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The Object Perceptron Learning Algorithm on Generalised
Hopfield Networks for Associative Memory*

J. Ma
Institute of Mathematics, Shantou University, Shantou, Guangdong, P. R. China

We present a study of generalised Hopfield networks
for associative memory. By analysing the radius of
attraction of a stable state, the Object Perceptron
Learning Algorithm (OPLA) and OPLA scheme are
proposed to store a set of sample patterns (vectors)
in a generalised Hopfield network with their radii
of attraction as large as we require. OPLA modifies
a set of weights and a threshold in a way similar
to the perceptron learning algorithm. The simulation
results show that the OPLA scheme is more effective
for associative memory than both the sum-of-outer
produce scheme with a Hopfield network and the
weighted sum-of-outer product scheme with an
asymmetric Hopfield network.
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1. Introduction

Associative Memories (AMs) have been used for
information storage and recall in many applications.
Considerable effort has been devoted to the study
of AMs. The Hopfield network is an important
associative memory model [1], and as proposed in
1982, the sum-of-outer product scheme was applied
to store sample patterns. Hopfield demonstrated by
computer simulation that a network withn neurons
can store about 0.15n patterns in the form of its
stable states. It is now well known that the memory
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capacity of a Hopfield network withn neurons is
n/(2 logn) patterns, if exact recall is required [2];
and the memory capacity is about 0.15n if a little
noise is permitted [3].

The Hopfield network is a single layer recurrent
network of n bipolar (or binary) neurons uniquely
defined by (W,u), where W is a symmetric zero-
diagonal real weight matrix, whileu is a real thres-
hold vector. When the weight matrix is changed to
an asymmetric and zero-diagonal one, we usually
call the network anasymmetricHopfield network.
In this paper, we define a generalised Hopfield
network as a network with a general (asymmetric
or symmetric) zero-diagonal weight matrix. Here-
after, we refer to the Generalised Hopfield Network
as GHN.

As a dynamical system, the GHN can also have
similar content-addressable memory characteristics
to the Hopfield network, especially in randomly
asynchronous mode [4]. Therefore, we can apply
this kind of neural network to associative memory.
Given a sample set} 5 { X1,X2,%,Xm} which con-
sists of m different sample patterns (vectors) in
{ 21,1}n, where

Xj 5 [xj,1,xj,2,%,xj,n]T ( j 5 1,2,%,m) (1)

The key problem concerning the use of a GHN as
an associative memory is how to construct its matrix
W and u, which enables each of {X1,X2,%,Xm} to
be the stable state of the network with a possibly
large basin of attraction. Actually, several learning
schemes have already been constructed on GHNs
for associative memory [5–9]. Here, we summarise
them under two categories.

In one category, the sum-of-outer product scheme
is generalised to the weighted one by

wi, j 5 Om
k51

(1 2 dij)lixk,ixk,j (2)
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wheredij is a Kronecker function andli is a weight
value to Xi. In 1988, Gardner found a sufficient
condition betweenli and the sample patterns by
which the asymmetric Hopfield network (i.e. the
GHN) enables each sample pattern to be stable with
a nontrivial basin of attraction [5]. She also gave a
learning scheme to compute the requiredW and u
from the sample patterns under certain conditions.
Then Abbott and Kepler [6] improved the scheme
to be more efficient. In 1993 Wang et al [7] pro-
posed another scheme to computeli of Eq. (2)
directly using a linear neural network. This kind of
scheme has a long learning process. Even if the
sample patterns can be stable with a certain basin
of attraction in a GHN or linear network using these
schemes, their basins of attraction are still as unclear
as the desired patterns before the learning process
or the resulting ones after the learning process.

In the other category of learning scheme, the
spectral (or eigenvector) scheme [8] has been pro-
posed to constructW (assumingu 5 0) directly if
n is small. The perceptron learning scheme [9] was
also proposed to computeW and
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Definition 1. Suppose the GHN operates in
synchronous mode. We define the domain of attrac-
tion of X* as

D(X*) 5 { X P { 21,1}n:

X has the path of state transition to X*} (6)

When the GHN operates in synchronous mode
and starts from an initial stateX P D(X*), it will
evolve to X* with certainty.

