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Feature extraction is an important processing procedure in texture classification. For feature extraction

in the wavelet domain, the energies of subbands are usually extracted for texture classification.

However, the energy of one subband is just a specific feature. In this paper, we propose an efficient

feature extraction method for texture classification. In particular, feature vectors are obtained by

c-means clustering on the contourlet domain as well as using two conventionally extracted features

that represent the dispersion degree of contourlet subband coefficients. The c-means clustering

algorithm is initialized via a nonrandom initialization scheme. By investigating these feature vectors,

we employ a weighted L1-distance for comparing any two feature vectors that represent the

corresponding subbands of two images and define a new distance between two images. According to

the new distance, a k-Nearest Neighbor (kNN) classifier is utilized to perform texture classification, and

experimental results show that our proposed approach outperforms five current state-of-the-art

texture classification approaches.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Texture classification is one of the fundamental issues in
computer vision and image processing. Various approaches for
texture feature extraction as well as classification have been
proposed during the last two decades [1–17], but the texture
analysis and classification problem remains difficult and needs
intensive research.

As a multiresolution analysis tool, the wavelet transform has
been widely used for texture classification, which can be divided
into model-based approaches and feature-based approaches.
In the model-based approaches, the used models include the
generalized Gaussian density (GGD) model [4], the bit-plane
probability (BP) model [7], the refined histogram (RH) [8], the
generalized gamma density ðGGDÞ model [9], and the like. These
models are all under the assumption that wavelet subband
coefficients follow some previously given parametric probability
distributions. Texture classification is further performed by utiliz-
ing the parameters in the models which are estimated according
to the subband coefficient. However, it can be found that for some
texture images the parameters of the given parametric distribu-
tion of wavelet subband coefficients is difficult to be estimated.

So, it is an alternative for us to utilize a nonparametric method to
model or cluster the coefficients.

On the other hand, in feature-based approaches, the total
energy of each high-pass wavelet subband is a commonly used
statistical feature for texture classification [11]. Moreover, the
local energy features in each high-pass subband can also be
extracted and used to perform texture classification [12,13].

Recently, the contourlet transform was developed by Do and
Vetterli [18] to get rid of the limitations of wavelets. Moreover, the
contourlet expansion can achieve the optimal approximation rate
for piecewise smooth functions with C2 contours in some sense [18].
Therefore, it is valuable to utilize the contourlet transform to
perform texture classification. Considering the advantage and
disadvantage of the two kinds of wavelet-based methods, we
attempt to combine nonparametric modeling with extracting fea-
tures from the contourlet domain to perform texture classification.

As well-known, a typical nonparametric modeling method is
to cluster the data in a given data set and represent them by the
converged cluster centers. Among clustering algorithms [19–24],
the c-means (or k-means) algorithm is a simple and popular
clustering algorithm [19–21]. However, its performance heavily
depends on the initial setting.

In this paper, by investigating the distribution of coefficients in
each contourlet subband, we propose an efficient feature extraction
approach for texture classification, which combines cluster features
obtained by a c-means clustering algorithm using a nonrandom
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initialization approach with conventional features extracted from
contourlet subbands. In particular, we use a c-means clustering
algorithm to cluster the contourlet coefficients, and the converged
cluster centers are served as the features to represent the contourlet
subband coefficients. Meanwhile, two conventional features repre-
senting the dispersion degree of contourlet subband coefficients are
also extracted. In this way, a feature vector is formed for each
contourlet subband by combining these two kinds of features
together. Then, we employ the weighted L1 metrics for measuring
the feature vectors. Finally, we utilize a k-Nearest Neighbor (kNN)
classifier based on the total distance obtained by summing up all the
weighted L1 metrics to perform the supervised texture classification,
and experimental results on large texture datasets reveal that our
proposed method outperforms five current state-of-the-art texture
classification methods.

The rest of the paper is organized as follows. Section 2
introduces the contourlet transform. Section 3 presents the new
texture classification method based on our proposed feature
extraction approach. Experimental results are conducted in
Section 4 to demonstrate the efficiency of our proposed feature
extraction approach for texture classification. Finally, we con-
clude briefly in Section 5.

2. Contourlet transform

The primary goal of the contourlet construction was to obtain a
sparse expansion for a typical image that is piecewise smooth [18].
Two-dimensional wavelets are only good at catching the point
discontinuities, but do not capture the geometrical smoothness of
the contours [25].

