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Abstract: Sensor-based human activity recognition aims to classify human activities or behaviors
according to the data from wearable or embedded sensors, leading to a new direction in the field
of Artificial Intelligence. When the activities become high-level and sophisticated, such as in the
multiple technical skills of playing badminton, it is usually a challenging task due to the difficulty of
feature extraction from the sensor data. As a kind of end-to-end approach, deep neural networks
have the capacity of automatic feature learning and extracting. However, most current studies on
sensor-based badminton activity recognition adopt CNN-based architectures, which lack the ability of
capturing temporal information and global signal comprehension. To overcome these shortcomings,
we propose a deep learning framework which combines the convolutional layers, LSTM structure,
and self-attention mechanism together. Specifically, this framework can automatically extract the
local features of the sensor signals in time domain, take the LSTM structure for processing the
badminton activity data, and focus attention on the information that is essential to the badminton
activity recognition task. It is demonstrated by the experimental results on an actual badminton
single sensor dataset that our proposed framework has obtained a badminton activity recognition
(37 classes) accuracy of 97.83%, which outperforms the existing methods, and also has the advantages
of lower training time and faster convergence.

Keywords: badminton activity recognition; deep learning; Long Short-Term Memory (LSTM);
self-attention

1. Introduction

Human Activity Recognition (HAR) aims to use sensor-based or other related data to
classify and recognize human activities. In fact, HAR has played a key role in many practical
applications, such as in living behavior analysis [1], healthcare [2], gesture recognition [3],
and sport activity recognition [4], etc. Therefore, HAR has attracted extensive attention
from both academic and technical communities owing to its practicality.

According to different methods of data collection, research on HAR can be roughly
categorized into two categories: video-based and sensor-based HARs. Obviously, the for-
mer is based on the image and video data collected using optical sensors (such as cameras),
while the latter is based on the raw data from wearable or environmental sensors (such
as accelerometers, gyroscopes, and magnetometers). In the past decade, most of the HAR
research was video-based, since video data are easier to collect and more affordable than
sensor data [5]. However, the high computational complexity of analyzing and processing
3D video data makes it difficult to establish a real-time effective recognition system. More-
over, video-based HAR is more sensitive to camera settings, such as placement, viewing
angle, and focal length, which inevitably decreases the recognition accuracy [6]. With
the quick development of sensor technology, sensor-based methods gradually have the
advantages of both the feasibility and reliability of HAR tasks and also have good privacy
protection [7]. In the existing sensor-based HAR research, as well as the related public
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datasets, researchers generally focus on basic behaviors such as walking, standing, sitting,
going up and down stairs, and biking [8–11], etc. However, there are relatively few in-
vestigations on high-level fine movements, such as different racket swings when playing
badminton [12,13].

In the sensor-based HAR, a series of conventional machine learning models and
algorithms have been applied and tested, such as Support Vector Machine (SVM) [14],
K-Nearest Neighbours (KNN) [15], and Random Forest (RF) [16], etc. In fact, all of them
can achieve good results in certain cases, especially for simple activity recognition such as
walking and running. In these settings, conventional machine learning approaches have
shown competitive results. However, those conventional machine learning algorithms rely
on the heuristic manual extraction of features, and the quality of feature extraction directly
affects the recognition accuracy. In addition, these hand-crafted features are feasible only
for simple activity recognition. When facing more sophisticated problems, they cannot
perform so well in general since the effective features are very difficult to extract in these
situations [7].

In order to overcome the above weaknesses of conventional machine learning algo-
rithms, deep learning neural networks have been adopted for HAR. The deep learning
methods can extract effective features automatically by implementing a succession of non-
linear transformations, which shows the promise that a proper deep learning method may
reach a higher upper bound of accuracy in a complex recognition task, compared with
conventional machine learning methods. In the training process of deep learning methods,
the stochastic gradient descent algorithm is applied to learn the weights of the neural
network from the labelled sample data. In fact, Convolutional Neural Network (CNN) and
Recurrent Neural Network (RNN) are the two most popular deep neural networks applied
in the research of HAR. Many investigations and applications have shown that CNN is
effective for automatically extracting features from sensor data, while RNN is effective for
mining the temporal information of sensor data [17].