Definition 2. Suppose the GHN operates in ran-
domly asynchronous mode. We define the domain
of attraction ofX* as

D(X*) 5 { X P { 21,1}n : X has only possible paths
of state transition to X*,
but the other stable
states or the random
state cycles} (7)

When the GHN operates in randomly asynchro-
nous mode and starts from an initial state, its state
will finally be attracted in a stable state, or a random
state cycle defined to be a hole of the network in
the state space in Ma [4]. A random state cycle of
the GHN is a set of states within which the state
of the GHN will always transit randomly when the
state of the GHN becomes any one of the set of
the states. Therefore, a random state cycle is closed
and like a hole in the ground. However, there may
exist a state cycle which is open to the stable states
or random state cycles. Here if the GHN starts from
an initial stateX P D(X*), there may exist an event
where the state of the GHN will always transit in
some open state cycle(s). But the probability of this
event is zero, as the time converges to infinity,
therefore the GHN will evolve toX* with a prob-
ability of one.

Since the attractive action should be equal in all
directions aroundX* for associative memory, we
further introduce the radius of the domain of
attraction.

For clarity, we first define thet-neighbourhood of
X* as

Nt(X*) 5 { X P { 21,1}n : dH(X,X*) #t} (8)

where dH(X,X*) is the Hamming distance between
X and X*.

Definition 3. Suppose thatD(X*) is the domain of
attraction of X*. If Nt(X*) , D(X*), we say that
Nt(X*) is a basin of attraction ofX*, and t is a
possible radius of attraction ofX*. The radius of
attraction of X* is defined as the greatest of the
possible radiuses of attraction ofX*.

Clearly, if we know D(X*), we certainly know

the radius of attraction ofX*. However, D(X*)
generally has a very complex structure, and there
does not exist any effective method to directly com-
pute it from (W,u). Although we cannot obtain the
radius of attraction ofX*, we will obtain a lower
bound of it in the following. This lower bound will
be called the absolute radius of attraction ofX*.

To study the radius of attraction of a stable state,
we now introduce the dominating vector function
as follows.

Definition 4. For a GHN N 5 (W,u), we define
E(X) as the dominating vector function of the net-
work N at any stateX P { 21,1}n by

E(X) 5 [E1(X),E2(X),%,En(X)]T (9)

where

Ei(X) 5 S On
j51

wi,jxj 1 ui Dxi (i 5 1,2,%,n)

(10)

By Eqs (3) and (5), we have

Ei(X*) 5 S On
j51

wi,jx* j 1 ui Dx*i $ 0 (i 5 1,2,%,n)

(11)

for the stable stateX*. Obviously, we have the
following theorem:

Theorem 1. For a GHNN 5 (W,u) and a stateX,
if the dominating vector function satisfies

Ei(X) . 0 (i 5 1,2,%,n) (12)

then X is a stable state of the GHN.

Proof. When Ei(X) . 0, Hi(X) 5 Sn
j51 wi,jxj 1 ui

and xi have the same sign. Therefore,

xi 5 Sgn(Hi(X)) (13)

BecauseEi(X) . 0 for i 5 1,2,%,n, Eq. (13) holds
for i 5 1,2,%,n. Therefore,X is a stable state of
the network.

By Theorem 1, we find that a state of the GHN
is stable if the dominating vector components are
all positive at this state. In fact this condition is not
necessary, only in a special case where some of the
dominating vector components become zero. There-
fore, the dominating vector function dominates
almost all the stable states of the GHN. Moreover,
it also dominates the radii of attraction of the stable
states, to a certain degree. We now discuss the
relation between the radius of attraction of a stable
state and the dominating vector components.

For the stable stateX*, we consider the dominat-
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ing vector componentEi(X*). In the case ofx*i 5
1, Ei(X*) 5 Sn

i51 wi,jx*j 1 ui $ 0, there may be two
kinds of wi,jx*j terms in the sum: the nonnegative
and negative ones. We assume that an error appears
in the jth component ofX* and the error patternX
5 [x*1,%,x*j21,2x*j,x*j11,%,x*n]T is input to the
GHN. If wi,jx*j , 0, thenwi,jxj 5 2wi,jx*j . 0. Thus,
the sum of Sn

j51 wi,jxj 1 ui . Ei(X*), so the evol-
ution of the network will always let theith compo-
nent of the state of the network be stable atx*i in
synchronous or randomly asynchronous mode.
Therefore, this kind of error is good for the attrac-
tion of the error pattern toX* on the ith component.
However, if wi,jx*j $ 0, the sum ofSn

