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Abstract. This paper presents a further theoretical analysis on the asymptotic memory
capacity of the generalized Hopfield network (GHN) under the perceptron learning scheme. It

has been proved that the asymptotic memory capacity of the GHN is exactly 2ðn� 1Þ, where n
is the number of neurons in the network. That is, the GHN of n neurons can store 2ðn� 1Þ
bipolar sample patterns as its stable states when n is large, which has significantly improved
the existing results on the asymptotic memory capacity of the GHN.
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1. Introduction

As a typical associative memory model, Hopfield network has been intensively ap-

plied to pattern recognition via the sum-of-outer product scheme [1, 2]. However, it

had been found by theoretical analysis that the asymptotic memory capacity of

Hopfield network of n neurons is only n=ð4 log nÞ and also that the sum-of-outer

product scheme cannot be sure to store a set of sample patterns in general [3, 4]. As a

matter of fact, these disadvantages seriously restrict the application of Hopfield

network to associative memory.

In order to overcome these disadvantages, the generalized Hopfield network

(GHN) has been proposed in [5] via using a general zero-diagonal weight matrix

instead of the symmetric zero-diagonal weight matrix. Actually, it has been shown in

[5] that the GHN with stable states can be stable in the same way as a Hopfield

network. Therefore, the GHN can be also applied to associative memory with some

learning scheme that makes a set of sample patterns be the stable states of a GHN.

Moreover, several such learning schemes have been established on the GHNs for

associative memory (e.g. [4, 6–10]). By the theoretical analysis [11], it has been

further proved that the asymptotic memory capacity of the GHN of n neurons under

the perceptron learning scheme is no less than ðn� 1Þ, which is much greater than

that of Hopfield network under the sum-of-outer product scheme.

In this paper, we have made further theoretical analysis on the asymptotic memory

capacity of the GHN and proved that the asymptotic memory capacity of the GHN

of n neurons is exactly 2ðn� 1Þ. In the sequel, we introduce our theorem on the
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asymptotic memory capacity of the GHN in Section 2. Section 3 describes several

lemmas to prove an important fact that is needed for the proof; the proof is con-

tained in Section 4. Section 5 gives a brief conclusion.

2. The Main Theorem

We begin with a brief description of the GHN model. A GHN is composed of n

interconnected neurons defined by ðW; hÞ where W is an n� n zero-diagonal matrix

with element wi; j denoting the weight on the connection from neuron j to neuron i,

and h is a vector of dimension n with component hi denoting the threshold of neuron

i. For simplicity, we let hi ¼ 0 for i ¼ 1; 2; . . . ; n in this paper.

Every neuron can be in one of two possible states, either 1 or �1. At time t, we let

xiðtÞ be the state of neuron i and XðtÞ ¼ ½x1ðtÞ; x2ðtÞ; . . . ; xnðtÞ�T be the state of the

network. Then, the state of neuron i at time tþ 1 is computed by

xiðtþ 1Þ ¼ SgnðHiðtÞÞ ¼
1; if HiðtÞ � 0;
�1; otherwise,

�
ð1Þ

where

HiðtÞ ¼
Xn
j¼1

wi; jxjðtÞ:

The next state of the network, i.e., Xðtþ 1Þ, can be computed from the current state

by performing the evaluation of Equation (l) either at each neuron of the network in

the synchronous operation model or at a single neuron at each time in the asyn-

chronous operation mode. However, the stable state X ¼ ½x1; x2; . . . ; xn�T of the

network in the both operation modes is the same and can be defined by

xi ¼ Sgn
Xn
j¼1

wi;jxj

 !
; for i ¼ 1; 2; . . . ; n: ð2Þ

As a dynamic system, the GHN can have the similar characteristics of content-

addressed memory as a Hopfield network, especially in randomly asynchronous

mode [5]. When the network starts with an initial state nearby some stable state

which constitutes a stored pattern in the memory, it evolves and probably enters the

stable state. For associative memory, we have a given sample set

S ¼ fX1;X2; . . . ;Xmg that consists of m different sample patterns (vectors) in

f�1; 1gn, where

Xj ¼ ½xj;1; xj;2; . . . ; xj;n�T ðj ¼ 1; 2; . . . ;mÞ: ð3Þ

Then, the key problem concerning the use of a GHN as an associative memory is

how to construct its matrix W that enables each of X1;X2; . . . ;Xm to be a stable state

of the network when it is possible. For clarity, we introduce the concept of storablity

as follows.
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DEFINITION 1. A sample set S ¼ fX1;X2; . . . ;Xmg is storable if all m sample
patterns X1;X2; . . . ;Xm can be the stable states of some GHN N ¼ ðW; 0Þ where W is
a zero-diagonal real matrix and 0 is the zero vector of dimension n.