Recently, the hybrid deep learning models combining CNN and RNN together [9,17]
have achieved better performance than the single CNN models because they have a re-
current layer to take the temporal relationship of sensor data into account. In fact, if the
recurrent layer and the convolutional layer combine together, the temporal features can be
extracted from different sensor modalities. Moreover, by the introduction of an attention
mechanism, a series of attention-based methods have emerged, such as adding an attention
layer on the recurrent layer [10,18] and designing attention among different sensor modali-
ties [10]. These attention-based deep learning models further enhance the accuracy rate of
HAR on many public datasets.

As a relatively new network structure, the self-attention mechanism was proposed
by Google in the machine translation model Transformer [19] in 2017. It firstly showed its
power in natural language processing and has made outstanding achievements in many
machine learning tasks. This special structure can be adopted into a general neural network
architecture to capture the context information in the sequence from multiple aspects by
calculating the distribution of the weights in the temporal domain. In this way, the self-
attention-based model can adjust the focus of output layers on the crucial part of the result,
thereby minimizing the impact of noise information on the output result [11].

As for badminton activity recognition, this is a key technology for modern intelligent
sports [13]. Several applications, such as a badminton AI coach and AI rating system,
can be developed based on the recognition results, which is beneficial for athletes and
amateurs. To our best knowledge, most research on badminton activity recognition adopts
conventional machine learning algorithms and CNN-based architectures. Among them,
some CNN-based approaches focus on mining and utilizing the relationship among dif-
ferent activity classes to boost the recognition performance, such as in references [12,13].
However, conventional machine learning algorithms are strongly dependent on the quality
of heuristic feature extraction that usually requires specialized domain knowledge, while
the CNN architecture lacks the ability to capture temporal features and global sensor signal
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comprehension. Moreover, according to the direct experiments on our specialized Bad-
minton Single-Sensor (BSS) dataset, current deep learning models are still far from fitting
this collected dataset. In order to enhance the expression ability of the model, we add
the recurrent structure for the temporal dependency of the sensor signals and adopt the
self-attention mechanism to construct a deep learning neural network framework, called
SADeepConvLSTM, for both high recognition performance and lightweight deployment.
We conduct experiments on the BSS dataset, with each sample containing sensor data of
tri-axis accelerations and attitude angles, to validate the effectiveness of our framework. In
summary, we make the following contributions:

1. To overcome the shortcomings of the current methods for badminton activity recogni-
tion, we propose a new framework SADeepConvLSTM which combines the convo-
lutional, recurrent, and self-attention layers together for synthetically improving the
recognition performance. Such a design strategy has never been explored by previous
work on badminton activity recognition.

2. The adopted LSTM and self-attention layers in SADeepConvLSTM are able to ef-
fectively extract temporal features from the sensor signals and suppress the noise
interference, which leads to the acceleration of the recognition process and an increase
in the accuracy and macro F1-score at the same time.

3. Compared with the existing popular deep learning models for badminton activity
recognition on the specialized BSS dataset, SADeepConvLSTM obtains the best recog-
nition accuracy. Moreover, it also has the advantages of lower training time and
faster convergence.

The rest of this paper is organized as follows. We review the related work of sensor-
based badminton activity recognition in Section 2. Our proposed deep learning neural
network framework and learning algorithms are presented in Section 3. The experimental
results are summarized in Section 4. Finally, we make a brief conclusion in Section 5.

2. Related Work

The existing badminton activity recognition approaches can be divided into two
categories: conventional machine learning methods and deep learning methods. We
review and summarize the badminton activity recognition research of these two categories
separately as follows.

2.1. Conventional Machine Learning

Conventional machine learning approaches rely on classic hand-crafted features, such
as mean, variance, maximum, difference, and Fast Fourier Transform (FFT) coefficients [20].
As for a HAR task, these extracted features are input into a supervised machine learning
algorithm like SVM or KNN. In 2016, Anik et al. [15] designed a complete system, from data
collection to recognition, for badminton games. SVM and KNN classifiers were utilized
to recognize several predefined badminton activities according to the accelerometer and
gyroscope data with a fast and low-cost solution. Their experimental results demonstrated
that the SVM can obtain a satisfactory recognition rate of 88.9%. In fact, the other machine
learning algorithms were also utilized and tested for badminton activity recognition. For
example, Wang et al. [21] proposed a two-layer Hidden Markov Model (HMM) to classify
badminton strokes into fourteen categories. The sensor data of the accelerometer and gyro-
scope were also collected in this study. The experimental results showed that the two-layer
HMM classification algorithm can achieve the best performance in terms of recognition
accuracy and recognition time. Ma et al. [22] further proposed a frequency-weighted
training method taking inputs of a single accelerometer to improve the performance of
HMM on badminton hitting action recognition.

