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Abstract

The Bayesian Ying–Yang (BYY) harmony learning theory has brought about a new mechanism that model selection on Gaussian
mixture can be made automatically during parameter learning via maximization of a harmony function on finite mixture defined through
a specific bidirectional architecture (BI-architecture) of the BYY learning system. In this paper, we propose a fast fixed-point learning
algorithm for efficiently implementing maximization of the harmony function on Gaussian mixture with automated model selection. Sev-
eral simulation experiments are performed to compare its effectiveness in automated model selection as well as its efficiency in parameter
learning with other existing learning algorithms. The experimental results reveal that the performance of the proposed algorithm is supe-
rior to its counterparts in these aspects. Moreover, the proposed algorithm is further tested with three typical real-world data sets and
successfully applied to unsupervised color image segmentation.
� 2007 Published by Elsevier B.V.
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1. Introduction

Gaussian mixture model has been widely applied to data
modelling and clustering. Typical statistical methods for
learning Gaussian mixture include the EM algorithm (Ren-
der and Walker, 1984) and the k-means algorithm (Jain
and Dubes, 1988). These approaches share a common lim-
itation in that they have to assume that the number of
Gaussians in the mixture is known a priori. However, this
assumption is practically unrealistic for many unsupervised
learning tasks such as clustering or competitive learning.
The critical issue of model selection in terms of the appro-
priate number of Gaussians must be properly addressed in
addition to parameter learning (Hartigan, 1977).

In the literature, two major stream of approaches have
been adopted for model selection. The first stream relies
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on cost-function based selection criteria (Friedman and
Rubin, 1967; Scott and Symons, 1971; Akaike, 1974; Mill-
gan and Copper, 1985) to determine best number k� of
Gaussians. However, this stream of approach is not com-
putationally efficient as the process of sequentially evaluat-
ing the criterion incurs large computational cost.
Moreover, all the existing theoretic selection criteria have
their limitations and often result in a wrong result. Another
stream, commonly referred to as automated model selec-
tion, implements model selection in parallel with parameter
learning. The earliest effort of this kind might be due to the
rival penalized competitive learning (RPCL) algorithm (Xu
et al., 1993) which can automatically determine the appro-
priate number of clusters for a sample data set by driving
extra weight vectors far away from the sample data.
Although the RPCL algorithm has been generalized to sev-
eral versions based on distribution of data or newly found
cost function (Xu et al., 1998; Ma and Wang, 2006; Ma
and Cao, 2006) with certain mathematical analysis on its
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convergence, it can only provide a rough parameter estima-
tion for Gaussian mixture modelling because there are no
mixing proportions of clusters or Gaussians in the
algorithm.

Recently, some other gradient based learning algorithms
(Ma et al., 2004, 2005; Ma and Wang, 2006) with auto-
mated model selection ability have been proposed from
the perspective of Bayesian Ying–Yang (BYY) harmony
learning principle. The BYY harmony learning principle
was proposed in (Xu, 1995) and systematically developed
in (Xu, 2001, 2002a,b). It acts as a general statistical learn-
ing framework not only for understanding several existing
major learning approaches but also for tackling the learn-
ing problem with a new learning mechanism that makes
model selection automatically during parameter learning.
Actually, it has been shown in (Ma et al., 2004) that Gauss-
ian mixture modelling is equivalent to the maximization of
the harmony function on a specific BI-architecture of the
BYY learning system (related to the Gaussian mixture
model) via a gradient learning rule. To improve this BYY
gradient learning, the conjugate and natural gradient learn-
ing rules (Ma et al., 2005) were further proposed. Further-
more, an adaptive gradient learning algorithm was already
proposed and analyzed for the general finite mixture model
(Ma and Wang, 2006). On the other hand, an annealing
learning algorithm with automated model selection ability
was also established on a back architecture (B-architecture)
of the BYY learning system related to Gaussian mixture
(Ma and Liu, 2007).

Moreover, from the point of view of penalizing the
Shannon entropy of the mixing proportions on maximum
likelihood estimation (MLE), an entropy penalized MLE
iterative algorithm was proposed to make model selection
automatically during parameter learning on Gaussian mix-
ture in a similar way (Ma and Wang, 2004). On the other
hand, according to a special merge-or-split criterion, a
dynamic merge-or-split learning algorithm with automated
model selection ability was also proposed for Gaussian
mixture modelling in which the initial number of Gaussians
can be given arbitrarily (Ma and He, 2005).

