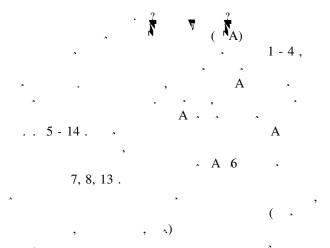
Contrast Functions for Non-circular and Circular Sources Separation in Complex-Valued ICA

?

Abstract—In this paper, the complex-valued ICA problem is studied in the context of blind complex-source separation. We formulate the complex ICA problem in a general setting, and define the superadditive functional that may be used for constructing a contrast function for circular complex sources separation. We propose several contrast functions and study their properties. Finally, we also discuss relevant issues and present the convex analysis of a specific contrast function.



): ($\mathbb{E}[\] = \mathbb{E}[\ + \] = \mathbb{E}[\] + \ \mathbb{E}[\].$ $\mathbb{E}\begin{bmatrix}2\\\end{bmatrix} = \mathbb{E}\begin{bmatrix}2\\\end{bmatrix} - \mathbb{E}\begin{bmatrix}2\\\end{bmatrix} + 2 \mathbb{E}\begin{bmatrix}2\\\end{bmatrix}$ 1. د - د (د): $var[] = \mathbb{E}[| - \mathbb{E}[]|^2] = \mathbb{E}[| |^2] - |\mathbb{E}[]|^2.$ $\mathbb{E}[_{i}]\mathbb{E}[_{j}^{*}].$ $\mathbf{z} = \begin{bmatrix} 1, \dots, n \end{bmatrix}$ $\mathbf{z}^{H} = \begin{bmatrix} * \\ 1, \dots, n \end{bmatrix}^{T} \equiv (\mathbf{z}^{*})^{T}$ (. ..), $\begin{array}{ccc} \mathbb{E}[\mathbf{z}], & & & & \operatorname{cov}[\mathbf{z}] \equiv \mathbb{E}[(\mathbf{z} - \mathbb{E}[\mathbf{z}])(\mathbf{z} - \mathbb{E}[\mathbf{z}])^H]; & & & , & pseudo-covariance matrix \end{array}$ $\operatorname{pcov}[\mathbf{z}] \equiv \mathbb{E}[(\mathbf{z} - \mathbb{E}[\mathbf{z}])(\mathbf{z} - \mathbb{E}[\mathbf{z}])^T].$ Definition 1: A , ()α, $(e^{j\alpha})$ (..., ()). secondorder circular
$$\begin{split} \mathbb{E}[] &= 0, \\ \mathbb{E}[^{2}] &= 0 \end{split}$$
(..,); $\mathbb{E}[\mathbf{z}\mathbf{z}^H]$ \mathbf{Z} strongly uncorrelated $\mathbb{E}[\mathbf{z}\mathbf{z}^{H}]$; z $\mathbb{E}[\mathbf{z}\mathbf{z}^T]$ \mathbf{z} × , z symmetric; \mathbf{z} $\mathbb{E}[\mathbf{z}\mathbf{z}^T] = \mathbf{0}.$ zero-1: mean 🦻 skewness() = $\mathbb{E}[||^3]/(\mathbb{E}[||^2])^{3/2}$, (1) $\texttt{kurtosis()} = \mathbb{E}[|\mid] - 2\left(\mathbb{E}[\mid\mid^2]\right)^2 - \left|\mathbb{E}[\mid^2]\right|^2.(2)$ Definition 2: (1, 2) = (1) (2);1 $\mathbf{2}$. . $(| _1|, | _2|) = (| _1|) (| _2|).$ $J(\mathbf{z})$ $\mathbf{z} \in \mathbb{C}^N,$ $\nabla J \equiv \frac{\partial J(\mathbf{z})}{\partial \mathbf{z}^*} = \frac{1}{2} \left(\frac{\partial J(\mathbf{z})}{\partial \mathbf{z}} + \frac{\partial J(\mathbf{z})}{\partial \mathbf{z}} \right) = 0.$, $\frac{\partial J(\mathbf{z})}{\partial \mathbf{x}} = \frac{\partial J(\mathbf{z})}{\partial \mathbf{z}} = 0.$

A;

$$\mathbb{E}[\mathbf{x}] = 0 \qquad \mathbb{E}[\mathbf{x}\mathbf{x}^H] = \mathbf{I},$$

strong-uncorrelating transform 10, 11.