j50 wi,jxj 1 ui

will be decreased toEi(X*) 2 2wi,jx*j. If we expect
that the ith component of the state of the network
will also be stable atx*i after the evolution(s) of
the network, it is sufficient thatEi(X*) 2 2wi,jx*j $
0, i.e. 2wi,jx*j # Ei(X*). In this way, when there are

more errors appearing in different components of
X*, the error pattern can also be attracted toX* on
the ith component ifEi(X*) is great enough. We
define a nonnegative real vectorC 5 [c1,c2,%,cn] as

ci 5 H wi,jx*j if wi,jx*j . 0

0 if wi,jx*j # 0
(14)

and rearrange its components to form another vector
C* 5 [c*1,c*2,%,c*n] in the following way:

c*1 $ c*2 $ % $ c*n (15)

Then the maximum number of errors which can be
corrected directly byEi(X*) in the ith component –
ri(X*) – can be computed by

ri(X*) 5 maxH j : Oj

k51

2c*k # Ei(X*) J (16)

If x*i 5 21, we only need to changeC as

Cj 5 H 2wi,j x*j if wi,jx*j , 0

0 if wi,jx*j $ 0
(17)

We define the absolute radius of attraction ofX –
r(X*) – by

r(X*) 5 min{r1(X*),r2(X*),%,rn(X*)} (18)

From the above discussion and definitions, it can
be easily verified that the GHN will evolve toX*
with certainty (probability one) when it starts from
any X P Nr(x*)(X*) in synchronous (randomly
asynchronous) mode. Thus, the absolute radiusr(X*)
is certainly a possible radius of attraction ofX*.
Therefore,r(X*) is a lower bound ofR(X*) – the
radius of attraction ofX*. We further have a lower
bound of the absolute radius of attraction ofX* by
the following theorem.

Theorem 2. Suppose thatX* is a stable state of
the GHN N 5 (W,u) and E is a positive real
number.b is also a positive real number and satisfies

b $ max{uwi, ju : i, j 5 1,2,%,n} (19)

If Ei(X*) $ E for i 5 1,2,%,n, then

r(X*) $ E/2b (20)

where x is the integer part of the real numberx.

Proof. Becauseb $ uwi,ju 5 uwi,jx*ju, then b $ c*i

(i 5 1,2,%,n):

ri(X*) 5 maxH j : Oj

k51

2c*k # Ei(X*) J
$ maxH j : Oj

k51

2b # E J 5 E/2b (21)

for i 5 1,2,%,n. Hence,r(X*) $ E/2b.

3. The OPLA and OPLA Scheme

In this section, we propose the OPLA and OPLA
scheme, and analyse the convergence of OPLA. We
assume that the sample set} 5 { X1,X2,%,Xm} is
given. For a reasonable associative memory, and
according to the above definitions and coding theory,
the radius of attraction ofXk should be equal to or
less thanh[k], which is computed by

h[k] 5 (min{dH(Xk,Xj) :

j 5 1,%,k 2 1,k 1 1,%,m} 2 1)/2 (22)

for k 5 1,2,%,m.
We further define h as the least one of

{ h[1],h[2],%,h[m]}, i.e.

h 5 min{h[1],h[2],%,h[m]} (23)

and refer toh as the maximum of possible uniform
radii of attraction of the sample set.

We now construct the OPLA scheme by improv-
ing the perceptron learning algorithm [10] to OPLA.
First, ti(0 # ti # h[i]) is selected as the object
(required) value of the radius of attraction of the
pattern Xk(k 5 1,2,%,m), and b is the expected
maximum of the absolute values of the weights.a
is a positive constant as the learning rate, and we
usually set is to be 0.1.d is also a positive number,
which is slightly greater than 0. For a set of the
object values (t1,t2,%,tm) of the radii of attraction
of the sample patterns, the OPLA for the weights
to and the threshold of neuroni is given as follows.
Here wi,i is always set to be zero.
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Step 1.Randomly select a set of initial weights
wi,1,%,wi,i21,wi,i11,%,wi,n, as well asui from
the interval [20.1,0.1].