If fX1;X2; . . . ;Xmg is storable, the perceptron learning algorithm [12] can be

implemented to compute the rows of the desired W from neuron 1 to neuron n

independently, with the threshold value of the perceptron being fixed to be zero.

Clearly, W



We let Bn be the set of all n-dimensional binary vectors, i.e., Bn ¼ f0; 1gn, and define

An;k ¼ fA ¼ ðaijÞn�n : aij 2 f0; 1g; rankðAÞ ¼ k:g; 1 � k � n� 1

Rn ¼ fE ¼ fe1; e2; . . . ; eng � Bn : e1; e2; . . . ; en are linearly independent:g

That is, Rn is the set of all the groups of n linearly independent vectors in Bn, and An;k

is all n� n binary matrices whose ranks are just kð1 � k � n� 1Þ.
We assume that each element aij is an i.i.d. random variable to be 0 or 1 with

equiprobability. We let PðAn;kÞ be the probability that its rank is k when we arbi-

trarily pick up an n� n binary matrix. Letting An be all singular n� n binary

matrices, and adding zero matrix to An;1, we have

An ¼ jAn;1j þ jAn;2j þ � � � þ jAn;n�1j;

where jAj denotes the number of elements in a set A.

LEMMA 1. From a set of k m-dimensional binary vectors, we can construct at 22k

different binary vectors by linear combination.

See the proof in [13]. (

LEMMA 2. For a positive integer n, we have

2nþ1

nþ 1

� �
ðnþ 1Þ! ¼ 2ðnþ1Þ2

� xnþ1; ð4Þ

where

xn ¼ 1 � 1

2n

� �
1 � 2

2n

� �
� � � 1 � n� 1

2n

� �
: ð5Þ

Proof. Since n � 1, we have

2nþ1

nþ 1

� �
2n

n

� � ¼ 22nþ1

nþ 1
�

1 � 1
2nþ1

� �
� � � 1 � n�1

2nþ1

� �
1 � n

2nþ1

� �
1 � 1

2n

� �
� � � 1 � n�2

2n

� �
1 � n�1

2n

� � :

Letting aðnÞ ¼ xnþ1=xn, we get

2nþ1

nþ 1

� �
¼ 2n

n

� �
� 22nþ1

nþ 1
aðnÞ: ð6Þ

Multiplying ðnþ 1Þ! on the both sides of Equation (6), we have

2nþ1

nþ 1

� �
ðnþ 1Þ! ¼ 2n

n

� �
n! 22nþ1aðnÞ: ð7Þ
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Recursively reducing the number n in the way of Equation (7), we have

2nþ1

nþ 1

 !
ðnþ 1Þ! ¼

2n

n

 !
n!22nþ1aðnÞ

¼
2n�1

n� 1

 !
ðn� 1Þ!22



By Komlos’s theorem [13] that limn!1
An

2n
2 ¼ 0, we finally

lim
n!1

pn�1 �
limn!1

An

2n
2

1 � limn!1
An

2n
2

¼ 0: ð11Þ

The proof is completed (
With above preparation, we now estimate the number of n x n singular binary

matrices.

LEMMA 4. Suppose that Mn is the total number of n� n binary matrices whose ranks
are not larger than ½log n�, where ½x� is the integer part of a real number x. When n is
large enough, we have

Mn <
2n

n

� �
n!

n

2n

� �
� log n

2nðn�½log n��
ffiffi
n3

p
�1Þ �

1

xn
; ð12Þ

where the logarithm base is 10 and xn is given by Equation (5).