. , mutual in-. , formation, <u>ہ</u> -. , ,

:

$$I(1, \dots, n) = \mathbb{E}_{p(\mathbf{y})} \left[\log \frac{(\mathbf{y})}{\prod_{i=1}^{n} (i)} \right]$$
$$= \int (\mathbf{y}) \log \frac{(\mathbf{y})}{\prod_{i=1}^{n} (i)} d\mathbf{y} \quad (4)$$
$$(4)$$

$$\begin{cases} 1, \dots, n \\ 1, \dots, n \end{cases}$$

$$I(1, \dots, n) = -\frac{1}{2} \log \left(\frac{(\mathbf{C}_{\mathbf{y}})}{\prod_{i=1}^{n} C_{ii}} \right) = -\frac{1}{2} \sum_{i=1}^{n} \log(\lambda_{i}) \quad (5)$$

$$C_{ij} = \mathbb{E}[(i - \mathbb{E}[i])(\frac{*}{j} - \mathbb{E}[\frac{*}{j}])], \quad \lambda_{i}$$

$$\mathbf{F} = \mathbf{O} \quad \mathbf{F} \quad \mathbf{C}_{\mathbf{y}} \mathbf{u} = \lambda \mathbf{\Lambda} \mathbf{u},$$

$$\mathbf{C}_{\mathbf{y}} = \operatorname{cov}[\mathbf{y}], \quad \mathbf{\Lambda} = \mathbf{V} \quad \{C_{11}, C_{22}, \dots, C_{nn}\}.$$

$$I(1, \dots, n) = \sum_{i=1}^{n} H(i) - H(\mathbf{y}),$$

$$H(\mathbf{y})$$

 $\{1,\ldots,n\}; \qquad H(\mathbf{y}) = H(\mathbf{x}) + (4),$ $\log | (\mathbf{W}) |,$

$$J(\mathbf{W}) = \sum_{i=1}^{n} H(i) - \log | \quad (\mathbf{W})| - H(\mathbf{x}), \tag{6}$$
$$H(\mathbf{x})$$

$$\nabla_{\mathbf{W}^*} J(\mathbf{W}) = \left(\mathbb{E}_{\mathbf{y}}[\psi(\mathbf{y})\mathbf{y}^H] - \mathbf{I} \right) \mathbf{W}^{-H}, \qquad (7)$$
$$\mathbf{W}^{-H} \qquad \mathbf{W}^{-1}.$$

 \mathbf{W}^{-H}

 \mathbf{W}^*

$$\psi(i) = -\frac{d\log(i)}{di} = -\frac{\frac{\partial p(y_i)}{\partial y_i} + \frac{\partial p(y_i)}{\partial y_i}}{(i)}$$
$$= \frac{\partial \log(i)}{\partial i} + \frac{\partial \log(i)}{\partial i}, \qquad (8)$$

7,13:

,

ľ

$$\Delta \mathbf{W} = \eta \left(\mathbf{I} - \psi(\mathbf{y}) \mathbf{y}^H \right) \mathbf{W}.$$
 (9)

Liouville's theorem,

. .

.