In the current paper, we propose a fast fixed-point learn-
ing algorithm on Gaussian mixture for efficiently imple-
menting the maximization of the harmony function on
the BI-architecture of the BYY learning system related to
the Gaussian mixture model. It is derived from the har-
mony function using Lagrangian multipliers. Simulation
experiments show that the fixed-point learning algorithm
not only has automated model selection ability in learning,
but also is more computationally efficient than the gradient
based algorithms. Moreover, it is further tested with three
typical real-world data sets and successfully applied to
unsupervised color image segmentation.

The rest of this paper is organized as follows. Section 2
outlines the BYY harmony learning principle and derives
the fixed-point learning algorithm. Section 3 is devoted to
simulation, test and application experimental results and
Section 4 concludes the paper.
2. Fixed-point learning algorithm

2.1. BYY learning system and harmony function

A BYY learning system describes each observation
x 2 X � Rn and its corresponding inner representation
y 2 Y � Rm via the two types of Bayesian decomposition
of the joint density pðx; yÞ ¼ pðxÞpðyjxÞ and qðx; yÞ ¼
qðxjyÞqðyÞ, called Yang machine and Ying machine, respec-
tively. For purpose of Gaussian mixture modelling, y is
limited to an integer variable, i.e., y 2 Y ¼ f1; 2; . . . ; kg �
R with m ¼ 1. Given a data set Dx ¼ fxtgNt¼1, the task of
learning on a BYY learning system consists of specifying
all the aspects of pðyjxÞ; pðxÞ; qðxjyÞ; qðyÞ with a harmony
learning principle implemented by maximizing the function

HðpkqÞ ¼
Z

pðyjxÞpðxÞln½qðxjyÞqðyÞ�dxdy � ln zq; ð1Þ

where zq is a regularization term. Refer to (Xu, 2001) for
details.

If both pðyjxÞ and qðxjyÞ are parametric, i.e., from a fam-
ily of probability densities with a parameter h, the BYY
learning system is called to have a bi-directional architec-
ture (BI-architecture). For Gaussian mixture modelling,
we use the following specific BI-architecture of the BYY
learning system. qðjÞ ¼ aj with aj P 0 and

Pk
j¼1aj ¼ 1.

Also, we ignore the regularization term zq (i.e., set zq ¼ 1)
and let pðxÞ be the empirical density p0ðxÞ ¼ 1

N

PN
t¼1d

ðx� xtÞ, where x 2 X ¼ Rn. Moreover, the BI-architecture
is constructed with the following parametric form:

pðy ¼ jjxÞ ¼ ajqðxjhjÞ
qðxjHkÞ

; qðxjHkÞ ¼
Xk
j¼1

ajqðxjhjÞ; ð2Þ

where qðxjhjÞ ¼ qðxjy ¼ jÞ with hj consisting of all its
parameters and Hk ¼ faj; hjgkj¼1. Substituting these compo-
nent densities into Eq. (1), we have

HðpjjqÞ ¼ JðHkÞ ¼
1

N

XN
t¼1

Xk
j¼1

ajqðxtjhjÞPk
i¼1

aiqðxtjhiÞ
ln½ajqðxtjhjÞ�:

ð3Þ

That is, HðpkqÞ becomes a harmony function JðHkÞ on the
parameters Hk. Let qðxjhjÞ be a Gaussian probability den-
sity function given by

qðxjhjÞ ¼ qðxjmj;RjÞ ¼
1

ð2pÞ
n
2jRjj

1
2

e�
1
2ðx�mjÞTR�1

j ðx�mjÞ; ð4Þ

where mj is the mean vector and Rj is the covariance matrix
which is assumed to be positive definite. As a result, this
BI-architecture of the BYY learning system contains the
Gaussian mixture model qðx;HkÞ ¼

Pk
j¼1ajqðxjmj;RjÞ

which tries to model the original distribution of the sample
data in Dx.

According to the BYY harmony learning principle (Xu,
2001; Ma et al., 2005), maximization of JðHkÞ would auto-
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matically lead to model selection on Gaussian mixture. In
order to efficiently implement the maximization of JðHkÞ,
we will derive a fixed-point learning algorithm to solve
the maximum of JðHkÞ in the next subsection.