Step 2. At time t, select a new sample patternXk

from [X1,%,Xm} and use it to train the net-
work.2

Step 3. Computeui by

ui 5 SgnS On
j51

wi,j xk, j 1 ui 2 xk,i(tkb 1 d)D
(24)

Step 4. The weights and threshold are modified as
follows. Let

Dwi,j 5 a(xk,i 2 ui)xk,j (25)

(j 5 1,%,i 2 1,i 1 1,%,n);

Dui 5 a(xk,i 2 ui) (26)

Then for j 5 1,%, i 2 1, i 1 1,%,n,
if u(wi,j 1 Dwi,j)u # b,wi,j is modified by
wi,j 1 Dwi,j. Otherwise, wi,j remains
unchanged.ui is always modified byui

1 Dui.
Step 5. If all weights wi,j and ui are unchanged for

every sample pattern, then stop; otherwise
let t 5 t 1 1 and go to Step 2.

When the learning process has converged, we
have the values of the weights to and the threshold
of neuron i. Having completed thesen learning
processes of OPLA fori from 1 to n, we obtain a
desired (W,u), i.e. a desired GHN. We refer to this
learning process as theOPLA schemeof object
{ t1,t2,%,tm}. If all object valuest1,t2,%,tm are equal
to an integert, we refer to it as the uniform OPLA
scheme of objectt. Moreover, the uniform OPLA
scheme of objectt 5 h is referred to as theuniform
OPLA schemeof maximum object.

According to Theorem 2, the trained GHN by the
OPLA scheme enables each sample patternXk to be
stable, with the radius of attraction being at least
tk. Therefore, the sample patterns really have reached
their object values of the radii of attraction, respect-
ively. Since the complexity of computation of OPLA
is almost the same as that of the perceptron learning
algorithm, we can thus implement OPLA as easily
as the perceptron learning algorithm. As to the
convergence of OPLA, it has been shown by a
number of experiments that, if there exists such
a GHN, (i.e. a set of (W,u)) which satisfies the
following inequalities

2Note that we can simply selectXk from X1 to Xm repeatedly in
the implementation.

uwi,ju # b; (i,j 5 1,2,%,n) (27)

Ei(Xk) 5



30 J. Ma

b. Therefore,lj(t) is 1 for j 5 1, %, i 21, i + 1,
%,n at the beginning stage of the learning process.
On further learning, somelj(t) may be zero forj
Þ i, but it will quickly be changed to 1 in the
sequential times, becauseDwi,j varies in the positive
and negative signs according to the selected samples.
So we can assume that the great majority oflj(t)
are 1 in the whole learning process of OPLA. In
other words,n 2 1 2 Sn

j51 lj(t) is much smaller
in comparison withn.

With these symbols, we have

wi,j(t 1 1) 5 wi,j(t) 1 lj(t)Dwij (33)

If the sample patternXk is selected at timet and ui

Þ xk,i, it is clear thatEi(Xk) cannot reach the object
value tkb 1 d. After the modification of OPLA,
we have

DEi(Xk) = aS On
j=1

lj(t) + 1 D (xk,i − ui)xk,i . 0 (34)

Therefore,Ei(Xk) has increased after this modifi-
cation.

On the other hand, the sequential modification by
the other sampleXk9 may cause a drawback for
Ei(Xk). In this case, we have

DEi(Xk) = aS On
j=1

lj(t)xk,jxk9,j + 1 D (xk9,i − ui)xk,i (35)

If DEi(Xk) is negative, a drawback is actually made.
We now compare the absolute values ofDEi(X(k))
in two cases. In fact, the sample patternsXk9 and
Xk should have enough Hamming distance in order
to be stored in a GHN. ThenuSn

j51xk,jxk9,ju will
become much smaller in comparison withn. Thus
uSn

j51lj(t)xk,jxk9,j 1 1u is also much smaller than
Sn

j51lj(t) 1 1. Therefore, the decrease ofEi(Xk) with
Xk9 is much smaller than the increase ofEi(Xk)
with Xk.

By above analysis,Ei(Xk) increases considerably
when Xk is selected for the modification, but it may
increase or decrease slightly when the other sample
patternXk9 is selected for the modification. We see
that the key mechanism of OPLA is that the modifi-
cation of the weights and threshold enablesEi(Xk)
to increase on average in a period ofm times to
the object value. Since the object value ofEi(Xk) is
fixed to be tkb 1 d, Ei(Xk) will reach or exceed it
in a finite number of times. SoEi(Xk) will increase
in m-time batches to the object value ifEi(Xk) is
lower than the object value. Furthermore, two or
more Ei(Xk) for different integers ofk can increase
to their object values in the same way synchron-
ously. When someEi(Xk) first reaches or exceeds
the object value, it may decrease slowly in sequen-

tial time. If it turns out to be lower than the object
value again, it will exceed the object value quickly
by the recent modification withXk. Thus, when
Ei(Xk) reaches or exceeds the object value at some
time, it will remain greater than the object value in
almost all the times. Therefore, allEi(Xk) for k 5
1, %, m will reach or exceed the object values,
respectively, at a certain time. That is, OPLA will
have converged to a desired set of weights and
threshold by this time.