The above conventional machine learning algorithms can perform well in certain
simple or specific badminton action recognition tasks. However, when employing these
algorithms, feature extraction is an indispensable step and requires the intervention of
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professional knowledge [7], which becomes more complicated and difficult for the general
and complicated badminton action recognition tasks.

2.2. Deep Learning

Deep learning approaches resort to deep neural networks to perform automatic feature
extraction and classification with a promising solution for HAR. So far, most existing research
on badminton activity recognition adopted CNN models for effectively extracting local
features from the input data. Wang et al. [6] proposed the AFEB-AlexNet framework to
relieve the problem of data dislocation and enhance the performance of CNN for badminton
action recognition to an accuracy of 98.65% in a ten-class-classification task. Steels et al. [23]
also investigated the badminton activity recognition using the accelerometer data and the
experimental results showed that their CNN model can recognize nine activities with an
accuracy of 86% when using a sampling frequency of 50 Hz. As the accelerometer data
and gyroscope data were combined together, the recognition accuracy could increase to 99%.
Anand et al. [24] designed a sports analytics system that efficiently distinguishes the intricacies
of players’ hand movements for several sports like tennis, badminton, and squash. Both CNN
and Bi-directional LSTM (BiLSTM) were used for the shot classification, but BiLSTM obtained
a slightly higher accuracy than CNN. The accelerometer and gyroscope were utilized by all
the above studies to perform badminton activity recognition tasks.

Although there are relatively few approaches using RNN to recognize badminton
activities, the prospects of RNN have been deeply explored in general HAR tasks because
the structure of RNN is more suitable for extracting sequential features from the sensor
temporal data. The Long Short-Term Memory (LSTM) networks and the Gated Recurrent
Unit (GRU) networks are two of the most widely used RNN networks in HAR. Ham-
merla et al. [25] examined the performance of DNN, CNN, and several LSTM variants
on three public datasets. The experimental results discovered that CNN and LSTM have
their own advantages on different datasets and in various recognition metrics, but both
are better than DNN. Later, Guan et al. [26] proposed an ensemble learning algorithm for
multiple LSTM networks, which was demonstrated to have better recognition performance
than a single LSTM network on the standard dataset.

Moreover, the CNN-RNN hybrid model has shown promising results in HAR tasks [9,17].
Ordóñez et al. [17] proposed the DeepConvLSTM model based on 1D convolution in the
time domain and the LSTM recurrent layer. This model defeated a series of machine
learning algorithms submitted on the OPPORTUNITY challenge, including SVM, C4.5 DT,
and KNN. Moreover, the experimental results showed that adding some recurrent layers
after the last convolutional layer can lead to better performance. In contrast to inputting
raw sensor signals to the model, Yao et al. [9] proposed a more complex DeepSense model
based on CNN-RNN, which solves the problems of classification and regression at the same
time. Specifically, the signal was divided into several small segments, and each of them
was then implemented using Fast Fourier Transform. Next, the derived amplitudes and
phases were fed into different CNN sub-networks to extract and fuse multi-modal features.
Finally, a two-layer GRU and a fully connected layer were used to capture the temporal
information of these segments and generate the output.

The adoption of the attention mechanism has led to a series of variants of the existing
models. Murahari et al. [18] added an attention module to DeepConvLSTM (referred
to as DeepConvLSTM_Att), which could improve the accuracy of recognition. Based
on DeepSense, Ma et al. [10] designed an attention mechanism to the data of different
modalities and the output of the last GRU layer to establish the AttnSense model.

The emergence of the self-attention mechanism resulted in a breakthrough in the field
of NLP [19]. By applying multiple self-attentive blocks and attention modules, we can
easily construct an attention-based neural network architecture without convolutional
and recurrent layers. Inspired by the aforementioned, Mahmud et al. [27] compared the
multi-dimensional activity data at a frame to a word vector representation in the sentence
and proposed an analogy model (referred to as SelfAttnNet) with the macro F1-score being
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higher than that of the other existing models. Betancourt et al. [11] and Yao et al. [28]
further added a self-attention module to LSTM and DeepSense, respectively, to improve
the recognition accuracy.