2.2. Derivation of fixed-point learning algorithm

Since
Pk

j¼1aj ¼ 1, we introduce the Lagrange multiplier
k and the Lagrange function

LðHk; kÞ ¼ JðHkÞ þ k 1�
Xk
j¼1

aj

 !
: ð5Þ

By matrix differentiation, we have the following set of
equations:

oL
oaj
¼ 1

N

XN
t¼1

1

aj
hjðtÞ � k; ð6Þ

oL
omj
¼ 1

N

XN
t¼1

hjðtÞR�1
j ðxt � mjÞ; ð7Þ

oL
oRj
¼ 1

2N

XN
t¼1

hjðtÞ R�1
j ðxt � mjÞðxt � mjÞTR�1

j � R�1
j

h i
; ð8Þ

oL
ok
¼
Xk
i¼1

ai � 1; ð9Þ

where hjðtÞ ¼ pjðtÞ þ
Pk

i¼1pjðtÞðdij � piðtÞÞ ln½aiqðxtjmi;RiÞ�,
j ¼ 1; . . . ; k, dij is the Kronecker function and
pjðtÞ ¼ pðjjxtÞ. By setting Eqs. (6)–(9)=0 and solving them,
we have

k ¼ 1

N

Xk
i¼1

XN
t¼1

hiðtÞ ð10Þ

and further obtain the following fixed-point (iterative)
learning algorithm:

âj ¼
PN

t¼1hjðtÞPk
i¼1

PN
t¼1hiðtÞ

; ð11Þ

m̂j ¼
1PN

t¼1hjðtÞ
XN
t¼1

hjðtÞxt; ð12Þ

bRj ¼
1PN

t¼1hjðtÞ
XN
t¼1

hjðtÞðxt � m̂jÞðxt � m̂jÞT: ð13Þ

Clearly, this fixed-point learning algorithm is similar to the
EM algorithm for Gaussian mixture. However, it differs
from the EM algorithm at hjðtÞ which introduces certain
rewarding and penalizing mechanism on the mixing pro-
portions so that it has the feature of automated model
selection that will be demonstrated in the sequel.

3. Experimental results

3.1. Simulation results and comparisons

In this subsection, various simulation experiments are
carried out to demonstrate the performance of the fixed-
point learning algorithm for both model selection and
parameter estimation on a sample data set from a Gaussian
mixture, with being compared with those of the gradient
based learning algorithms.

3.1.1. Sample data sets

We conduct 7 Monte Carlo experiments to sample data
drawn from a mixture of three or four bivariate Gaussian
distributions (i.e., n ¼ 2). As shown in Fig. 1, each data
set is generated with different degree of overlap among
the clusters and with equal or unequal mixing proportions.
Below is a detailed description.

(i) The clusters in S1 and S2 have equal number of
samples, while those in the other five data sets have
different numbers of samples;

(ii) The clusters in S1; S3 and S6 are separated, but
those in each of the other four data sets are over-
lapped at certain degree;

(iii) The clusters in S1 and S2 are spherical in shape, but
those in the other five data sets are elliptic in shape. In
particular, the clusters in S5 and S6 are rather flat;

(iv) The sample size of the first five data sets is larger as
compared with that of S6 and S7.

The values of the parameters of the seven data sets are
summarized in Table 1 where mi; Ri ¼ ½ri

jk�2�2; ai and Ni

denote the mean vector, covariance matrix, mixing propor-
tion and the number of samples of the ith Gaussian cluster
respectively.

3.1.2. Automated model selection

We implement the fixed-point learning algorithm on
these seven data sets with k P k�. The parameters of the
fixed-point learning algorithm are initialized randomly in
some intervals with the constraints. However, it is found
by the experiments that if the initial mean vectors of k

Gaussians are trained by the rival penalized competitive
learning (RPCL) algorithm (Xu et al., 1993) on the sample
data with a small number of iterations, the fixed-point
learning algorithm converges more quickly. Thus, we
always select the initial mean vectors of k Gaussians in
the mixture with the aid of a short RPCL process. Learning
is stopped once the terminating criterion jJðHnew

k Þ�
JðHold

k Þj < 10�7 is satisfied. Actually, we find that the
fixed-point learning algorithm always converge in all
attempts.