We have made an analysis on the convergence
of OPLA when there exists a desired GHN under
a set of object values. Although the analysis is not
so strict as a mathematical proof, it is reasonable
and heuristic. Furthermore, it is consistent with the
empirical results.

4. The Simulation Results

In this section, several simulations are carried out
to evaluate the performance of OPLA or the OPLA
scheme. Our simulation experiments were under-
taken on a sample set of ten Arabic numerals
{0,1,2,3,4,5,6,7,8,9 } using the OPLA scheme and
uniform OPLA scheme. Ten sample patterns are
expressed by 73 7 pixies, as shown in Fig. 1.
Based on the Hamming distances between these
sample patterns, we have

(h[1],h[2],h[3],h[4],h[5],h[6],h[7],h[8],h[9],h[10])

5 (3,6,5,4,9,4,5,8,3,4)

and h 5 3. We take a GHN of 49 neurons and use
this sample set to train it for associative memory.
One simulation experiment consists of two pro-
cesses. In the first process, OPLA is applied to train
the network. In our experiments,b and d of OPLA
are always selected to be 100 and 1, respectively.
When this learning process ends with success, i.e.

Fig. 1. Sample patterns of ten arabic numerals
{0,1,2,3,4,5,6,7,8,9}.
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a GHN is obtained, we turn to the second process
by which the radii of attraction of the sample pat-
terns are estimated as follows.

For the sample patternXk(k 5 1,2, %, 10) and
the numberj(j 5 1,2, %,9) (Here 9 is the greatest
of { h[1],h[2],%,h[10]}), we randomly select 1000
initial patterns with a Hamming distance ofj to Xk.
These initial patterns can be considered asXk pol-
luted by j errors in somej components of the
pattern. Then the trained network operates in ran-
domly asynchronous mode with each initial pattern.
We check whether the network finally evolve toXk

or not. If the network evolves toXk for all 1000
polluted patterns, we are sure thatj is a possible
radius of attraction ofXk. In this way, we can
estimate the radius of attraction ofXk.

We first carry out a simulation experiment with
the uniform OPLA of objectt 5 2. The learning
process of the OPLA scheme is completed success-
fully with a network, and the simulation results are
listed in Table 1.

In Table 1 as well as two other tables in this
paper, Xk in the first row represents the sample
pattern, tk in the second row represents the object
value of the radius of attraction ofXk used in the
OPLA scheme;R(Xk) in the third row represents the
estimated radius of attraction ofXk on the trained
network; R(Xk)/h[k]% in the last row represents the
percentage of achieving the maximum reasonable
value of the radius of attraction ofXk – h[k] by
R(Xk). According to Table 1, we can find that the
trained network has the required function of associ-
ative memory. In fact, its function is even better
than what we expect. The radii of attraction of five
sample patterns are equal to 2 as we require, but
the radii of attraction of the other five sample
patterns is greater than 2. We see that the sample
patterns may have different actual radii of attraction
on the trained network, even if they have the same
object value of the radius of attraction in the OPLA
scheme. Moreover, the actual radius of attraction of
a sample patternXk seems to have a relation with
h[k]. Although we have obtained a desired network,
the percentage of achieving the maximum reasonable
value of radius of attraction is really low for some
sample patterns. To improve these results, we try to

Table 1. Simulation result of ten Arabic numerals with
the uniform OPLA of objectt 5 2

Xk 0 1 2 3 4 5 6 7 8 9
tk 2 2 2 2 2 2 2 2 2 2
R(Xk) 2 4 2 2 4 2 3 3 2 3
(R(Xk)/h[k])% 67 67 40 50 44 50 60 38 67 75

increase the object value of the radius of attractiont
or { t1,t2,%,t10}.

We then carry out a simulation experiment with
the uniform OPLA of maximum objectt 5 h 5 3.
The learning process cannot be completed success-
fully under this uniform object, but when the learn-
ing process is forced to stop after a large number
of iterations, we have still obtained a useful network
by which the radius of attraction of the first pattern
0 is 2 instead of the object value 3, and the radii
of attraction of the other sample patterns are either
equal to or greater than 3. Moreover, the radii of
attraction of some sample patterns is greater than the
corresponding radii of attraction listed in Table 1.