3. Materials and Methods

This section begins by introducing the experimental dataset used in this study. Sub-
sequently, we describe our proposed deep learning neural network framework—the Self-
Attention-Based Deep Convolutional LSTM (SADeepConvLSTM), as well as its learning
algorithms.

3.1. Badminton Single-Sensor (BSS) Dataset

Our experiments are conducted on a specialized Badminton Single-Sensor (BSS)
dataset which had been collected by the China Institute of Sport Science (CISS). The
dataset was generated to analyze various standard swing motions and, finally, build an AI
coach system. Under the guidance of sports experts, we divided all professional badminton
swing movements into 37 fine-grained classes to conduct refined recognition, including
forehand high serve, backhand hook diagonal, overhead smash, etc. During the process of
data collection, two professional athletes were asked to swing according to the standard
technical movement to eliminate differences between the subjects. A total of 4801 samples
were collected in our BSS dataset (about 130 samples per class on average), with each class
containing at least 100 samples to ensure the dataset is relatively balanced. As shown in
Figure 1, to eliminate the impact of the deployed equipment on the athlete’s movements,
a small specially made sensor is inset into the handle bottom of the badminton racket
to sample the signal at a frequency of 200 Hz. The features of interest mainly fall into
two categories: (1) the three-axis accelerations of the sensor in x, y, and z axes, measured
using an accelerometer; (2) the attitude angles of the human joint relative to the geodetic
coordinate system, namely pitch angle θ, yaw angle ψ, and roll angle φ, evaluated using a
gyroscope. In our experiments, we treat raw inputs as six-dimensional time series.

Figure 1. Sensor deployment of the badminton racket.

For each sample, the number of frames depends on when the sensor turns on and off.
The whole collecting process is artificially controlled and hence highly subjective. Therefore,
for the convenience of training and testing, we merely consider 300 frames of each sample
around the time at which the athlete is swinging the racket. Specifically, we firstly find out
the maximum point of the resultant acceleration to determine when the athlete exerts the
force, and then unify the length of each sample to 300 and carry out the corresponding
processing to truncate the redundant frames or pad the shortage data with zero. Then, we
randomly select 70% of all samples as the training set, while the remaining 30% form the
testing set to evaluate the recognition accuracy.

3.2. Proposed Framework and Learning Algorithms

For a multi-class badminton activity recognition problem, we letA = fA1, A2, . . . , ANg
be the set of activities given in advance, where Ai (i = 1, 2, . . . , N) are N different activity
categories or classes, and let X be the set of all possible sensor data collected. A deep
learning approach tries to establish a neural network model Fω : X ! P � RN directly
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to recognize N different activities, where ω denotes all the parameters of the model Fω,
and P is the set of all possible probability distributions over the N activity categories (or
classes). For the parameter learning, we use a loss function L : P �A ! R to measure the
gap between the predicted distribution and the ground truth, then find out the optimal
solutions of the parameters ω via solving the following end-to-end optimization problem:

arg min
ω

J(ω) =
1
M

M

∑
i=1
L(Fω(X(i)), A(i)), (1)

where M is the number of samples in the training set, X(i) 2 X the i-th sample in the
training set, and A(i) 2 A denotes the activity category ground truth of X(i). When
performing the recognition task for a given sample X 2 X , we can select its activity
category, i.e., the class, as the number of the unit with the largest predicted probability in
the soft-max output layer; that is, we compute k = arg maxi(Fω(X))i, Ak 2 A to be the
activity category.

In the following subsections, we begin to briefly introduce the DeepConvLSTM
model [17], and then describe our proposed framework SADeepConvLSTM and its self-
attention-based network structure, as well as the related learning algorithms.

3.2.1. DeepConvLSTM

The DeepConvLSTM model consists of three components: convolutional layers, recur-
rent layers, and fully connected layers. Its structure is shown in Figure 2, where Ci is the
number of channels of the i-th convolutional layer, Ti is the number of time-steps of the i-th
convolutional layer’s output, K is the number of signal series, H is the dimension of the
LSTM hidden layer, and N is the number of activity classes.

Figure 2. Structure of the DeepConvLSTM model.

The direction of the time axis in Figure 2 is from left to right. The input data are
sequentially processed through 4 convolutional layers to extract local temporal features.
The red boxes in convolutional layers denote convolutional kernels, the following two
recurrent layers perform nonlinear transformations to the processed data, and then the
uppermost fully connected layer and softmax layer perform activity classification and
output the recognition result. The right column of the figure shows the dimensions of the
data in each layer. We further discuss the details of each layer as follows.

