
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

k0-Means algorithms for clustering analysis with frequency sensitive
discrepancy metrics

Chonglun Fang, Wei Jin, Jinwen Ma ⇑
Department of Information Science, School of Mathematical Sciences and LMAM, Peking University, Beijing 100871, China

a r t i c l e i n f o

Article history:
Received 17 August 2010
Available online 28 November 2012

Communicated by S. Sarkar

Keywords:
Clustering analysis
k-Means
Cluster number
Competitive learning
Discrepancy metric

a b s t r a c t

This paper proposes a new kind of k0-means algorithms for clustering analysis with three frequency sen-
sitive (data) discrepancy metrics in the cases that the exact number of clusters in a dataset is not pre-
known. That is, by setting the number k of seed-points for learning clusters to be larger than the true
number k0 of actual clusters in the dataset, i.e., k > k0, these algorithms can locate the centers of k0 actual
clusters by k0 converged seed-points, respectively, with the extra k� k0 seed-points corresponding to
empty clusters, namely containing no winning points in the competition according to the underlying
frequency sensitive discrepancy metrics. It is demonstrated by the experiments on both synthetic and
real-world datasets that these three new k0-means clustering algorithms can detect the number of actual
clusters in a dataset with a classification accuracy rate as high as or higher than that of the original
k0-means algorithm. Moreover, they converge more quickly than the original one.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Clustering analysis, aiming at discovering the hidden data struc-
ture of a dataset, is a powerful technique applied in many areas of
data analysis and information processing, such as data mining and
compression, pattern recognition, vector quantization and signal
processing, etc. Actually, it is a process of distributing the original
data points into a number of distinctive clusters. Naturally, accord-
ing to a certain discrepancy metric or distance, points in the same
cluster are similar to each other, while points from different clus-
ters are dissimilar. In fact, there have already been a variety of clus-
tering algorithms in literature (e.g., MacQueen, 1967; Xu et al.,
1993; Ester et al., 1996; Ma and Liu, 2007).

Mathematically, the clustering problem can be described as fol-
lows: given a dataset containing N points in the d-dimensional
space, named by Rd, as well as its cluster number kð< NÞ, we need
to select k seed-points or cluster centers for k clusters in the data
space with a certain data discrepancy metric or criterion according
to which, the data points are assigned into one of the k clusters. As
for the classical k-means algorithm (MacQueen, 1967), the crite-
rion is just to minimize the sum of the mean squared distances be-
tween the data points and their nearest centers. Actually, each xt is
assigned to a cluster via the classification membership function gi-
ven by

Iðxt ; iÞ ¼
1; if i ¼ arg min

j
kxt � cjk2

; j ¼ 1;2; . . . ; k:

0; otherwise;

8
<

:
ð1Þ

where k � k is the Euclidean norm. In each iteration, the ith cluster
center ci is updated by the following rule:

ci ¼
1
jCij

X

xt2Ci

xt ; ð2Þ

where jCij denotes the number of the data points in Ci, i.e., Cluster i.
Due to its simplicity, the k-means algorithm is widely used for

clustering analysis. Moreover, there are many investigations and
improvements on the implementation of the k-means algorithm
(e.g., Bradley and Fayyad, 1998; Kanungo et al., 2002). Generally,
the k-means algorithm can lead to a good classification on a data-
set when k ¼ k0, i.e., k is selected to be the exact number of clusters
in the dataset. So, the number of clusters, i.e., k, must be known in
advance. Since the k-means algorithm just leads to k clusters for a
dataset, the clustering result is certainly wrong if k is not equal to
the exact number k0 of clusters in the dataset. However, in a com-
mon case, we probably do not know the exact number of clusters
in a dataset in advance. If k is not selected properly, the k-means
algorithm will lead to a wrong clustering result. Therefore, it is
rather important to select the correct number of clusters for a data-
set. As a matter of fact, this is a rather difficult problem. In order to
solve this problem, many approaches have been proposed and can
be divided into two categories.