We further carry out a simulation experiment with
the OPLA scheme of object {t1 5 2, t2 5 4, t3 5
3, t4 5 2, t5 5 5, t6 5 3, t7 5 3, t8 5 5, t9 5 2,
t10 5 3}. The learning process is completed success-
fully, and the simulation results are listed in Table 2.

From Table 2, we find that six radii of attrac-
tion are greatly increased, and the percentages
(R(Xk)/h[k])% are improved to a satisfactory level.
The radius of attraction of sample pattern 7 is even
greater thanh[8] 5 8, which may be caused by the
fact that some sample patterns cannot have their
radii of attraction reach the corresponding object
values. From this experiment, we see that the OPLA
scheme with a set of carefully selected individual
object values for the sample patterns is more valu-
able for associative memory than the uniform OPLA
scheme. However, it is difficult to select an optimum
set of these individual object values. One possible
method is that we begin to let it be {h[1],%,h[m]}
and test it using the OPLA scheme. If the learning
process can be completed successfully, this set of
object values is just the optimum. Otherwise, we
slowly decrease the individual object values and test
it using the OPLA scheme until the learning process
is completed successfully. Then we have obtained
the optimum set of object values as well as the
network. In fact, {2,4,3,2,5,3,3,5,2,3} is optimum
for the sample patterns of ten Arabic numerals in
our experiments.

In the above experiments, the trained GHN are
operating in randomly asynchronous mode in the
second process. We now let the trained network

Table 2. The simulation result of ten Arabic numerals
with the OPLA scheme

Xk 0 1 2 3 4 5 6 7 8 9
tk 2 4 3 2 5 3 3 5 2 3
R(Xk) 2 6 3 2 8 4 3 9 2 3
(R(Xk)/h[k])% 67 100 75 50 89 100 75 113 67 75
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operate in synchronous mode, and estimate the radii
of attraction of the sample patterns in the same
way. We carry out a simulation on the trained GHN
of the above experiment to estimate the radii of
attraction of the ten sample patterns in synchronous
mode. The simulation results are listed in Table 3.

From the data listed in Table 3, we find that the
radii of attraction of the ten sample patterns are
really equal to or greater than the object values,
respectively. Moreover, four radii of attraction are
obviously improved, in comparison with the results
of the randomly asynchronous mode listed in Table
2. Therefore, the OPLA scheme is also useful and
effective for the GHNs in synchronous mode for
associative memory.

In comparison with the other methods, we also
carry out two simulation experiments on the ten
numeral patterns to check the performance of the
sum-of-outer product learning scheme with a Hop-
field network and the weighted sum-of-outer product
learning scheme with a GHN. In fact, it is shown
by one simulation experiment that the ten sample
patterns cannot all be stable on the Hopfield network
constructed through the sum-of-outer product learn-
ing scheme. By another simulation experiment, the
radii of attraction of the ten sample patterns are all
1 or 2 on the GHN trained through the weighted
sum-of-outer product learning scheme [6]. As a
result of the simulation experiments, the OPLA
scheme with a GHN is more effective for associative
memory than the sum-of-outer product learning
scheme with a Hopfield network. It is even more
effective than the weighted sum-of-outer learning
scheme with an asymmetric Hopfield network.

5. Conclusion

In this paper, we have analysed the radius of attrac-
tion of a stable state, and proposed the OPLA and
OPLA scheme on generalised Hopfield networks for
associative memory. By introducing the dominating
vector function, the absolute radius of attraction is
defined and a lower bound of it has been obtained.
By improving the perceptron learning algorithm to
OPLA, the OPLA scheme is constructed to store

Table 3. Simulation result of ten Arabic numerals in
synchronous mode with the OPLA scheme

Xk 0 1 2 3 4 5 6 7 8 9
tk 2 4 3 2 5 3 3 5 2 3
R(Xk) 2 8 6 2 8 5 5 9 2 5
(R(Xk)/h[k])% 67 133 120 50 89 80 100 113 67 120

each sample pattern, with its radius of attraction
being equal to or greater than an object value. A
heuristic analysis is made on the convergence of
OPLA when there exists a desired GHN under a
set of object values. The OPLA can be implemented
as easily as the perceptron learning algorithm, and
it has been shown by the simulation experiments
that the OPLA scheme is effective for associative
memory.
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