(a) Convolutional Layer. The first to fourth layers of the DeepConvLSTM model are
all 1D convolutional layers. Different channels are convolved separately with the
same kernel. Letting the data of the k-th sensor at time t in the i-th layer, j-th channel
be x(i)jk (t) , we denote the bias of the j-th kernel in the i-th layer as b(i)j , and denote
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the value of its τ-th parameter on the channel c be K(i)
cj (τ). So, the operation of

one-dimensional convolution can be mathematically expressed by

x(i+1)
jk (t) = σ

(
b(i)j +

Ci

∑
c=1

Si

∑
τ=1

K(i)
cj (τ)x(i)ck (t� τ)

)
, (2)

where Ci denotes the number of convolution kernels in the i-th layer, and Si denotes
the size of the kernel in the i-th layer. In fact, σ is a nonlinear activation function, and
is usually taken as the ReLU function; that is, σ(x) = max(x, 0).

(b) Recurrent Layer. The fifth and sixth layers of the DeepConvLSTM model are recurrent
layers, and their structures are adopted as the classical LSTM network that contains
input, output, and forgetting gates:

ft = σ(W f � [ht�1, xt] + b f )

it = σ(Wi � [ht�1, xt] + bi)

C̃t = tanh(WC � [ht�1, xt] + bC)

Ct = ft � Ct�1 + it � C̃t

ot = σ(Wo � [ht�1, xt] + bo)

ht = ot � tanh(Ct),

(3)

where xt denotes the input data, and Ct and ht denote the hidden state and the output
of the t-th cell, respectively. σ is a nonlinear activation function, and W f , b f , Wi, bi,
WC, bC, Wo, and bo are learnable parameters.

(c) Fully Connected Layer and Softmax Layer. The output of the last time-step of the sixth
layer is then input into the fully connected layer, and the obtained N dimension vector
is then input to the last Softmax layer to get the corresponding probability distribution
P = F (X) 2 P . Letting x = fxigN

i=1 2 RN , the output of the Softmax layer can be
defined by

Softmax(x) =
1

Z(x)
fexigN

i=1, (4)

where

Z(x) =
N

∑
j=1

exj (5)

is the normalized coefficient.

3.2.2. Self-Attention-Based Deep Convolutional LSTM (SADeepConvLSTM)

In order to improve the accuracy of badminton activity recognition, we adopt the self-
attention mechanism into the DeepConvLSTM model to establish the self-attention-based
deep convolutional LSTM framework, i.e., the SADeepConvLSTM framework. In fact, the
self-attention mechanism enables the framework to capture the crucial context information
in the sequence and the crucial relationship between the features of different time-steps.
Figure 3 shows our proposed SADeepConvLSTM framework, where the modules with the
gray background can repeat several times in succession. The left half of the structure follows
the DeepConvLSTM framework with maximum pooling layers, while the right half is the
structure related to the self-attention mechanism. We now describe and analyze the structure
and learning algorithms of the SADeepConvLSTM framework as follows.

The fast development of sensor technology greatly promotes the sampling frequencies,
enabling the sensors to collect hundreds of frames of data for an action in a few seconds. In
this case, it takes a lot of computing time and resources to pass the data into the original
DeepConvLSTM model to perform the activity recognition. Although LSTM can relieve
the gradient disappearance encountered by RNN to a certain extent, the effect of long-
term memory cannot be so good when dealing with the problem of super-long sequences.



Sensors 2023, 23, 8373 8 of 16

Considering the above two points, we add a max pooling layer after each convolutional
layer to reduce the number of time-steps of the recurrent layer.

Figure 3. Structure of the SADeepConvLSTM Framework.

Each component of the framework is described as follows.

(a) Positional Encoding. Positional Encoding aims to add temporal positional information
to the hidden features before feeding them into the self-attention module. In fact,
the self-attention module given and discussed in the following Section 3.2.2 does
not consider positional information; that is, the same embedding vector at different
time-steps generates the same attention values.
We adopt the position encoding method suggested by Vaswani et al. [19] into our
SADeepConvLSTM framework. By denoting the number of time-steps of the previous
recurrent layer as L, and the dimension of each hidden feature as dmodel, the k-th
components of the position encoding at the pos-th time-step can be calculated by

PE(pos,k) =


sin
(

pos
100002i/dmodel

)
k = 2i;

cos
(

pos
100002i/dmodel

)
k = 2i + 1,

(6)

where pos 2 f0, 1, . . . , L� 1g, and k 2 f0, 1, . . . , dmodel � 1g. For clarity, we denote
the feature matrices before and after the positional embedding by Y 2 RL�dmodel and
Ỹ 2 RL�dmodel , respectively.

