {C ≥ (1 + ε)}.
Because A

p→ 0 and C
p→ 1 as n → ∞, for sufficiently large n,

P(A ≥ ε) ≤ τ/3 and P(C − 1 ≥ ε) ≤ τ/3. We have shown that P(B ≥√
χ2

K,1−α
) ≤ α in (A.8). This implies (A.9), and then (23), by letting

ε → 0.

Proof of Corollary 2

There exists a K × d matrix QT with rank d ≤ K such that
F is spanned by the column vectors of QT . Letting δ = QξK,i and

δ̃ = Qξ̃K,i, for any l ∈A, where A ⊆ 	K is a linear space with dimen-

sion d, there exists a vector λ ∈ 	d such that l = QTλ. Then

lT ξ̃K,i − lTξK,i = λT δ̃ − λTδ ∼N (0,λT Q�KQTλ).

Because Q is of rank d and �K is positive definite, which implies
that Q�KQT is also positive definite, there exists a nonsingular d × d
matrix P such that PQ�KQT PT = Id , where Id is the d × d iden-
tity matrix. Letting η = Pδ and η̃ = Pδ̃, we have (η̃ − η) ∼ N (0, Id),
that is, (η̃ − η)T (η̃ − η) ∼ χ2

d . Therefore, P{(η̃ − η)T (η̃ − η) ≤
χ2

d,1−α
} = 1 − α. Applying Lemma A.4, we obtain P{|aT (η̃ − η)| ≤

√
χ2

d,1−α
aT a : for all a ∈ 	d} = 1 − α. Because P is nonsingular and

Q is of rank d, there exists λ ∈ 	d and l ∈ A, such that λ = PT a and
l = QTλ. If a takes all values in 	d , then l will also take all values
in A, that is,

P
{|lT (ξ̃K,i − ξK,i)|

≤
√

χ2
d,1−α lT (PQ)−1(QT PT )−1l : for all l ∈A

}= 1 − α.

Because PQ�KQT PT = Id , the result (24) follows.

[Received June 2003. Revised September 2004.]
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