analyticity boundedness

9, 13, 14); ,
$$\psi(\cdot)$$
 (. ., 7 -

$$e_i = {}_i - {}_i ,$$

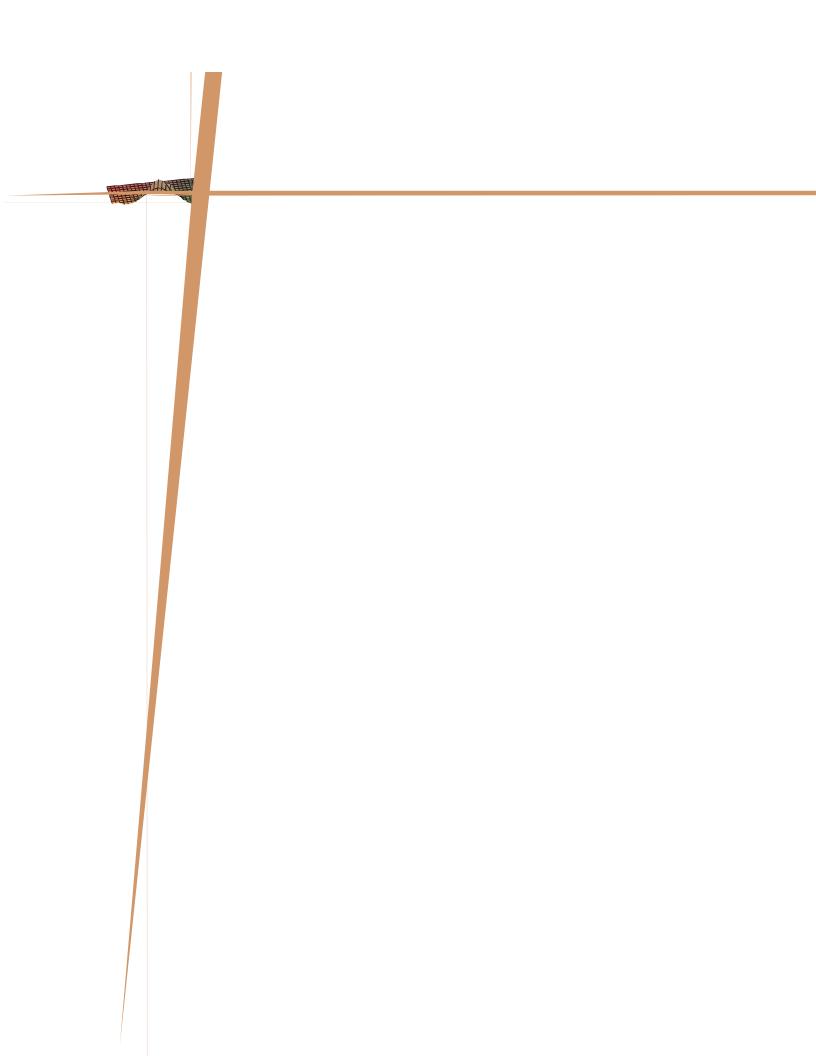
$$H({}_i | {}_i)$$

$$H(_{i} \mid _{i}) = H(_{i} - _{i}) \equiv H(e_{i})$$
(10)

$$H(_{i}) \equiv H(_{i}, _{i}) \cdot -$$

$$\begin{array}{rcl} H(\ _{i}) & = & H(\ _{i} \ | \ _{i} \) + H(\ _{i} \) \equiv H(-e_{i}) + H(\ _{i} \) \\ & = & H(\ _{i} \ | \ _{i} \) + H(\ _{i} \) \equiv H(e_{i}) + H(\ _{i} \) (11) \end{array}$$

$$e_i$$
 - $\boldsymbol{\mathcal{F}}$; $_i$ $_i$



$$= \sqrt{|||^{2} + ||_{2}|^{2} + 2||_{1}||_{2}|\cos(\theta_{1} - \theta_{2})}e^{j\theta},$$

$$\theta = \arctan \frac{1}{1} \frac{\theta_{1} + 2}{\theta_{1} + 2} \frac{\theta_{2}}{\theta_{2}},$$

$$|||_{1}| - ||_{2}|| \le ||| + ||_{2}|,$$

Theorem 3: Q (2-)

$$\hat{Q}(||) = Q(|||) = \sqrt{Q^{2}(||\cos\theta| + Q^{2}(||\sin\theta|)})$$

$$|||_{2} = ||e^{j\theta} (\theta \in \mathbb{R}),$$

$$\hat{Q}(||) = Q(|||) = \sqrt{Q^{2}(||\cos\theta| + Q^{2}(||\sin\theta|)})$$

$$|||_{2} = ||e^{j\theta_{2}} + \frac{1}{2} + \frac{1}{2}$$

 $\begin{array}{l} \begin{array}{c} _{1} + _{2} \\ Q \end{array} = \begin{array}{c} _{1} + _{2} ; \\ Q \end{array} , \\ \\ \begin{array}{c} Q^{2}(| \ |\cos \theta) \end{array} \geq \begin{array}{c} Q^{2}(| \ _{1}|\cos \theta_{1}) + Q^{2}(| \ _{2}|\cos \theta_{2}) \\ \\ Q^{2}(| \ |\sin \theta) \end{array} \geq \begin{array}{c} Q^{2}(| \ _{1}|\sin \theta_{1}) + Q^{2}(| \ _{2}|\sin \theta_{2}). \end{array}$