The experimental results on S2 and S4 are given in
Figs. 2 and 3 respectively, with case k ¼ 8 and k� ¼ 4. It
can be observed that four-clustered data are correctly
described by the four Gaussians with the mixing propor-
tions of the other four redundant Gaussians falling to
below the threshold value of 0:01 and being consequently
discarded. This shows that automated model selection
works well to select the correct number of the Gaussians
on the given data sets. Similar experimental results are
obtained for S5 with k ¼ 8; k� ¼ 3. As shown in Fig. 4,





Table 1
Values of parameters of the seven data sets

The sample set Gaussian mi ri
11 ri

12 ri
22 ai N i

S1 (N ¼ 1600) Gaussian 1 (2.5, 0) 0.25 0 0.25 0.25 400
Gaussian 2 (0, 2.5) 0.25 0 0.25 0.25 400
Gaussian 3 (�2.5, 0) 0.25 0 0.25 0.25 400
Gaussian 4 (0, �2.5) 0.25 0 0.25 0.25 400

S2 (N ¼ 1600) Gaussian 1 (2.5, 0) 0.5 0 0.5 0.25 400
Gaussian 2 (0, 2.5) 0.5 0 0.5 0.25 400
Gaussian 3 (�2.5, 0) 0.5 0 0.5 0.25 400
Gaussian 4 (0, �2.5) 0.5 0 0.5 0.25 400

S3 (N ¼ 1600) Gaussian 1 (2.5, 0) 0.28 �0.20 0.32 0.34 544
Gaussian 2 (0, 2.5) 0.34 0.20 0.22 0.28 448
Gaussian 3 (�2.5, 0) 0.50 0.04 0.12 0.22 352
Gaussian 4 (0, �2.5) 0.10 0.05 0.50 0.16 256

S4 (N ¼ 1600) Gaussian 1 (2.5, 0) 0.45 �0.25 0.55 0.34 544
Gaussian 2 (0, 2.5) 0.65 0.20 0.25 0.28 448
Gaussian 3 (�2.5, 0) 1.0 0.1 0.35 0.22 352
Gaussian 4 (0, �2.5) 0.30 0.15 0.80 0.16 256

S5 (N ¼ 1200) Gaussian 1 (2.5, 0) 0.1 0.2 1.25 0.5 600
Gaussian 2 (0, 2.5) 1.25 0.35 0.15 0.3 360
Gaussian 3 (�1, �1) 1.0 �0.8 0.75 0.2 240

S6 (N ¼ 800) Gaussian 1 (2.5, 0) 0.28 �0.20 0.32 0.34 272
Gaussian 2 (0, 2.5) 0.34 0.20 0.22 0.28 224
Gaussian 3 (�2.5, 0) 0.50 0.04 0.12 0.22 176
Gaussian 4 (0, �2.5) 0.10 0.05 0.50 0.16 128

S7 (N ¼ 450) Gaussian 1 (2.5, 0) 0.25 0 0.25 0.3333 150
Gaussian 2 (0, 2.5) 0.25 0 0.25 0.3333 150
Gaussian 3 (�1, �1) 0.25 0 0.25 0.3333 150
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Fig. 2. The experimental result of the fixed-point learning algorithm on the sample set S2 (stopped after 62 iterations). In this and the following three
figures, the contour lines of each Gaussian are retained unless its density is less than e�3 (peak).
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Table 2
The average errors of the estimated parameters by the four algorithms on the seven data sets

S S1 S2 S3 S4 S5 S6 S7

FPL 0.014631 0.023206 0.0201193 0.022816 0.049643 0.009069 0.029247
BGL 0.012281 0.026629 0.0153004 0.024001 0.024168 0.008155 0.026920
AGL 0.015721 0.027539 0.019887 0.025610 0.034658 0.016092 0.028971
EM 0.011799 0.019434 0.015840 0.015928 0.029762 0.008623 0.024167

Table 3
The numbers of iterations required by the three algorithms on the seven
sets of sample data

S S1 S2 S3 S4 S5 S6 S7

IL 67 69 119 90 246 180 178
BGL 684 308 1021 906 1058 1001 40001
AGL 355 269 817 1105 823 626 1205

For convenience of comparison, the number of iterations of the adaptive
gradient learning algorithm is also computed in the batch way as the
quotient of the number of adaptive iterations over the number of sample
data in the data set.
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class containing 50 samples. Each sample or datum is four-
dimensional, which represents measures of the plants mor-
phology. Here, the category or class index of each sample
in the Iris data set is already known. As the fixed-point
learning algorithm is a kind of unsupervised learning algo-
rithm, we can consider that all of 150 samples blindly come
from a mixture of three Gaussians, which represent the
three Iris classes separately. In such a way, we can imple-
ment the fixed-point learning algorithm on these 150 sam-
ples to detect the three representative Gaussians and
classify them according to the Bayesian classification rule
based on posteriori probabilities pðjjxtÞ of the final esti-
mated Gaussians. To evaluate the classification perfor-
mance of the algorithm, we compute the classification
accuracy given the real categories of the 150 samples.