To get rid of the limitations of wavelets, the contourlet trans-
form was constructed by utilizing a double filter bank structure in
which at first the Laplacian pyramid is used to capture the point
discontinuities, and then a directional filter bank (DFB) is used to
link point discontinuities into linear structure [18]. Due to its
cascade structure accomplished by combining the Laplacian
pyramid with a DFB at each scale, multiscale and directional
decomposition stages in the contourlet transform are indepen-
dent of each other. Therefore, one can decompose each scale into
any arbitrary power of two’s number of directions, and different
scales can be decomposed into different numbers of directions.
Moreover, it can represent smooth edges with close to optimal
efficiency. More recent developments and applications on the
contourlet transform can be found in [25–27].

Fig. 1 shows an example of the contourlet transform on the
‘‘Lena’’ image. For the visual clarity, only two-scale decompositions

are shown. The image is decomposed into a lowpass subband and
16 bandpass directional subbands with 8 subbands at each scale.

3. New texture classification method

For a texture image, denoted by a matrix a0, we can decompose
it via the discrete contourlet transform into a set of coefficients,
which are also denoted by matrixes faL, cðliÞi,j g, i¼ 1,2, . . . ,L and
j¼ 1, . . . ,2li . Note that the indexes i and j specify the scale and
direction, respectively. L is the number of scales, while the number
of DFB decomposition levels varies with the scale i, being denoted by
li. For simplicity, we set the number of DFB decomposition levels at
each scale as 3 (li ¼ 3, i¼ 1,2, . . . ,L), that is, the number of direc-
tional subbands at each scale is 8.

For L-scale contourlet decompositions of a given texture
image, the average amplitude of the coefficients increases almost
exponentially with the scale i (i¼ 1,2 . . . ,L). So, to uniformly
measure the contourlet coefficients at different scales, we reg-
ularize them by multiplying the factor 1=4i to those in the high-
pass directional subbands at the i-th scale, and multiplying the
factor 1=4L to those in the low-pass subband. For the sake of
clarity, the contourlet coefficients in the following will represent
the regularized coefficients without explanation.

3.1. Proposed feature extraction method

Feature extraction is very important for the purpose of pattern
recognition such as texture classification [11–14], handwritten
numeral recognition [25], face recognition [28–31], and so on. In
this subsection, some important features are extracted from
contourlet subbands for texture classification.

3.1.1. Features extracted by c-means clustering

Consider a particular contourlet subband with N coefficients
S¼ fx1,x2, . . . ,xNg. As an important approach in data mining,
clustering analysis has its advantage in mining valuable informa-
tion from a number of data. Actually, many statistical methods
need to model the data by a previously assumed parametric
distribution. However, clustering analysis does not need any
parametric assumption. In this paper, we attempt to mine the
essential information by employing a clustering algorithm and
define some features representing the contourlet subband for
classification. Various algorithms have been established to solve
the clustering problem [19–24]. Among them, the c-means algo-
rithm is a simple and popular one. Its idea is to partition this data
set into J disjoint subsets (clusters) C1, . . . ,CJ such that a clustering
error criterion is optimized [20]. The criterion is the sum of the
squared Euclidean distances between each data point xi and the
centroid fj (cluster center) of the subset Cj which contains xi,
which is called clustering error and given by

Eðf 1, . . . ,f JÞ ¼
XN

i ¼ 1

XJ

j ¼ 1

ICj
ðxiÞJxi�f jJ

2, ð1Þ

where ICðxÞ ¼ 1 if xAC and 0 otherwise.
However, the c-means clustering algorithm suffers from the

serious drawback that its performance heavily depends on the
initial setting [19]. For the purpose of clustering on the contourlet
subband with N coefficients, we let d¼ ½N=2J�, where ½z� denotes
the largest integer less than or equal to z. In this way, we divide
the N coefficients into J subsets:

½ ~x1, ~x2dþ1Þ,½ ~x2dþ1, ~x4dþ1Þ, . . . ,½ ~x2ðJ�1Þdþ1, ~xNÞ�, ð2Þ

where ~xi denotes the i-th order statistic of the coefficient sample
S¼ fx1,x2, . . . ,xNg. Moreover, the centers of these subsets, fj,