(b) Self-Attention Module. There are two main components in the self-attention module:
multi-head attention layer and feed-forward network. The attention mechanism
computes the relative weights of the query vector qi by considering the dot product
similarity between qi and the key vector k j and then appending the weights to the
value vector vj and summing up to obtain the attention value of qi. Mathematically,
letting qi, k j, and vj be row vectors, K = [kT

1 kT
2 � � � kT

n ]
T , V = [vT

1 vT
2 � � � vT

n ]
T , we

then have

Attention(qi, K, V) =
n

∑
j=1

wjvj, (7)

where
w = Softmax

(
qi � k1/

p
dk, . . . , qi � kn/

p
dk

)
, (8)
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dk is the dimension of qi and k j and is a constant zoom factor. The matrix form of the
above equation can be written as

Attention(qi, K, V) = Softmax
(

qiKT
p

dk

)
V. (9)

Letting Q = [qT
1 qT

2 � � � qT
n ]

T , since Equation (8) holds for any i, we thus have

Z , Attention(Q, K, V) = Softmax
(

QKT
p

dk

)
V 2 RL�dv , (10)

where Softmax can be considered as being computed by row.
In the self-attention mechanism, the aforementioned Q, K, and V are all generated by
applying nonlinear transformations to the input Ỹ:

Q = ỸWQ, K = ỸWK, V = ỸWV , (11)

where W , fWQ, WK, WVg are learnable parameters. WQ, WK 2 Rdmodel�dk , WV 2
Rdmodel�dv , where dk is the dimension of qi and ki, while dv is the dimension of vi.
By introducing the self-attention mechanism, we can capture the crucial context
information during the whole process of an action.
In our SADeepConvLSTM framework, we adopt the multi-head attention [19] to
extract the features in multiple aspects. In other words, we use n different sets of
learnable parameters W(1), W(2), . . . , W(n) to generate different Q(i), K(i), and V(i) to
compute the attention values Z(i) and concatenate them together. If ndv 6= dmodel, we
use the learnable parameters WO 2 Rndv�dmodel to convert the input into the original
dimension:

Zmha =
(

Z(1) Z(2) � � � Z(n)
)

WO. (12)

Otherwise, we directly let

Zmha =
(

Z(1) Z(2) � � � Z(n)
)

. (13)

Subsequently, the resulting Zmha is inputted into a feed-forward network consisting of
2 fully connected layers to implement the nonlinear transformations. In this module,
we use the residual connections and layer normalization for both the multi-head
attention and the feed-forward network.

(c) Global Temporal Attention. We use the learnable parameters to evaluate the relative
importance of the feature representation obtained by the last self-attention module at
each time-step:

ut = tanh(Wωht + bω)

αt =
exp(ut � uω)

∑t exp(ut � uω)
.

(14)

where ht 2 Rdmodel denotes the feature representation at time t. Wω 2 Rdmodel�dmodel ,
bω 2 Rdmodel , and uω 2 Rdmodel are learnable parameters. Finally, we get the feature
vector h by computing the weighted average of ht:

h = ∑
t

αtht. (15)

3.2.3. Training Process

For the parameter learning during the training process, we adopt the following cross
entropy loss function:

L(P, A) = �
N

∑
i=1

qi log pi
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to measure the similarity between the predicted activity probability distribution and the
ground truth, where P = fp1, p2, . . . , pNg and Q = fq1, q2, . . . , qNg are the predicted and
true probability distributions over the badminton activity set A.

Moreover, to enhance the generalization ability of the framework, we even add a L-2
regularization term to the loss function J(ω) and get the new loss function as follows:

J̃(ω) =
M

∑
i=1
L(Fω(X(i)), A(i)) +

λ

2
kωk2

2. (17)

Furthermore, the dropout mechanism is also utilized between the layers to prevent
over-fitting.

4. Experimental Results

In this section, several experiments are conducted to demonstrate our proposed
SADeepConvLSTM framework and learning algorithms on our specialized BSS dataset.
Moreover, it is compared with typical conventional machine learning algorithms and
state-of-the-art deep learning models.