By setting k ¼ 6 with the initial parameters being
selected in the same way as above, we implement the
fixed-point learning algorithm on the Iris data. It is found
by the experiments that the fixed-point learning algorithm
can detect the three classes in the Iris data with an optimal
classification accuracy of 96.7% (there are only five errors
in the second class) which is slightly less than the best
known classification accuracy 98% (there are three errors)
of the maximum certainty partitioning with a large number
of linear mixing kernels (Gaussian functions) (Roberts
et al., 2000).
3.2.2. On the wine data

The Wine data are typical high-dimensional real-world
data for testing a classification or clustering algorithm.
Actually, the Wine data contain 178 samples of three types
of wine. Each datum is 13-dimensional and consists of
chemical analysis of a sample from certain type of wine.
In the same way, we can use a mixture of three Gaussians
to describe the Wine data and implement the fixed-point
learning algorithm to estimate the three representative
Gaussians for the three types of wine. Also, we just use
the class indexes of these wine samples provided in the
dataset to check the classification accuracy of the fixed-
point learning algorithm on the wine data.

In the experiments, we first regularize these Wine data
into a proper interval of [0, 3] for convenience of data pro-
cessing and set k ¼ 6 which is also the two times of the real
class number 3. We then run the fixed-point learning algo-
rithm on these regularized Wine data. It is found by the
experiments that the fixed-point learning algorithm can
detect the three classes in the Wine data with an optimal
classification accuracy of 98.32% (there are only three
errors in the second class) which is even better than the
classification accuracy 97:75% (there are four errors) of
the maximum certainty partitioning method (Roberts
et al., 2000). However, the Wine data can now be classified
completely, i.e., with the classification accuracy 100%, via
the adaptive Mahalanobis distance based rival penalized
competitive learning (MDRPCL) algorithm with the
annealing simulated mechanism proposed recently in (Ma
and Cao, 2006).
3.2.3. On the waveform data

The waveform data set is a very etherogeneous real-
world dataset for testing a classification or clustering algo-
rithm. Actually, it contains 5000 samples of three types of
waveform and each datum is even 21-dimensional and con-
sists of various measures on the waveform. In the same
way, we can implement the fixed-point learning algorithm
on the Waveform data to detect the three representative
Gaussians for the three types of waveform. Again, we just
use the class indexes of these waveform samples provided
in the dataset to check the classification accuracy of the
fixed-point learning algorithm on the waveform data.

In the experiments, for convenience of data processing,
we first regularize these waveform data into a proper inter-
val of [0,4] in the same way as in the case of the Wine data,
and then use the Principal Component Analysis (PCA)
technique (Duda et al., 2001) to reduce the dimension of
the waveform data to 18. Again, k is set to 6, i.e., the
two times of the real class number 3. With those prepara-
tions and setting, we run the fixed-point learning on the
processed Waveform data. It is found by the experiments
that the fixed-point learning algorithm can detect the three
classes in the Waveform data with an optimal classification
accuracy of 82.78% which is slightly less than the classifica-
tion accuracy of 83.96% of the EM algorithm on the Wave-
form data with k ¼ 3. Although the classification accuracy
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of the regularized mixture discriminant analysis method
(Halbe and Aladjem, 2007) on the Waveform data may
be improved to 86.78%, this method implements three reg-
ularized mixtures of Gaussians to learn and represent the
three types of waveform separately.

In a summary, the experiment results reveal that the
fixed-point learning algorithm can be successfully imple-
mented on some typical real-world datasets for unsuper-
vised classification and its classification accuracy can be
as good as those of the other existing methods. However,
through the further experiments on the other real-world
datasets, we can find that the fixed-point learning algo-
rithm works well only for a set of real-world data that
can be modeled accurately or at least approximately by a
Gaussian mixture in a certain degree of overlap among
the components. Otherwise, it cannot obtain a satisfactory
classification accuracy. For example, as the fixed-point
learning algorithm is implemented on the Vowel data
(Blake and Merz, 1998) that have 11 classes, we can find
only 9 classes. Actually, the two pairs of actual classes
are heavily overlapped. However, if we only consider the
Vowel data on the other separated classes, the fixed-point
learning algorithm can obtain a very high classification
accuracy. On the other hand, in some cases like the Banana
data (Blake and Merz, 1998), actual classes in the real-
world data cannot be described by Gaussian distributions
and thus the fixed-point learning algorithm cannot be
applied efficiently. However, just like the regularized mix-
ture discriminant analysis method, we can use a number
of Gaussian mixtures to represent the actual classes,
respectively, and implement the fixed-point learning algo-
rithm to learn these Gaussian mixtures separately. In such
a way, we can still build a good Bayesian classifier in a
hybrid model of both supervised and unsupervised
classifications.