In the first category, one tries to increase the number of clusters
one by one until the correct number of clusters is finally reached
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(Zhang and Liu, 2002; Likas et al., 2003; Li and Ma, 2008). Gener-
ally, this kind of clustering algorithm starts from one cluster or a
small number of clusters. According to a certain criterion, some im-
proper cluster splits into two clusters and this procedure will go on
step by step until the correct number of clusters is finally reached.
In the second category, the rewarding and penalizing competitive
learning mechanism is introduced. The main idea is to set a larger
number of clusters at first. The rewarding and penalized competi-
tive learning will push out the extra cluster centers, and keep the
correct number of cluster centers in the field of the data. A typical
example of this approach is the rival penalized competitive learn-
ing (RPCL) algorithm proposed in (Xu et al., 1993) and further
investigated and developed in (Ma and Wang, 2006; Ma and Cao,
2006). Essentially in either case, the criterion for determining the
correct number of clusters for a dataset plays an important role.
In fact, many such criteria have been proposed from different as-
pects, such as Akaike’s Information Criterion (AIC) (Akaike, 1974),
Bayesian Inference Criterion (BIC) (Schwarz, 1978), Minimum
Message Length (MML) (
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the second term is restored to that of Zalik’s metric. Since pi is now
acted in the first term, this discrepancy metric may lead to another
good manner of rewarding and penalizing competitive learning for
some situations.

As these three discrepancy metrics are sensitive to the frequen-
cies of the clusters in the competition, we refer to them as the fre-
quency sensitive discrepancy metrics in this paper. With each of
the three frequency sensitive discrepancy metrics, say dðxt ; cjÞ, we
can compute the corresponding cluster membership function by

Iðxt ; iÞ ¼
1 if i ¼ arg min dðxt; cjÞ; j ¼ 1; . . . ; k;

0 otherwise:

�
ð7Þ

That is, xt belongs to Ci if and only if Iðxt; iÞ ¼ 1. Then, we can imple-
ment the k0-means algorithm with a such cluster membership
function Iðxt; iÞ. For clarity, we further refer to the k0-means
algorithm with the ith frequency sensitive discrepancy metric as
the k0-means algorithm i in the following analysis and discussions.
Just as the original k0-means algorithm, these k0-means algorithms
with the three frequency sensitive discrepancy metrics also have
a rewarding and penalizing competitive learning paradigm. For cer-
tain clusters, there may be no data point belonging to them after a
number of iterations. According to each of the three discrepancy
metric, these clusters will be always empty in the sequential itera-
tions. It can be demonstrated by the experiments in the next section
that all the extra clusters can become empty after the convergence
of the k0-means algorithm. It can be also found that the penalty
factor k should be carefully selected. If k is too large, there may be
only one left cluster containing all the data points, with all the
other clusters being empty. If k is too small, the extra clusters
may be always kept. The penalty factor will be discussed in detail
in Section 3.

3. Experimental results

In this section, various experiments on both synthetic and real-
world datasets are carried out to test the classification perfor-
mances of the k0-means algorithms with three frequency sensitive
discrepancy metrics, being compared with those of the original k0-
means algorithm, DBSCAN (Ester et al., 1996), as well as MML and
AIC based clustering methods. Moreover, these k0-means algo-
rithms are successfully applied to unsupervised color image seg-
mentation. In each new discrepancy metric, the penalty factor k
is the unique parameter and should be selected properly. As pi is
a frequency being varied in ½0;1�; k may depend on the scale of
sample data. In order to overcome this incertainty and find out
the optimal value of k, we can normalize the original sample data
via a certain linear scale transform. That is, the processed sample
data will have zero mean and unit variance. Thus, in each experi-
ment, the sample data will be normalized firstly and the algorithm
will be implemented on the normalized data.

3.1. On the synthetic datasets

3.1.1. Classification performances on four typical synthetic datasets
We begin to test the classification performances of the new k0-

means algorithms with the three frequency sensitive discrepancy
metrics on four typical synthetic datasets S1;S2;S3;S4, which are
respectively shown in Fig. 1. Typically, they are generated from a
mixture of four or three bivariate Gaussian distributions on the
plane coordinate system (i.e., d ¼ 2). Thus, a cluster or class takes
the form of a Gaussian distribution. Particularly, all the Gaussian
distributions are cap-shaped, that is, their covariance matrices
have the form of r 2I, where r is the standard variance. For the first
three datasets, four Gaussian distributions, all with 300 sample
points, are all located at ð�1;0Þ; ð1;0Þ; ð0;1Þ and ð0;�1Þ, respec-

tively, and their standard variances r keep the same, but vary with
the dataset. Actually, r takes the values of 0.2, 0.3, 0.4 for S1;S2;S3,
respectively. In this way, the degree of overlap among the actual
clusters or Gaussian distributions in the dataset increases consid-
erably from S1 to S3 and therefore the corresponding classification
problem becomes more complicated. As for S4, we keep only three
Gaussian distributions located at ð1;0Þ; ð0;1Þ and ð0;�1Þ, respec-
tively. The standard variance of the Gaussian distribution at ð1;0Þ
is 0.3, while those of the other two Gaussian distributions are
0.2. In this case, three clusters have different numbers of sample
points. In fact, the numbers of sample points for Gaussian distribu-
tions at ð1;0Þ; ð0;1Þ and ð0;�1Þ, are 400, 300, and 200, respec-
tively. Therefore, S4 represents the asymmetric situation where
the clusters do not take the same shape, also with different num-
bers of sample points.