Fig. 1. Contourlet transform of the ‘‘Lena’’ image. The image is decomposed into a

lowpass subband and 16 bandpass directional subbands with eight subbands at

each scale. Small coefficients are colored black while large coefficients are
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j¼ 1,2, . . . ,J, can be denoted approximately by

f j ¼ ~xtj
, ð3Þ

where tj ¼ ð2j�1Þnd. In this way, we can initialize the cluster
center fj using Eq. (3), j¼ 1,2, . . . ,J. Note that the initial values
obtained by this scheme are determinative and unique, which can
be seen clearly according to the definition of order statistic. The
main reason that we adopt this initialization scheme rather than a
random initialization scheme is to avoid the fluctuation and
uncertainty of clustering and classification performance caused
by the randomness of initial starting condition. Moreover, it has
been verified by our experimental results that our proposed
initialization scheme performs better than or as well as the
random initialization scheme when they are used in the c-means
clustering and further texture classification.

It is important to note that the converged cluster centers
f 1, . . . ,f J are real numbers. We sort and denote them still by
f 1, . . . ,f J for convenience. Obviously, the vector

F1
¼ ðf 1, . . . ,f JÞ ð4Þ

can be used as the features to represent the contourlet subband
coefficients. Fig. 2 shows two textures ‘‘Leaves.0003’’ and
‘‘Leaves.0012’’ obtained from [32], which are very homogeneous.
After having implemented the 4-level contourlet transform with
eight directional subbands at each scale, we can extract features
from each of the 33 resulting contourlet subbands with the above
c-means clustering algorithm. Fig. 3 plots the histograms of
coefficients in the j-th directional subbands ci,j and c0i,j at the
i-th scale corresponding to the two texture images, respectively,
where i¼4 and j¼1.

Generally speaking, Gaussian mixture model (GMM) [33–38]
can be used to model the samples whose distribution is unknown.
However, for the contourlet subband coefficients corresponding
to these two images, the usually used learning algorithms [33–38]
for Gaussian mixtures do not converge well in such complicated

cases. To get rid of this difficulty, we here adopt the c-means
clustering algorithm to extract features. In fact, the learning
algorithm for GMM makes a soft assignment based on the
posterior probabilities. However, the c-means algorithm performs
a hard assignment of data points to clusters, in which each data
point is associated uniquely with one cluster. So we adopt the
c-means algorithm to cluster the contourlet subband coefficients.
The clustered feature values of the two texture images are shown
in the horizontal axises of Fig. 3(a) and (b), respectively. As seen
from Fig. 3, although the two images are very homogeneous and
confusing, the clustered features of them are different. So, the
clustered features we extract by clustering have good discrimina-
tion in recognizing texture images.

3.1.2. Conventional features

As the clustered features may not suffice for texture classifica-
tion, certain important conventional features can be added. For
the clustered features extracted by c-means clustering, the
obvious extension is the measurement of the dispersion degree
of subband coefficients, which is equivalent to the dispersion
degree of the cluster centers in some sense. In fact, the clustered
features are the first-order ones. From a statistical point of view,
the second-order statistics, (sample) variance and second-order
origin (sample) moment (Norm-2 energy), can represent the
dispersion degree of sample. So we utilize these two statistics
to measure the dispersion degree of subband coefficients, which
are defined as

Variance:

f Jþ1 ¼
1

N

XN

n ¼ 1

ðxn�xNÞ
2, ð5Þ

where

xN ¼
1

N

XN

i ¼ 1

xn

and
Norm-2 energy:

f Jþ2 ¼
1

N

XN

n ¼ 1

x2
n, ð6Þ

respectively. So, we can obtain the feature vector F for the
contourlet subband, which is given by

F ¼ ðf 1, . . . ,f J ,f Jþ1,f Jþ2Þ: ð7Þ

The workflow chart for our proposed feature extraction
method is shown in Fig. 4. Next we shall give the discrepancy
measurement between any two feature vectors.Fig. 2. The textures ‘‘Leaves.0003’’ and ‘‘Leaves.0012’’.
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3.2. Discrepancy measurement of feature vectors

Once the feature vectors of all subbands are obtained for every
texture, we can compare the corresponding feature vectors of two
subbands using a discrepancy metric. According to the character-
ization of the feature vectors, we use the Relative-L1 (abbreviated
as RL1) distance as the discrepancy metric of two feature vectors
F1 and F2, which is given by

RL1ðF
1,F2
Þ ¼

Xt

j ¼ 1

9f 1
j �f 2

j 9

1þ9f 1
j 9þ9f

2
j 9

, ð8Þ

where F1
¼ ðf 1

1, . . . ,f 1
t Þ, F2

¼ ðf 2
1, . . . ,f 2

t Þ and t¼ Jþ2. Note that the
RL1 distance is a weighted L1 one.