Proof. For a k-rank n� n binary matrix, there are k row vectors which are linearly

independent, and can express each of the other n� k row vectors by linear combi-

nation. Clearly, the total number of k linearly independent vector groups is at most
2n

k

� �
. On the other hand, according to Lemma 1, the number of binary vectors



2n

k

� �
22k þ n� k� 1

n� k

 !

2n

n

� � �

2n

k

� �
2
ffiffi
n3

p
þ1

n� k

 !

2n

n

� �

<
n!

k!2nðn�kÞxn
� 2

ffiffi
n3

p
þ1!

ðn� kÞ!ð2
ffiffi
n3

p
þ1 � nþ kÞ!

¼ nðn� 1Þ � � � ðn� kþ 1Þ
k!2nðn�kÞxn

� 2
ffiffi
n3

p
þ1ð2

ffiffi
n3

p
þ1 � 1Þ � � � ð2

ffiffi
n3

p
þ1 � nþ kþ 1Þ

<
nk

k!2nðn�kÞxn
� 2ðn�kÞð

ffiffi
n3

p
þ1Þ

¼ n

2
ffiffi
n3

p
þ1

� �k

� 1

k!
� 1

2nðn�k�
ffiffi
n3

p
�1Þxn

<
n

2
ffiffi
n3

p

� �
� 1

2nðn�k�
ffiffi
n3

p
�1Þ �

1

xn

Therefore, when n is large enough, we get

2n

k

� �
22k þ n� k� 1

n� k

� �
n! <

2n

n

� �
n!

n

2
ffiffi
n3

p

� �
1

2nðn�k�
ffiffi
n3

p
�1Þ �

1

xn
:

Summing up the both sides of the above inequality from k ¼ 1 to ½log n�, we finally

have

Mn �
X½log n�

k¼1

2n

k

� �
22k þ n� k� 1

n� k

� �
n! <

2n

k

� �
n!

n

2
ffiffi
n3

p

� �
log n

2nðn�½log n��
ffiffi
n3

p
�1Þ �

1

xn
:

The proof is completed (

LEMMA 5. When n is large enough and the rank k � ½logn� þ 1, we have

PðÂn;kÞ �
jRnj
2n

n

� � 2nþ1pn�1
k

2n� 2
n� 1

� �
n
½n2�

� �
; ð14Þ

where Ân;k is considered as the event that a random n� n binary matrix with different

column vectors takes the rank of k.

Proof. For each binary matrix in Ân;k, here are k linearly independent column

vectors, while the other column vectors can be expressed by the linear combination

of these k vectors. We consider that these k vectors are randomly selected from an

E ¼ fe1; e2; � � � ; eng 2
P

n. For clarity, we let them be fej1; ej2; � � � ; ejkg � E respec-

tively. Clearly, an over estimation of the total number of these

fej1; ej2 ; � � � ; ejkg is j
P

n j
n
k

� �
.

For convenience of analysis, we introduce the following notations:
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D ¼ u ¼
Xk
i¼1

lieji : u 2 Bn � f0g; fej1; ej2; � � � ; ejkg � E 2 En; li 2 R:

( )

D0 ¼ D [ f0g
Then, the other n� k column vectors can only be selected from D0. Moreover, a

vector in D0 an be selected repeatedly. According to the formula of the total prob-

ability, we have

PðÂn;kÞ ¼
X2n
h¼1

PðjD0j ¼ hÞPðÂn;kkD0j ¼ hÞ:

Since fej1; ej2; . . . ; ejkg � D � D0, PðjD0j ¼ hÞ ¼ PðjDj ¼ h� 1Þ ¼ 0 for 1 � h � k.

When h � kþ 1, there are h� 1 different vectors u1; u2; . . . ; uh�1 in D. According

to Lemma 3 and that u1; u2; . . . ; uh�1 are independently expressed by some

ðej1; ej2; � � � ; ejkÞ, we have

PðjD0j ¼ hÞ ¼ PðjDj ¼ h� 1Þ ¼ P
\h�1

i¼1

Ui

 !
¼
Yh�1

i¼1

PðUiÞ ¼ ph�1
k ;

where Ui is the event that ui can be linearly expressed by k vectors in an arbitrary

group E 2
P

n.