We implement three new k0-means algorithms on each of the
four datasets with k ¼ 8. The penalty factor k is selected by 0.2,
0.05, and 0.4 for the k0-means algorithms 1, 2, and 3, respectively.
The seed-points are randomly initialized within the field of the
sample data. It is found by the experiments that in any case, four
or three seed-points can be finally located accurately at the centers
of the actual clusters or Gaussian distributions, while the other
four or five extra seed-points are eliminated automatically during
the iterations. To demonstrate the stability of the classification per-
formance on these datasets, we further implement each new k0-
means algorithm for 100 times with different randomly selected
initial values of the seed-points on each dataset and compute the
average Classification Accuracy Rate (CAR) (with the standard var-
iance), which are given in Table 1. For comparison, we also give the
average CARs of the classical k-means algorithm (k ¼ k0) and the
original k0-means algorithm (E ¼ 0:65; k ¼ 8) on the four datasets
in Table 1. Moreover, we also compute the average implementation
times (seconds) of these algorithms over 100 trials on each of the
four datasets, which are given in Table 2. It should be noted that
all the experiments have been implemented on a notebook com-
puter of Lenovo Thinkpad T420s in Matlab environment.

From the detailed numbers listed in Table 1, we can find that all
the new k0-means algorithms can detect the number of actual clus-
ters and lead to a rather high average CARs on each dataset. It is
clear that the average CAR of each algorithm decreases slightly as
the degree of overlap among the actual clusters or classes in the
dataset becomes higher, that is, the structure of the dataset be-
comes more complicated. However, even when the actual clusters
take different shapes and have different numbers of sample points
like S4, the average CARs of these algorithms are still very high. The
experimental results also demonstrate that these three k0-means
algorithms lead to a similar average CAR on each dataset. That is,
the three discrepancy metrics actually implement the same
rewarding and penalizing competitive learning mechanism for
the k0-means clustering. Moreover, the classification performances
of these three k0-means algorithms can be even better than those of
the original k0-means algorithm and classical k-means algorithm in
some complicated cases. On detecting the number of actual clus-
ters in a dataset, our new k0-means algorithms always converge
correctly, but the original k0-means algorithm lead to a wrong re-
sult in a few times (1–4) over 100 experimental results on each
of S1; S2, and S3. Thus, our new k0-means algorithms are more sta-
ble than the original k0-means algorithm on the cluster number
detection. On the other hand, these k0-means algorithms not only
detect the number of actual clusters in the dataset, but also lead
to a higher CAR than the classical k-means algorithm. Oppositely,
the RPCL algorithm detects the number of actual clusters in a data-
set with a lower CAR than that of the classical k-means algorithm
due to the cluster center deviation via the rival penalizing mecha-
nism (Xu et al., 1993). In this sense, these k0-means algorithms can
even be better than the RPCL algorithm.
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On the other hand, from the detailed numbers listed in Table 2,
we can further find that the implementation times of the three
new k0-means algorithms are obviously less than that of the origi-
nal k0-means algorithm on each of the four datasets. So, we can
consider that these new k0-means algorithms converge more
quickly than the original one. Among the three new k0-means algo-
rithms, the second one provides the fastest convergence, while the
first one provides the slowest convergence. Although the differ-
ences between their implementation times (or convergence
speeds) are not relatively large on each of these dataset, it can be
observed from the other experiment on a large dataset that they

can be relatively large. Specifically, the implementation time of
the second k0-means algorithm is just about one half of that of
the first k0-means algorithm, and one third of that of the original
k0-means algorithm. On the other hand, since the k0-means algo-
rithms involve more computation to implement the rewarding
and penalizing competitive learning mechanism, they converge
much more slowly than the classical k-means algorithm. Moreover,
we can also find that the implementation time of the k0-means
algorithm depends on the structure or complexity of the dataset,
but that of the classical k-means algorithm does not.