Given two images I1 and I2, to measure the distance between
them, we first perform an L-scale contourlet transform on each of
them and obtain M contourlet subbands for each image. For
clarity, they are denoted as ðBI1

1 , BI1

2 , . . . ,BI1

MÞ and ðBI2

1 , BI2

2 , . . . ,BI2

MÞ,
respectively, where M¼ 8Lþ1 Then, the distance between the
two images is defined as the total distance (TD) of all the
corresponding RL1 ones, which is given by

TDðI1,I2Þ ¼
XM

t ¼ 1

dt , ð9Þ

where dt ¼ RL1ðF
1
t , F2

t Þ is the RL1 distance between the two feature
vectorsÞand FÞ¼ . . . ,
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To investigate the sensitivity of the cluster number J to
classification performance, Fig. 6(a)–(e) summarize the classifica-
tion performance of CSCþTD on Set-1 with J being 1,2 . . . ,5 when
the number of the decomposition scales is 1,2 . . . ,5, respectively.
As seen from them, the ACAR of CSCþTD with each value of J

increases monotonically with the number of training samples for
each value of L. The ACAR of CSCþTD with J¼3 is highest among
those of CSCþTD with the five values of J for L¼ 1,2, . . . ,4
although it is not evident for L¼5. Certainly, it is also observed
that the ACARs of CSCþTD (J¼4) and CSCþTD (J¼5) are only
slightly less than that of CSCþTD (J¼3), especially for L¼ 3, . . . ,5.
For the statistical viewpoint, it seems that we should select the
cluster number J from the three numbers (3–5). However, for the
pattern recognition purpose, we should select the recognition
approach that extracts the less number of feature vectors whose
dimension is smaller if two approaches have the almost same
recognition performance. In our proposed method, the smaller the
cluster number, the smaller the dimension of the feature vector
for each contourlet subband we utilize for texture classification.
So the optimal selection of J is J¼3.

The classification performance of CSCþTD (J¼3) with L¼

1,2, . . . ,5 are summarized in Fig. 7. It is clear that CSCþTD
(L¼ 4,J¼ 3) and CSCþTD (L¼ 5,J¼ 3) almost have the same
classification performance, and both of them outperform CSCþTD
(J¼3) with the smaller number of the contourlet decomposition
scales. Due to that the number of feature vectors for L¼4 is less
than for L¼5, we consider that the optimal selection of L should
be L¼4. As seen from Fig. 7, the ACAR of CSCþTD with the
optimal parameter values (k¼ 1, J¼ 3, L¼ 4) is 99.92%, which
shows the efficiency of our proposed CSCþTD. Further compar-
isons with other methods will be given in the next subsection,
and these optimal values of the three parameters will also be used
in the following experiments.

4.2. Comparisons with other methods

We further compare CSCþTD with the other current state-of-
the-art methods of texture classification on different texture

image sets. Actually, three additional texture image sets are used,
denoted by Set-2, Set-3, Set-4, respectively. Set-2 consists of 80 grey
640�640 images (shown in Fig. 8) from the Brodatz database [39],
which was also used in [16]. Set-3 consists of 30 texture images of
size 512�512 (shown in Fig. 9), which were used in [14] and can be
downloaded from the VisTex database [32]. Set-4 consists of 50
VisTex texture images (shown in Fig. 10). In the experiments on Set-
2, each image is divided into sixteen 160�160 nonoverlapping
patches, and thus there are totally 1280 samples available. For both
Set-3 and Set-4, each image is divided into 16 128�128 nonover-
lapping patches, and thus there are totally 480 and 800 samples
available, respectively. For the purpose of supervised classification
on each of these three texture image datasets, we select eight
training patches from each of the texture classes and let the other
patches for test.
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Fig. 6. The classification performance of our proposed CSCþTD with respect to the number of training samples for the different numbers of the contourlet decomposition

scale: (a) L¼1; (b) L¼2; (c) L¼3; (d) L¼4; (e) L¼5.
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To demonstrate the efficiency of our proposed CSCþTD, we
compare it with three current state-of-the-art methods of texture
classification. The first is the method based on the singular value
decomposition (SVD) and the Kullback–Leibler distance (KLD)
(referred to as SVDþKLD) [12]. The second one is the method
based on the bit-plane probability (BP) signature and the mini-
mum distance (MD) classifier(referred to as BPþMD) [7]. The
third method is based on the local binary pattern (LBP) (referred
to as LBP), which was proposed in [15].

