
GSN: A Graph-Structured Network for Multi-Party Dialogues
Wenpeng Hu1,3,∗ , Zhangming Chan2,3,∗ ,

Bing Liu4,† , Dongyan Zhao2,3 , Jinwen Ma1 and Rui Yan2,3,†

1Department of Information Science, School of Mathematical Sciences, Peking University
2Center for Data Science, Peking University

3Institute of Computer Science and Technology, Peking University
4Department of Computer Science, University of Illinois at Chicago

{wenpeng.hu,zhangming.chan,zhaody,ruiyan}@pku.edu.cn, liub@uic.edu, jwma@math.pku.edu.cn

Abstract
Existing neural models for dialogue response gen-
eration assume that utterances are sequentially or-
ganized. However, many real-world dialogues in-
volve multiple interlocutors (i.e., multi-party dia-
logues), where the assumption does not hold as ut-
terances from different interlocutors can occur “in
parallel.” This paper generalizes existing sequence-
based models to a Graph-Structured neural Network
(GSN) for dialogue modeling. The core of GSN is a
graph-based encoder that can model the information
flow along the graph-structured dialogues (two-party
sequential dialogues are a special case). Experimen-
tal results show that GSN significantly outperforms
existing sequence-based models.

1 Introduction
Most existing dialogue systems are sequence-to-sequence
(seq2seq) models [Luan et al., 2016; Serban et al., 2016].
Since a dialogue generally lasts for several turns, a dialogue
session with multiple utterances can often be modeled as a
sequence of “sequences” (i.e., utterances). A representative
framework is the hierarchical recurrent encoder-decoder frame-
work HRED [Serban et al., 2016; Serban et al., 2017]. In
HRED, a recurrent neural network (RNN) encoder encodes
the tokens in each utterance, and a context RNN encodes
the temporal structure of the utterances. The entire dialogue
session is then organized as a sequence.

Although HRED is effective in modeling sequential dia-
logue sessions, it falls short for dialogues involving more than
two interlocutors. Table 1 shows a real conversation of 3 peo-
ple (pi) in the Ubuntu forum. Utterances 3 and 4 both respond
to utterance 2, represented as a graph in Figure 1. We see
that utterances can occur in parallel with each other. This is
beyond the expressive power of sequence models. This pa-
per generalizes sequence-based representation of two-party
dialogues to a graph-based representation of multi-party dia-
logues. Two-party sequence representation is a special case.

The proposed model, called GSN (graph-structured net-
work), models the information flow in a graph-structured di-
∗Equal Contribution.
†Contact Author

utterance 1 (p1): When the screen goes blank and won’t display any login page.
utterance 2 (p2): I don’t know if its a hardware problem or an os.
utterance 3 (p1): Did you do any upgrade recently?
utterance 4 (p3): If it works for one user it’s probably not a hardware issue.

Table 1: A real conversation in the Ubuntu forum.

Figure 1: Sequence and graph structures.

alogue. It is a general model and works well for both graph-
structured (multi-party) and sequential (two-party) dialogues.

The core of GSN is an utterance-level graph-structured
encoder (UG-E), which encodes utterances based on the graph
topology rather than the sequence of their appearances. En-
coding in UG-E is an iterative process. In each iteration, each
utterance (a node in the graph) i accepts information from all
its preceding utterances (nodes) j. UG-E is thus a general-
ization of existing sequential encoders, and can handle both
sequential and graph-based dialogues.

GSN also models the speaker information as the utter-
ances from the same speaker often have certain relationships.
Sequence-based methods in [Li et al., 2016; Zhang et al.,
2018b] also learn a user embedding and concatenate it to the ut-
terances. However, GSN builds implicit connections between
utterances from the same interlocutor to model the dynamic
information flow among his/her utterances with no explicit
user representation, which results in performance gains.