For comparison, we also implement DBSCAN on these four data-
sets for clustering analysis. In fact, DBSCAN has been considered as
one of the best clustering methods. Theoretically, DBSCAN detects
the cluster by the stable sample density and its expansion. In such
a manner, DBSCAN is able to detect actual clusters in a dataset only
when they are well separated. It is found by the experiments that
DBSCAN can detect the four actual clusters in S1. However,
DBSCAN cannot detect specific actual clusters and only recognize
all the dataset as one cluster in each case of S2; S3 and S4, where
the overlap between the actual clusters is obviously high in certain
degree. Even in the case of S1, the average CAR of DBSCAN is just
97%, which is slightly lower than those of the new k0-means algo-
rithms. Moreover, its average implementation time is 0.01647 (s),
which is over two times of that of each new k0-means algorithm.

3.1.2. Comparison with classical cluster number selection criteria
Furthermore, we try to compare these new k0-means algorithms

with two classical clustering criteria AIC and MML on detecting the
number of actual clusters in a dataset. Here, we use the same group
of datasets used in (Oliver et al., 1996). Actually, each dataset con-
sists of 100 samples generated from a mixture of three 2-dimen-
sional Gaussian distributions with the same covariance matrix.
The mean vectors of the three Gaussian distributions are
ð0;0Þ; ð2;2

ffiffiffi
3
p
Þ, and ð4;0Þ, respectively, while the covariance

matrix also takes the form r 2I. By varying r with the values of
0.67, 1, 1.2 and 1.33, respectively, we can get four datasets with
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differently complicated structures. To check the performances of
the three k0-means algorithms on detecting the correct number
of clusters in each dataset with the specific value of r , we imple-
ment the three k0-means algorithms with k ¼ 5 for 100 times from
different randomly selected initial values of the seed-points and
then compute the numbers of different detecting results for the
cluster number. We summarize these numbers with those of the
MML and AIC based clustering methods given in (Oliver et al.,
1996) in Table 3. It can be seen clearly from Table 3 that these
new k0-means algorithms always lead to a better result than the
two classical cluster number selection criteria based methods.

3.1.3. Further discussions
We finally discuss the (unsupervised) classification perfor-

mances of these three new k0-means algorithms on the general
datasets. Experimentally, it can be easily found that the correct
cluster number selection of a k0-means algorithm strongly depends
on the overlap among the actual clusters in a dataset. Particularly,
as long as the overlap among the actual clusters is low enough, the
k0-means algorithm can lead to the correct cluster number selec-
tion. Moreover, the shapes of the actual clusters are also important.
When the actual clusters take a shape of sphere or similar form, it
is easy for a k0-means algorithm to detect the cluster number.
Oppositely, when they are very flat or bend, it may be difficult
for a k0-means algorithm to detect the cluster number. Since the ac-
tual clusters generally take a shape of sphere like a Gaussian distri-
bution, these k0-means algorithms can be effectively applied in
practice.

The penalty factor k also plays an important role on the imple-
mentation of these k0-means algorithms. As the three discrepancy
metrics take the different forms, k may have different feasible val-
ues for three new k0-means algorithms on detecting the number of
actual clusters in a dataset. By the experiments on the four typical

synthetic datasets, we have found that the feasible intervals of k for
the k0-means algorithms 1, 2, and 3 are ½0:10;0:30�; ½0:02;0:10�,
and ½0:16;0:60�, respectively. It is clear that the feasible intervals
of k for these three k0-means algorithms are quite different, but
each of them is quite large for its selection. As for the setting of
k, it is required to be larger than k0. But when it is too larger than
k0, the k0-means algorithms may lead to a wrong result.

Since the proposed k0-means algorithms are new versions of k-
means algorithm, it can be easily verified that they also have the
computation complexity OðNkdtÞ, where d is the dimensionality
of the sample points or inputs, and t is the number of iterations.
Thus, their implementation times are linear with the sample size
N, which is demonstrated well by our simulation experiments with
different sample sizes. Moreover, they are also linear with the
dimensionality of the sample points so that the k0-means algo-
rithms can be implemented well on the high-dimensional datasets.

In a summary, these new k0-means algorithms can be imple-
mented effectively for cluster number selection and classification
as long as the actual clusters are separated in a certain degree
and taken a shape of sphere or similar form. It is demonstrated
by the experiments that they are even better than DBSCAN as well
as MML and AIC based clustering methods on detecting the actual
clusters in a complicated dataset. Moreover, they converge more
quickly than the original k0-means algorithm.