Table 2 reports the classification results of these methods.
As seen from it, for the classification experiments on Set-2,
CSCþTD performs better than these three methods by at least
2.06%. To provide additional justification of our proposed method,
we compare CSCþTD with the texture classification method
based on the local pattern and Gaussian mixture model (referred
to as LPþGMM) in [16]. CSCþTD outperforms LPþGMM by 3.37%.
On Set-3, CSCþTD performs better than these three methods by at

least 2.12%, and outperforms the ridgelet method [14] by 2.46%.
Moreover, CSCþTD performs better than these three methods by at
least 2.38% on the larger VisTex texture dataset Set-4.

To compare intensively with the three methods (SVDþKLD,
BPþMD, LBP), the classification accuracy rates of all 30 texture
classes in Set-3 are computed and shown in Table 3. It can be
observed that our method performs better than or as well as the
other three methods for 28 texture classes. CSCþTD arrive 100%
classification accuracy rate on these 28 texture classes, which is
larger than the number of the texture classes recognized with no
error by LBP, 18, and clearly exceeds those by the other methods.
There are only two texture classes that cannot be recognized
without error. They are given in Fig. 11. This shows the super-
iority of contourlet in capturing directional information. As far as
the ACAR for the whole dataset, the mean of the ACARs for all
classes, is concerned, our proposed CSCþTD outperforms the
three methods by 2.12%–58.08%.

4.3. Discussions on computational cost

All the experiments in this paper have been implemented on a
workstation with Intel(R) Core(TM) i5 CPU (3.2 GHz) and 3G RAM in
Matlab environment. The number of training samples used in the
experiments is 8. Table 4 reports the time used for texture
classification for the four methods (CSCþTD, LBP, BPþMD, and
SVDþKLD). As seen from Table 4, the time for texture classification
(TTC) of CSCþTD for the 30 texture dataset is 80.27s, which is less
than the TTC of LBP and BPþMD, especially BPþMD. Although
SVDþKLD is faster than our method, the ACAR of SVDþKLD is only
41.17%. In the CSCþTD method, the most costly part is the
clustering process. Our proposed CSCþTD method will be more
faster if a more efficient clustering algorithm can be used in the
clustering process.

In summary, our proposed CSCþTD performs better than five
current state-of-the-art texture classification methods (LPþGMM,
Ridgelet Method, SVDþKLD, BPþMD, and LBP) on the classification

Fig. 8. 80 Brodatz texture images in Set-2.

Fig. 9. 30 VisTex texture images in Set-3.

Fig. 10. 50 VisTex texture images in Set-4.

Fig. 11. Two textures of Set-3 that cannot be recognized without error by our

proposed CSCþTD. From left to right: (a) Bark.0006 and (b) Brick.0005.

Table 2
The average classification accuracy rates (%) of the six methods on the three

datasets.

Methods Set-2 Set-3 Set-4

LPþGMM [16] 93.44 n.a. n.a.

Ridgelet method [14] n.a. 96.79 n.a.

SVDþKLD [12] 49.2271.85 41.1773.31 36.3572.14

BPþMD [7] 88.1671.03 96.7970.62 79.5371.26

LBP [15] 94.7571.02 97.1370.80 83.5771.09

CSCþTD 96.8170.44 99.2570.38 85.9571.50

Y. Dong, J. Ma / Neurocomputing 116 (2013) 157–164162
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accuracy rate. The main reason is that CSCþTD utilizes the
contourlet transform to decompose texture images and efficiently
extracts the feature vectors representing the distribution char-
acterizations of contourlet subband coefficients. As with the TTC,
SVDþKLD is the more efficient than CSCþTD, but its ACAR is
unsatisfactory. If we take into account the TTC and ACAR, the
results clearly show that our proposed CSCþTD outperforms
other methods.

5. Conclusions

In this paper, we have investigated the texture classification
problem and established a novel texture classification method via
nonparametric modeling through c-means clustering on the
contourlet domain as well as extracting two conventional features
that represent the dispersion degree of coefficients from contour-
let subbands. According to the weighted L1-distance between
feature vectors, a new distance between two images is defined,
with which a k-nearest neighbor classifier is utilized to perform
supervised texture classification. The various experiments have
shown that our proposed method significantly improves the
texture classification accuracy in comparison with five current
state-of-the-art texture classification methods.
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