In summary, this paper makes the following contributions.
(1) It proposes a novel graph-structured network (GSN) to
model graph-structured dialogues. Sequence models are a
special case. The core of GSN is an utterance-level graph-
structured encoder (UG-E). To our knowledge, no work on
graph-based representation learning has been done for dia-
logues. (2) It formulates the linkage within the graph to model
users across dialogue sessions. Experiments show that GSN
can reach up to 13.85 BLEU points and improve the state-of-
the-art baselines by 2.27 (over 16%) BLEU points.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5010

Figure 2: Architecture of GSN.

2 Problem Formulation
Utterances in a structured dialogue session can be formulated
as a directed graph G(V,E), where V is a set of m vertices
{1, ...,m} and E = {ei,j}mi,j=1 is a set of directed edges.
Each vertex i is an utterance represented as a vector si learned
by an RNN. If utterance j is a response to utterance i, then
there is an edge from i to j with ei,j = 1; otherwise ei,j = 0.
Our goal is to generate the (best) response r̄ that maximizes
the conditional likelihood given the graph G:

r̄ = arg max
r

logP (r|G) = arg max
r

|r|∑
i=1

logP (ri|G, r<i) (1)

where P (r|G) is modeled with the proposed GSN.
This model can be further enhanced by considering the

speaker information, which introduces an adjacency matrix
U = {ui,j}mi,j=1, with ui,j = 1 if utterances i and j are from
the same speaker and j is after i; ui,j = 0 otherwise.

3 Graph-Structured Neural Network (GSN)
Figure 2 gives the overall framework of GSN, which has three
main components: a word-level encoder (W-E), an utterance-
level graph-structured encoder (UG-E), and a decoder. UG-E
is the core of GSN. To make Figure 2 concise, we omitted
some connecting lines and attentions. ‘⊗’ is a special multi-
plication operator, called the update operator (see below). ‘·’
denotes the mathematical matrix multiplication.

3.1 Word-level Encoder (W-E)
Given an utterance i = (wi,1, wi,2, ..., wi,n), W-E encodes it
into an internal vector representation. We use a bidirectional
recurrent neural network (RNN) with LSTM units to encode
each word wi,t, t ∈ {1, ..., n} as a hidden vector si,t:

−→si,t =
−−−−→
LSTM(e wi,t,

−−−→si,t−1)

←−si,t =
←−−−−
LSTM(e wi,t,

←−−−si,t−1)
(2)

where e wi,t is the embedding of word wi,t at time step t, −→si,t
is the hidden state for the forward pass LSTM and←−si,t for the

backward pass. We use their concatenation, i.e., [−→si,t;←−si,1],
as the hidden state si,t at time t. Note that each word in the
utterance indicates a state and a time step.

After encoding by W-E, a session with utterances {1, ...,m}
is represented with S = {si, i ∈ {1, ...,m}}, where si = si,n
is the last hidden state of W-E.

3.2 Utterance-level Graph-Structured Encoder
(UG-E)

The HRED model is a hierarchical sequence-based word and
utterance-level RNN. It predicts the hidden state of each utter-
ance at time step t by encoding the sequence of all utterances
appeared so far. Due to graph structures in real dialogues,
RNN is no longer suitable for modeling the information flow
of utterances. For instance, in Figure 1, HRED cannot handle
utterances 3 and 4 properly because they are not logically
sequential, but are “in parallel.” The UG-E comes to help.

UG-E & Information Flow Over Graph
To model a graph structure and its information flow, we pro-
pose a new RNN with dynamic iterations. Given a session S,
only the information in the preceding nodes/vertices i′ of each
node i will flow to i in an iteration (i.e., there is a directed
edge from each i′ to i). Then the state of node (utterance) i
is updated and the updated state is used in the next iteration.
In each iteration, all updates in a session are done in parallel.
In this way, the encoding information and gradients can flow
fully over the graph after some iterations. For instance, in the
session in Figure 1 (or 4(b)), although the information flow of
one iteration is from one node’s preceding nodes to the node,
the information in 1 can flow to 3 after two iterations.