3.2. On the real-world datasets

In this subsection, we continue to test these new k0-means algo-
rithms on five typical real-world datasets from <http://mlearn.ic-
s.uci.edu/databases/>. We firstly consider the wine dataset.
Actually, the wine dataset contains 178 sample points of three
types of wine. Each sample point is 13-dimensional and the num-
bers of sample points in the three classes are 48, 71, and 59,
respectively. We implement these new k0-means algorithms on
the wine data with k ¼ 6. The experimental results show that the
three classes of wine can be always detected. Moreover, the classi-
fication accuracy rates of the k0-means algorithms 1, 2, and 3 are
98.31% (there are 3 errors), 97.75% (4 errors), and 97.26% (5 errors),
respectively. These are almost as high as those of the original k0-
means algorithm (4 errors) given in (Zalik, 2008) and the method
of linear mixing kernels (4 errors) given in (Roberts et al., 2000).
As for the classical k-means algorithm with k ¼ 3, there are at least
9 errors in the resulted classification. Therefore, our new k0-means
algorithms perform very well on the unsupervised classification of
the wine data. But DBSCAN cannot detect the actual clusters or
classes in this as well as the following real-world datasets.

We further consider the protein localization sites dataset which
mainly contains three classes called Cp, Im, and Pp, respectively.
Each sample point is 7-dimensional and the numbers of sample
points in these three classes are 143, 77, and 52, respectively. We
here consider the dataset of these three classes and implement
the new and original k0-means algorithms with k ¼ 8. The first
and second k0-means algorithms can detect the three actual clus-
ters or classes of protein localization sites (i.e., k0 ¼ 3) with the
CARs being 93.75% (there are 17 errors) and 93.34% (18 errors),
respectively. However, the third and original k0-means algorithms
cannot detect the three actual clusters in any case. So, in this par-
ticular case, the k0-means algorithms 1 and 2 are superior to the
third and original k0-means algorithm on determining the number
of the actual clusters, which may be caused by the different penal-
izing mechanisms of two kinds of the second terms in the discrep-
ancy metrics used in the k0-means algorithms.

Furthermore, we consider the Wisconsin Breast Cancer Dataset
which contains 699 9-dimensional sample points belong to the
two classes called benign and malignant, respectively. In fact, there
are 458 sample points in the benign class, and 241 sample points in

Table 3
The cluster numbers detected by the new k0-means algorithms as well as the MML
and AIC based clustering methods on the four datasets.

Algorithm k r ¼ 0:67 r ¼ 1 r ¼ 1:2 r ¼ 1:33

k0-means Algorithm 1
1 0 0 0 0
2 0 0 0 0
3 (True) 100 95 82 78
4 0 5 16 18
5 0 0 2 4

k0-means Algorithm 2
1 0 0 0 0
2 0 0 0 0
3 (True) 100 96 75 68
4 0 4 22 28
5 0 0 3 4

k0-means Algorithm 3
1 0 0 0 0
2 0 0 0 0
3 (True) 100 100 84 78
4 0 0 16 14
5 0 0 0 8

MML
1 0 0 16 41
2 0 21 44 41
3 (True) 96 72 39 17
4 4 7 1 1
5 0 0 0 0

AIC
1 0 0 6 20
2 0 8 29 39
3 (True) 73 65 48 27
4 13 19 9 5
5 14 8 8 9
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the malignant class. Actually, there are 16 missing values in some
sample points and we just set them as zeros. On this dataset, we
implement these new k0-means algorithms with k ¼ 8. All the three
k0-means algorithms can detect the two actual clusters or classes of
breast cancers (i.e., k0 ¼ 2). Moreover, the CARs of the k0-means
algorithms 1, 2, and 3 are 94.85% (36 errors), 96.57% (24 errors),
and 96.14% (27 errors), respectively. Although the original k0-
means algorithm can detect the two actual classes, its CAR is only
91.27 % (61 errors). So, our new k0-means algorithms are much bet-
ter than the original k0-means algorithm on the classification on
this real-world dataset.

For the higher dimensional real-world data, we turn to the Wis-
consin Diagnostic Breast Cancer (WDBC) dataset. It consists of 569

33-dimensional sample points also belong to the two class: benign
and malignant. In this case, there are 357 sample points in the be-
nign class, and 212 sample points in the malignant class. On this
WDBC dataset, we implement these new k0-means algorithms with
k ¼ 10. Again, the three k0-means algorithms can detect the two ac-
tual classes of breast cancers. The classification accuracy rates of
the k0-means algorithms 1, 2, and 3 are 90.33% (there are 55 errors),
90.69% (53 errors), and 90.33% (55 errors), respectively. But on this
dataset, the original k0-means algorithm (Zalik, 2008) cannot con-
verge to any reasonable result. Therefore, these new k0-means algo-
rithms are considerably better than the original k0-means
algorithm on the classification of those high dimensional real-
world data.