3.3. Unsupervised color image segmentation

We finally apply the fixed-point learning algorithm to
unsupervised color image segmentation that has been con-
sidered as a promising and challenging area in image pro-
Fig. 6. The segmentation result on the color image of two goats. (a) The origin
fixed-point learning algorithm.
cessing (Boujemaa, 2000). Segmenting a digital color
image into homogenous regions corresponding to the
objects (including the background) is a fundamental prob-
lem in image processing. When the number of objects in an
image is not known in advance, the image segmentation
problem is in an unsupervised mode and becomes rather
difficult in practice. If we consider each object as a Gauss-
ian distribution, the whole color image can be regarded as a
Gaussian mixture in the data or color space. Then, the
fixed-point learning algorithm provides a new tool for solv-
ing this unsupervised color image segmentation problem.
In this situation, we set k to be larger than the true number
k� of the actual objects and the pixels in the image are par-
titioned according to the maximum posteriori probability
among pðjjxtÞ. The extra Gaussians or objects will be dis-
carded as their mixing proportions are less than a threshold
value 0.01. In our experiments, we first regularize all the
three coordinates of the pixels in each RGB based color
image via dividing them by 32 so that the regularized coor-
dinates are within an appropriate interval of [0, 8]. The ini-
tial parameters for the fixed-point learning algorithm are
selected similarly as above and the algorithm ends with a
simplified stopping criterion:

Pk
j¼1kmnew

j � mold
j k < 10�5.

The first experiment is made on the color image of two
goats which is shown in Fig. 6a. We implement the fixed-
point learning algorithm on this color image with k ¼ 6
and lead to the segmentation results shown in Fig. 6b. It
can be found that two objects are finally located accurately,
while the mixing proportions of the other four Gaussians
(objects) are reduced to below 0.01, i.e., these objects are
extra and discarded from the figure. That is, the correct
number of the actual objects have been detected on the
color image with an accurate segmentation. Moreover,
the second experiment has been made on the color image
of house, which is shown in Fig. 7a, with k = 6. As shown
in Fig. 7b, two objects are located accurately, while the
mixing proportions of the other four extra Gaussians
(objects) become less than 0.01. That is, the correct number
of the objects can still be detected on this color image.
Finally, the fixed-point learning algorithm is implemented
on the color image of jellies, which is shown in Fig. 8a, with
al color image of two goats; (b) the segmented image of two goats via the



Fig. 8. The segmentation result on the color image of jellies. (a) The original color image of jellies; (b) the segmented image of jellies via the fixed-point
learning algorithm.

Fig. 7. The segmentation result on the color image of house. (a) The original color image of house; (b) the segmented image of house via the fixed-point
learning algorithm.
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k = 8. As shown in Fig. 8b, the two objects are located
accurately, with the mixing proportions of other four extra
Gaussians reduced below 0.01.

As a result, the fixed-point learning algorithm can detect
the number of actual objects in each of these color images.
Moreover, the segmentation results of the fixed-point
learning algorithm are better than those of the generalized
competitive clustering (GCC) algorithm (Boujemaa, 2000)
(based on the fuzzy clustering theory) given in the web
http://www-rocq.inria.fr/boujemaa/Partielle2.html. By
comparison, we can easily find that the fixed-point learning
algorithm leads to a more accurate segmentation on the
contours of the objects in each image generally.
4. Conclusions

In this paper, we have constructed a fast fixed-point
learning algorithm for the BYY harmony learning on
Gaussian mixture with automated model selection. It is
derived from a specific bi-architecture of the BYY learning
system using Lagrangian optimization method. Simulation
results confirm that the fixed-point learning algorithm has
automated model selection ability for the number of Gaus-
sians and produce good estimates for the actual parame-
ters. It is also shown that the fixed-point learning
algorithm is superior to the gradient based learning algo-
rithms as well as the other automated model selection algo-
rithms. Moreover, the fixed-point learning algorithm is
tested with three typical real-world dataset and successfully
applied to unsupervised color image segmentation.
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