Furthermore, when D0 contains h different vectors, since the column vectors of the

matrix subject to Ân;k should be different, the oher n� k column vectors can not be

selected repeatedly. Moreover, ðej1; ej2; � � � ; ejkÞ in D can not be selected as these n� k

column vectors. So, we arbitrarily pick up a base from Rn, and randomly select k

vectors from the base with jDj ¼ h� 1, the total number of the matrices subject to

Ân;k is overestimated by

jRnj
n
k

� �
h� k
n� k

� �
n!

For the existence of such a matrix,
h� k
n� k

� �
� 1 is necessary. That is, there must be

at least n vectors in D0, that is h � n. Otherwise, if jD0j ¼ h < n, this kind of matrix

does not exist and PðÂn;kkD0j ¼ hÞ ¼ 0.

Then, we have

PðÂn;kÞ ¼
X2n
h¼1

PðjD0j ¼ hÞPðÂn;kkD0j ¼ hÞ

¼
X2n
h¼n

ph�1
k

jRnj
n

k

� �
h� k

n� k

� �
2n

2 n!: ð15Þ

According to Lemma 2,
2n

n

� �
n! ¼ 2n

2

xn and 0 < xn < 1, we further have
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PðÂn;kÞ �
jRnj

n
k

� �
2n

n

� � pn�1
k

X2n
h¼n

ph�n
k

h� k
n� k

� �
: ð16Þ

When n is large enough, since pk � pn�1 � 1
4, it can be easily verified that

ph�n
k

h� k
n� k

� �
decreases with h for h � 2n� k. Therefore, we have

X2n
h¼n

ph�n
k

h� k

n� k

� �
¼

X2n�k�1

h¼n

ph�n
k

h� k

n� k

� �
þ
X2n

h¼2n�k

ph�n
k

h� k

n� k

� �

<
X2n�k�1

h¼n

h� k

n� k

� �
þ ph�k

k

2n� 2k

n� k

� �
ð2n � 2nþ kÞ

<
2n� 2k

n� kþ 1

� �
þ pn�k

k

2n� 2k

n� k

� �
2n:

With this result, it follows Eq.(16) that

PðÂn;kÞ �
jRnj

n

k

� �
2n

n

� � pn�1
k

X2n
h¼n

ph�n
k

h� k

n� k

� �

�
jRnj

n

k

� �
2n

n

� � pn�1
k



2n� 2k

n� kþ 1

� �
þ pn�k

k

2n� 2k

n� k

� �
2n
�

<

jRnj
n

k

� �
2n

n

� � pn�1
k

2n� 2k

n� k

� �
2nþ1:

Because
2n� 2k
n� k

� �
decreases with kðk < nÞ; n

k

� �
� n

½n2�

� �
, we finally have for

k > ½logn�

PðÂn;kÞ �
jRnj
2n

n

� � 2nþ1pn�1
k

2n� 2
n� 1

� �
n
½n2�

� �
:

The proof is completed (

LEMMA 6. Suppose that En is the event that a random n� n binary matrix with
different row vectors is singular. We have for large n
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PðEnÞ �
1

2nðn�log n�
ffiffi
n3

p
�1Þ þOðð16pn�1Þn�1Þ; ð17Þ

where OðxÞ is an infinitesimal with the same order of an infinitesimal x.

Proof. By the definition of Ân;k, we have

En ¼
[n�1

k¼1

Ân;k:

Since
S½logn�

k¼1 Ân;k �
S½logn�

k¼1 Ân;k; pk � pn�1ðk � n� 1Þ, according to Lemmas 4&5, we

have for large enough n

PðEnÞ ¼ Pð
[n�1

k¼1

Ân;kÞ ¼ Pð
[½logn�
k¼1

Ân;kÞ þ Pð
[n�1

k¼½logn�þ1

Ân;kÞ

� Pð
[½logn�
k¼1

An;kÞ þ
Xn�1

k¼½logn�þ1

PðÂn;kÞ

<
Mn

2n
2 þ j

P
n j

2n

n

� � 2nþ1 2n� 2

n� 1

� �
n
n
2

� � � Xn�1

k¼½logn�þ1

pn�1
k

<
Mn

2n
2 þ j

P
n j

2n

n

� � 2nþ1 2n� 2

n� 1

� �
n
n
2

� � �
pn�1
n�1ðn� ½logn� � 2Þ

<
Mn

2n
2 þ j

P
n j

2n

n

� � 2nþ1 2n� 2

n� 1

� �
n
n
2

� � �
npn�1

n�1: ð18Þ

By the fact that limn!1
j
P

n
j

ð2n

n Þ
¼ 1; limn!1

2n�2
n�1ð Þ

22n�2ffiffiffiffiffiffi
2n�2

p
¼

ffiffi
2
p

q
, and limn!1

n
n
2

� � �
= 2nffiffi

n
p ¼

ffiffi
2
p

q
,

we have for large n

lim
n!1

j
P

n
j

2n

nð Þ 2nþ1 2n�2
n�1

� � n
n
2

� � �
npn�1

n�1

ð16pn�1Þn�1
¼ lim

n!1

j
P

n j
2n

n

� � � 2n�2
n�1

� �
22n�2ffiffiffiffiffiffiffiffi
2n�2

p
�

n
n
2

� � �
2nffiffi
n

p
� 8ffiffiffiffiffiffiffiffiffi

2� 2
n

q � ð2
4pn�1Þn�1

ð16pn�1Þn�1

¼8
ffiffiffi
2

p

p
:

Since limn!1 pn�1 ¼ 0, we then have

j
P

n j
2n

n

� � 2nþ1 2n� 2
n� 1

� �
n
n
2

� � �
npn�1

n�1 ¼ Oðð16pn�1Þn�1Þ: ð19Þ

JIANWEI WU ET AL.32



On the other hand, according to Lemma 2, it is clear that for large n

Mn

2n
2 <

2n

n

� �
n!

2n
2 ð n

2
ffiffi
n3

p Þ log n

2nðn�½logn��
ffiffi
n3

p
�1Þ �

1

xn

¼ ð n

2
ffiffi
n3

p Þ log n

2nðn�½logn��
ffiffi
n3

p
�1Þ

<
1

2nðn�½logn��
ffiffi
n3

p
�1Þ : ð20Þ

Summing up the results of Eqs. (19)&(20), we have from Eq.(18) that

PðEnÞ �
1

2nðn�log n�
ffiffi
n3

p
�1Þ þOðð16pn�1Þn�1Þ: ð21Þ

The proof is completed (
The order of PðEnÞ ! 0 given by Lemma 6 is considerably improved in com-

parison with the order obtained by Komlos [13]. Actually, this accurate order pro-

vides a key to the proof of the main theorem in the next section. Although this result

is for n� n binary matrices, but it holds well for n� n bipolar matrices since the

probability of singular bipolar matrices over all bipolar matrices is just that of

singular binary matrices over all binary matrices. Therefore, we will use this result

directly for bipolar matrices in the next section.

4. The Proof of the Main Theorem

We begin to give some definitions and results on the perceptron with bipolar input

variables. Actually, each neuron in a GHN can be considered as a perceptron with

bipolar input variables. Mathematically, a percepron is defined by a weight vector

W ¼ ½w1;w2; � � � ;wn�T 2 Rn and a threshold value h such that for an input

X ¼ ½x1; x2; � � � ;xn�T 2 Rn, its output y ¼ SgnðWTX� hÞ. Here, we let h ¼ 0 and

X 2 Bn. For a dichotomy fvþ; v�g of S, i.e., S is divided into two subsets vþ and v�,

if there exists a weight vector W 2 Rn such that

WTX � 0; if X 2 vþ;

WTX < 0; if X 2 v�;

it is called to be homogeneously linearly separable. In this situation, a perceptron can

be implemented to realize such a binary classification by the perceptron learning

algorithm.

In the same way, we can define the probability sequence of storage of the per-

ceptron as follows.