4.1. Evaluation Metrics

In the experiments, we use both the recognition accuracy rate and macro F1-score
to measure the performance of each model on the badminton activity recognition task.
The recognition accuracy rate is defined as the proportion of correctly recognized samples
among all samples, while the macro F1-score is computed by

Macro F1 Score =
1
C

C

∑
i=1

2� Precisioni � Recalli
Precisioni + Recalli

, (18)

where C = 37 is the number of activity classes.

4.2. Experimental Settings

In practice, the sampling data are noisy according to various reasons, especially the
interference from the environment. In order to alleviate this problem, we use a low-pass
filter, the Butterworth filter, to separate the noise with high frequency from the signal.
As for feature extraction in this specific situation, we adopt the sliding window method
that is actually a common method for extracting features in HAR [29]. It considers each
small window fXi, Xi+1, . . . , Xi+t�1g with the duration of t (t � T) of the sample data,
and computes the statistical and physical features from its elements. After referring to
the previous works [20,29], we select the effective features such as mean, median, mean
absolute deviation, correlation coefficients, mean resultant acceleration, difference, and
peak point location. We set the width of the sliding window t to 10 and the stride to 1 when
performing the feature extraction.

For all the deep learning models, we use the Adam optimization algorithm to train
the model. The initial learning rate is set to 10�3 with a decay rate of 0.1 per one hundred
epochs. Ten repeated random experiments are conducted to reduce the error caused by
randomness in the training process. We set the regularizer λ to be 10�5, the batch size to
be 128, the dropout rate be 0.5, and the (β1, β2) in the Adam optimization algorithm to be
(0.9, 0.999).

Our SADeepConvLSTM framework follows the settings of the DeepConvLSTM model,
and takes the number of convolution-pooling modules n1 = 4, 1D convolution kernel size
S1 = S2 = S3 = S4 = 5, and the number of channels C1 = C2 = C3 = C4 = 64. The pooling
kernel size is set to 2, and the dimensions of both the LSTM and self-attention hidden layer
are set to 128, i.e., H = dmodel = 128. The number of attention heads is set to 4, i.e., n = 4.
The dimensions of qi, ki, and vi are all set to 32, i.e., dk = dv = 32. In addition, due to
the residual connection structure, the self-attention module is usually stacked multiple
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times in the previous works (see, e.g., references [11,19,27]). However, considering that
our system may be deployed on small mobile devices, the network structure is designed
as simply as possible so that we set n2 = 2. To further validate the effectiveness of our
SADeepConvLSTM, we also relax this limitation and conduct experiments under n2 = 4.

For comparison, we also train the other state-of-the-art deep learning models such
as LSTM, BiLSTM, LSTM_Attention, DeepConvLSTM, DeepConvLSTM_Att, DeepSense,
AttnSense, and SelfAttnNet. In all the models, we limit the dimension of a hidden layer to 128.

We further compare our SADeepConvLSTM framework with two typical conventional
machine learning models: SVM and RF. For the SVM model, we use the Bayesian Opti-
mization Searching to find out the best hyperparameters γ and C in each case, and use
K-fold cross-validation on the training set to finalize the optimal hyperparameters, which
is actually implemented by maximizing the following average macro F1-score:

Average Macro F1-score =
1
K

K

∑
k=1

1
C

C

∑

= 12 k]å k ]åk ]å= k]å



Sensors 2023, 23, 8373 12 of 16

even yields a higher accuracy of 98.27% and macro F1-score of 98.17%. In general, our
SADeepConvLSTM framework is remarkably better than other deep learning models.

Figure 4. Recognition confusion matrix of the SADeepConvLSTM framework.

From Table 1, we can also find out that the self-attention module really brings a
significant improvement in the recognition accuracy rate (from 94.30% to 97.83%) and
macro F1-score (from 93.98% to 97.64%) to the DeepConvLSTM model, and is better than
the attention structure proposed by Murahari et al. [18] (see DeepConvLSTM_Att).

In addition, we also conduct an ablation study to analyze the effect of different layers
in the SADeepConvLSTM framework. We removed all the max-pooling layers (see SADeep-
ConvLSTM_NP) and all the convolution-pooling modules (see SADeepConvLSTM_NC),
respectively, and neither of them can outperform the SADeepConvLSTM framework, which
further shows the effectiveness of each component of our framework.