We finally consider another higher dimensional real-world
dataset called Landsat satellite dataset. For simplicity, we only con-
sider the first and second classes of the original dataset. So, the
Landsat satellite dataset we consider here consists of 1551 37-
dimensional sample points belong to two classes called red soil
and cotton crop, respectively. Particularly, there are 1072 sample
points in the red soil class, and 479 sample points in the cotton
crop class. On this Landsat satellite dataset, we implement these
new k0-means algorithms with k ¼ 10. In this situation, the three
k0-means algorithms can detect the two actual classes of objects:
red soil and cotton crop. Moreover, the classification accuracy rates
of the k0-means algorithms 1, 2, and 3 are 92.39% (118 errors),
96.71% (51 errors), and 96.58% (53 errors), respectively. However,
the classification accuracy rate of the original k0-means algorithm
(Zalik, 2008) is only 91.36 % (134 errors). So, these new k0-means
algorithms are much better than the original k0-means algorithm
on the classification of those high dimensional real-world data.

Based on the above experimental results on the real-world
datasets, it can be seen that our new k0-means algorithms generally
lead to a good clustering result for both cluster number detection
and classification performance. Moreover, as the dimensionality
of data becomes higher, they perform much better than the origi-
nal k0-means algorithm.

3.3. Application to unsupervised color image segmentation

In this subsection, for practical usage and test, we apply our
new k0-means algorithms to unsupervised color image segmenta-
tion. In fact, image segmentation is a fundamental problem in im-
age processing and can be treated as a clustering problem. In
computer vision, it is usual that the number of objects in an image
is not pre-known. Thus, the image segmentation is generally in an
unsupervised mode to automatically determine the number of ob-
jects and background in the image, which is still a rather difficult
task in image processing. However, these k0-means algorithms
really provide a new tool for unsupervised image segmentation.
Here, we try to apply these algorithms to unsupervised color image
segmentation on two typical color images called two goats and one
house shown in Fig. 2(a) and Fig. 3(a), respectively. In these two
color images, each pixel is a 3-dimensional datum, corresponding
to its RGB coordinates, and these pixel data are normalized with
certain linear transformation at first. We then implement the
new k0-means algorithms on the normalized data of the image pix-
els for clustering or unsupervised classification with k ¼ 6. As a re-
sult, 2 clusters are remained after the convergence and the
segmentation results of the two color images by the three new
k0-means algorithms are shown in Figs. 2 and 3, respectively. Com-
pared with the original images, our segmentation results are quite
good. For the image of two goats, we can observe that the two ob-
jects are finally detected and matched well, which means that the
segmentation result coincides with the actual objects. For the im-
age of the house, the house and the sky are separated clearly.

Fig. 2. The unsupervised segmentation results on the color image of two goats. (a)
The original image. (b)–(d) The segmentation results of the k0-means Algorithm 1, 2,
and 3, respectively.

Fig. 3. The unsupervised segmentation results on the color image of one house. (a)
The original image. (b)–(d) The segmentation results of the k0-means Algorithm 1, 2,
and 3, respectively.

C. Fang et al. / Pattern Recognition Letters 34 (2013) 580–586 585
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Therefore, our new k0-means algorithms can be successfully
applied to unsupervised color image segmentation.

4. Conclusions

We have investigated the data discrepancy metric for the k0-
means algorithm from different points of view and constructed
three different discrepancy metrics according to which the new
k0-means algorithms are established. These new k0-means algo-
rithms keep a simple learning rule, but have a rewarding and
penalizing mechanism being similar to that of the rival penalized
competitive learning (RPCL) algorithm. It is demonstrated by the
experiments on both the synthetic and real-world datasets that
these new k0-means algorithms can detect the number of actual
clusters in a dataset with a classification accuracy rate as high as
or better than those of the original k0-means algorithm those of
the original k0-means algorithm, DBSCAN, as well as MML and
AIC based clustering methods. Moreover, they converge more
quickly than the original k0-means algorithm. Finally, they are suc-
cessfully applied to unsupervised color iamge segmentation.
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