Hðm; nÞ ¼ PðffX1;X2; . . . ;Xmg is homogeneously linearly separable gÞ;
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where m, n 2 N ¼ f1; 2; . . .g. When S ¼ fX1;X2; . . . ;Xmg is in general position, that

is, each group of fXi1 ; . . . ;Xikg � S are linearly independent if k � n, Cover [14]

proved that

Hðm; nÞ ¼ Cðm; nÞ ¼ 1

2m�1

Xn�1

k¼0

m� 1
k

� �
:

Moreover, Cover [14] further proved that

lim
n!1

Cð2nð1 þ eÞ; nÞ ¼ lim
n!1

1

2p

Z �2neffiffiffiffiffiffiffiffiffi
2nð1þeÞ

p

�1
e
�t2

2 dt ¼ 0; ð22Þ

lim
n!1

Cð2nð1 � eÞ; nÞ ¼ lim
n!1

1

2p

Z �2neffiffiffiffiffiffiffiffiffi
2nð1þeÞ

p

�1
e
�t2

2 dt ¼ 1; ð23Þ

where e > 0, which leads to the well-known result that the asymptotic memory

capacity of the perceptron with an input X 2 Rn is 2n.

Furthermore, Budinich [15] gave the following inequality:

Cðm; nÞ � 2

2m
2n

m

� �X
pm

Xn�1

k¼1

akðpm; nÞ � Hðm; nÞ � Cðm; nÞ; ð24Þ

where pm ¼ S ¼ fX1;X2; � � � ;Xmg and akðpm; nÞ is the number of groups of k sam-

ples in pm which are linearly dependent. Clearly, for k � n� 1,
1

m
k

� �
2n

m

� �P
pm

akðpm; nÞ is just the probability of the event that k samples out of

the m are linearly dependent. It is certainly not larger than that of the event that a

random pm is not in general position.

For m > n, we further define

P ¼ fpm � Bn : pm is not in general position:g
P1 ¼ fpn � Bn : pn is linear dependent:g

Since for any pm 2 P; there exists a pn 2 P1 with pn � pm, we have

jPj � jP1j
2n � n
m� n

� �
: ð25Þ

Suppose that Fm is the event that pm is not in general position. It follows from

Equation (25) that

PðFmÞ ¼
jPj
2n

m

� � �
jP1j

2n � n
m� n

� �
2n

m

� � ¼ P1

2n
2 �

2n
2 2n � n

m� n

� �
2n

m

� � :

By the following facts
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2n

m

� �
¼ 2nm

m!
xm;

2n � n
m� n

� �
¼ 2nðm�nÞ

ðm� nÞ! �
xmþn

xn
;

and since xl >
1ffiffi
2

p when l is large enough, we have for large n

2n
2 2n � n

m� n

� �
2n

m

� � ¼ m!

ðm� nÞ! �
xmþn

xnxm
< n!

m

n

� �
� 1

xnxm

< 2ðn!Þ
m

n

� �
: ð26Þ

Thus, we have

PðFmÞ ¼
jPj
2n

m

� � � jP1j
2n

2 � 2ðn!Þ m
n

� �
:

Since j
Q

1 jn! � jEnj; where jEnj denotes the number of the matrices subject to the

event En, we further have

PðFmÞ ¼
j
Q

j
2n

m

� � � jEnj
2n

2 � 2
m
n

� �
¼ PðEnÞ � 2

m
n

� �
: ð27Þ

Because 1
2m

Pn�1
k¼1

m
k

� �
� 1, it follows from Eq.(24) and Eq.(26) that

Cðm; nÞ � jEnj
2n

2 � 4
m
n

� �
� Hðm; nÞ � Cðm; nÞ: ð28Þ

We are now ready to prove the main theorem.

Proof of Theorem 1. For a GHN N ¼ ðW; 0Þ, neuron i can be considered as a

perceptron with a weight vector Wi ¼ ½wi1; . . . ;wi;i�1;wi;iþ1 . . . ;wi;n�T 2 Rn�1, i.e., the

ith row of W except the diagonal element wi;i a zero threshold and an input vector

XðiÞ ¼ ½x1; . . . ; xi�1; xiþ1; . . . ; xn�T based on the input X of the network. Then, a state

X ¼ ½x1; x2; . . . ;xn�T of the network is stable if xi ¼ SgnðWT
i XðiÞÞ for i ¼ 1; 2; . . . ; n.