Compared with the SADeepConvLSTM framework, the SelfAttnNet model which is
entirely based on the attention mechanism, lacks the local temporal features and long-term
memory features extracted by the 1D convolutional layers and recurrent layers. It processes
the input by assigning attention to different sensor modalities. Therefore, its recognition
ability can be impaired when the dataset is relatively simple, and its performance on the
BSS dataset is also inferior to the SADeepConvLSTM framework. The same explanation
still applies to the AttnSense model, whose performance on the dataset is also affected and
is worse than that of DeepSense, which relies on CNN for feature fusion. The basic models
such as LSTM and BiLSTM are subject to their relatively simple structure and show poor
results on the dataset. However, adding a global attention layer (see LSTM_Attention and
BiLSTM_Attention) above the last recurrent layer can improve the model’s recognition
ability to a great extent.

As for the two conventional machine learning models, SVM and RF, they both achieve
an accuracy rate and macro F1-score of over 96%, and the RF algorithm achieves slightly
better results than SVM with an accuracy rate of 96.53% and a macro F1-score of 96.27%.
Therefore, those conventional machine learning models can still perform as well as some
deep learning algorithms as long as the feature extraction is suitable. However, we should
mention that numerous hand-crafted features were exhaustively attempted and a wide
range of hyperparameters were carefully searched to ensure both SVM and RF achieve
their best results. Without these efforts, the accuracy and macro F1-score of SVM are 94.38%
and 94.27%, respectively. Meanwhile, RF reaches an accuracy of 94.66% and macro F1-score
of 94.49% in this experiment setting. Although the SVM and RF outperform some deep
learning methods, which is partly due to our intentional limitation on the complexity of
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Figure 7. Sketches of the testing accuracy rates of deep learning models with time.

Finally, we investigate the training times of different deep learning models for this
badminton activity recognition task. Table 2 lists the training times of different deep
learning models on the BSS dataset in the GPU computing environment. The SADeep-
ConvLSTM framework reduces the number of time-steps in the recurrent layer due to
the use of the max-pooling layer, and, therefore, its training time is relatively less than
most of the other comparative deep learning models such as DeepConvLSTM. Although
our SADeepConvLSTM adopts multiple types of structures, we keep the requirements for
lightweight deployment in mind, and the model can train on a portable computer within
about 7.2 min, and perform recognition tasks within merely 2� 10�5 s for each sample,
showing its lessened cost of computation.

Table 2. Training times of the deep learning models (s).

Training Time

LSTM 583
BiLSTM 1322

LSTM_Attention 633
BiLSTM_Attention 1461

DeepConvLSTM [17] 1548
DeepConvLSTM_Att [18] 1626

DeepSense [9] 2496
AttnSense [10] 234

SelfAttnNet [27] 2012
SADeepConvLSTM 433

Bold in the table represents the best result.

5. Conclusions

We have established a self-attention-based CNN-LSTM hybrid deep learning frame-
work, i.e., SADeepConvLSTM, for badminton activity recognition. Under the structure
of the DeepConvLSTM model, we add the max-pooling layers after each convolutional
layer to reduce the number of time steps in the recurrent layer to reduce its training time.
Moreover, we introduce a self-attention mechanism to improve the recognition accuracy
rate. It is demonstrated by a series of experiments on the BSS dataset that our proposed
framework has obtained a recognition accuracy of 97.83% and outperforms the typical
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conventional machine learning algorithms and state-of-the-art deep learning models. More-
over, it even has the advantages of lower training time and faster convergence. However,
our ultimate goals will not stop at badminton activity recognition. Several applications,
such as an AI coach and AI rating system, can be developed based on our recognition
results by analyzing differences between the motions of users and corresponding standard
motions. Any improvement in the recognition accuracy may avoid potentially seriously
misleading users in these applications. Therefore, our proposed method can play a key role
in an integral sports AI system, owing to its high accuracy and low response time, which
is beneficial for athletes and amateurs. Although this self-attention-based CNN-LSTM
framework is directly designed for sensor-based badminton activity recognition, it can be
easily applied and extended to other similar sensor-based HAR tasks. In more complex
contexts, such as smart homes and smart cities, where the number of potential combinations
of sensors is much higher than in a badminton scenario, the attention mechanism between
different sensor modalities [10] may further enhance our framework without introducing
high computational cost.
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