 $\overline{Q}^2() = Q^2(||) = Q^2(||\cos\theta) + Q^2(||\sin\theta)$ $\geq Q^{2}(|_{1}|) + Q^{2}(|_{2}|) = \overline{Q}^{2}(_{1}) + \overline{Q}^{2}(_{2}), \quad (20)$ 2-3 Lemma 1: $Q(\) \ (\ \in \mathbb{C})$ Q $\tilde{\mathbf{z}} \in \mathbb{R}^2;$, , () $Q(\boldsymbol{\alpha} + \tilde{\mathbf{z}}) = Q(\tilde{\mathbf{z}}) \ (\forall \boldsymbol{\alpha} \in \mathbb{R}^2);$ () <u>،</u> : . : $Q(\alpha \tilde{\mathbf{z}}) = |\alpha| Q(\tilde{\mathbf{z}}) \ (\forall \alpha \in \mathbb{R}).$ **Proof:** $\alpha =$ $|\alpha|e^{j0}$ (. ., . \Box A 15, А Theorem 4: 😭 $\begin{array}{c} Q \\ \geq 2, \end{array}$ $-\sum_{i=1}^{n}Q^{k}(\ _{i}) ~~ -\sum_{i=1}^{n}Q^{2k}(\ _{i})$ > 2 A = Q(j) = 0. A = Q(j) = 0.**Proof:** $= 2 \qquad \mathbf{R} = \mathbf{WA} \qquad , \qquad - 2 \qquad - 2$. $_{1}Q^{2}(_{j})$ $-\sum_{i=1}^{n}Q^{k}(i)$ Remark: $\underbrace{0}_{\bullet} : \mathbb{E}[\mathbf{x}\mathbf{x}^H] =$ $\mathbf{A}\mathbb{E}[\mathbf{s}\mathbf{s}^H]\mathbf{A}^H = \mathbf{U}\boldsymbol{\Sigma}\mathbf{U}^H,$ Σ U $1/2 \mathbf{T} \mathbf{T} H_{\mathbf{T}}$

$$\mathbf{D}^{-1/2}\mathbf{U}^{H}\mathbf{As} \equiv \tilde{\mathbf{A}s}, \qquad \tilde{\mathbf{A}} = \mathbf{D}^{-1/2}\mathbf{U}^{H}\mathbf{A}$$
$$\tilde{\mathbf{A}} = \mathbf{D}^{-1/2}\mathbf{U}^{H}\mathbf{A}$$
$$\mathbb{E}[\mathbf{z}\mathbf{z}^{H}] = \tilde{\mathbf{A}}\mathbb{E}[\mathbf{s}\mathbf{s}^{H}]\tilde{\mathbf{A}}^{H} = \mathbf{I};$$
$$\tilde{\mathbf{A}} \qquad \mathbb{E}[\mathbf{s}\mathbf{s}^{H}] = \mathbf{I}.$$

B. Examples of Contrast Functions

1) Range Function:	15	21,	٨
*	,	-	А,
	×		. A
*			
× × , · ·,		,	
		× ×	,

, 3) Rényi Entropy Function:

,
$$(0 < \in \mathbb{R})$$
:
 $H_k(i) = \frac{1}{1-} \log \left(\int (i)^k d_i \right).$ (26)
 $\rightarrow 1$, $= 2,$

2 *extension entropy*

$$\begin{split} H_2(_i) &= -\log \Big(\int_{-}^{} (_i)^2 d_{-i} \Big). \end{split}$$
 Jensen inequality, $H_2(_i) \leq H(_i).$

- , ĺ,

$$\begin{array}{c} 26,27 ; \overline{Q} \\ \vdots \\ 18 \\ \vdots \end{array}$$

4) Fisher Information Function: , ,

$$\mathbf{G} = \mathbb{E}\left[\psi(\)^2\right] = \mathbb{E}\left[\left(\frac{d\log\ (\)}{d}\right)^2\right],\tag{27}$$

,

15. . .

^

,

,

-

, , , , A -

- () 22 24 , • A. • A.
- $(\mathbf{W}). \times \mathbf{\mathcal{U}}(), \times \mathbf{\mathcal{U}}()$
- × × × × (...,) ×, × × · · · · · · ·