For a sample set S ¼ fX1;X2; . . . ;Xmg, it is storable if and only if for each i there

exists a weight vector Wi such that SgnðWT
i X

lðiÞÞ ¼ xl;i for l ¼ 1; 2; . . . ;m, where

XlðiÞ ¼ ½xl;1; . . . ; xl;i�1; xl;iþ1; . . . ; xl;n�T. For convenience, we let Bi is the event that

fX1ðiÞ;X2ðiÞ; . . . ;XmðiÞg can be classified according to x1
i ; x

2
i ; . . . ; x

m
i , respectively, by

the perceptron with a weight vector Wi (i.e., neuron i). Then, we have

Pðm; nÞ ¼ P
\n
i¼1

Bi

 !
ð29Þ
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For clarity, we let Piðm; nÞ ¼ PðBiÞ for i ¼ 1; 2; � � � ; n. It is clear that

Piðm; nÞ ¼ Hðm; n� 1Þ. Thus, PðB1Þ ¼ � � � ¼ PðBnÞ. According to Cover’s result [14]

or directly from Equations (17) and (28), we have for e > 0

lim
n!1

Pið2ðn� 1Þð1 þ eÞ; nÞ ¼ lim
n!1

Hð2ðn� 1Þð1 þ eÞ; n� 1Þ ¼ 0: ð30Þ

Because Pðm; nÞ ¼ Pð
Tn

i¼1 BiÞ � PðBiÞð1 � i � nÞ, from Equation (29) we further

have

lim
n!1

Pð2ðn� 1Þð1 þ eÞ; nÞ ¼ 0: ð31Þ

On the other hand, we have

Pðm; nÞ ¼ Pð
\n

i¼1
BiÞ ¼ 1 � Pð

[n

i¼1
�BiÞ � 1 �

Xn

i¼1
Pð �BiÞ

¼ 1 � nPð �B1Þ ¼ 1 � nð1 � P1ðm; nÞÞ ¼ 1 � nð1 �Hðm; n� 1ÞÞ: ð32Þ
Since

Hðm; n� 1Þ � Cðm; n� 1Þ � 4
m

n� 1

� �
PðEn�1Þ;

we further have

nð1 �Hð2ðn� 1Þð1 � eÞ; nÞÞ

� nð1 � Cð2ðn� 1Þð1 � eÞ; n� 1Þ þ 4
2ðn� 1Þ
n� 1

� �
ÞPðEn�1Þ

� nð1 � Cð2ðn� 1Þð1 � eÞ; n� 1ÞÞ þ 4n
2ðn� 1Þ
n� 1

� �
PðEn�1Þ:

From Equation (23), it can be easily observed that 1 � Cð2ðn� 1Þð1 � �Þ; n� 1Þ
attenuates to zero exponentially with 1

n. Certainly, 1 � Cð2ðn� 1Þð1 � �Þ;
n� 1Þ ¼ Oð1

nÞ. We then get

lim
n!1

nð1 � Cð2ðn� 1Þð1 � �Þ; n� 1ÞÞ ¼ 0: ð33Þ

According to Stirling formula, we have

lim
n!1

n
2n
n

� � ffiffiffi
n

p

r
22n ¼ 1:

�

Then, it follows from Lemma 6 that

lim
n!1

n
2ðn� 1Þ
n� 1

� �
PðEn�1Þ � K lim

n!1
f
ffiffiffi
n

p

r
22nð16pn�1Þn�2g ¼ 0: ð34Þ

where K is a positive constant.

Based on Equations (33) and (34), we have limn!1 nð1 �Hð2ðn� 1Þ�
ð1 � �Þ; nÞÞ ¼ 0. Therefore, it follows from Equation (32) that

lim
n!1

Pð2ðn� 1Þð1 � �Þ; nÞ ¼ 1: ð35Þ
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Summing up the results of Equations (31) and (35), we finally have that the

asymptotic memory capacity of the GHN under the perceptron learning scheme is

2ðn� 1Þ.
The proof is completed (

5. Conclusion

We have presented a further analysis of the asymptotic memory capacity of the

GHN under the perceptron learning scheme. With a more accurate estimated

attenuating order of the probability of the event that a random binary matrix is

singular, we have proved that the asymptotic memory capacity of the GHN is ex-

actly 2ðn� 1Þ, where n is the number of neurons in the network. It not only has

significantly improved the existing results on the asymptotic memory capacity of the

GHN, but also shows that the GHN has great potentiality for associative memory.
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