UG-E’s basic operation is illustrated in Figure 3. For exam-
ple, given a session S = (s1, s2, s3, s4), in the l-th iteration,
the state of the i-th utterance can be calculated by:

sli = sl−1
i + η ·∆sl−1

I|i

∆sl−1
I|i =

∑
i′∈ϕ

∆sl−1
i′|i

(3)

where ϕ is the collection of preceding nodes of the current
node i in the direction of the information flow; ∆sl−1I|i is the

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5011

Figure 3: Information flow over the graph.

updating information, which is calculated by Eq. 5 below; η is
the updating coefficient indicating how much the new informa-
tion (from the preceding nodes) should be added to the current
state of the i-th utterance (node). Inspired by [Sabour et al.,
2017], we design an alpha-weight as the updating coefficient.
We use a non-linear “squashing” function (i.e., SQH(·)) to
give vectors with a small norm a weight close to α, but a large
norm a weight close to 1:

η = SQH(∆sl−1
I|i) =

α+ ||∆sl−1
I|i ||

1 + ||∆sl−1
I|i ||

(4)

where α > 0 is a hyperparameter (it should be greater than
0 to provide enough updating rate from the very beginning);
∆sl−1I|i is the updating information and is produced based on

the state of the current utterance sl−1i and the state of the
preceding utterance sl−1i′ :

∆sl−1
i′|i = sl−1

i′ ⊗ sl−1
i (5)

where ‘⊗’, the update operator, computes the updating infor-
mation. Inspired by the updating operation hidden in Gated
Recurrent Units (GRU) [Cho et al., 2014], ⊗ is defined as:

∆sl−1
i′|i = (1− xi) ∗ sl−1

i′ + xi ∗ h̃i

h̃i = tanh(W · [ri ∗ sl−1
i′ , sl−1

i])

xi = σ(Wx · [sl−1
i′ , sl−1

i]

ri = σ(Wr · [sl−1
i′ , sl−1

i]

(6)

where W, Wx and Wr are parameters to be learned. σ is the
sigmoid function.

Bi-directional Information Flow
In Figure 4(a), utterances 3 and 4 are two responses to utter-
ance 2. It is obvious that utterance 2 can help generate a better
state for utterance 4 and vice versa. However, the algorithm
introduced above only allows the information and gradients
to flow over the forward direction of the graph (as shown by
the purple arrows in Figure 4(a)). Hence the information in
utterance 3 cannot flow to utterance 4.

To tackle this problem, we propose a Bi-directional In-
formation Flow (BIF) algorithm, which also uses backward

(a) Bi-directional information flow. (b) Speaker information modeling.

Figure 4: Information flow.

information flow (as shown by the orange arrows in Figure
4(a)). In order to allow information to flow thoroughly, we
push the information to flow backward first and then forward
to ensure that the information can flow from one node to one’s
sibling nodes, i.e., backward to parent and forward to siblings.
In our example above, the information of utterance 3 can flow
to utterance 4 through utterance 2 after one backward flow and
one forward flow, illustrated in Figure 4(a).

Speaker Information Flow
Representing speaker information in the latent embedding
space is a popular method to enhance dialogue generation.
However, this method lacks the ability to model the speaker
and the dynamic changes of the speaker’s ideas in a given ses-
sion, especially when the speaker only speaks a few times
because there may not be enough data to train those em-
beddings to represent the speaker and the changes since this
method usually requires large data to train [Li et al., 2016;
Qian et al., 2017; Zhang et al., 2018b].

Since the changes in speaker utterances reflect the changes
in his/her mind, we propose to create an edge for every pair of
utterances from the same speaker following the chronological
order of the utterances. Thus there should be hidden edges
among all utterances of the same user (e.g., the edge from
utterances 1 to 3 in Figure 4(b)). We employ the same ⊗
operation to process the hidden edges, but due to different
parameters, we use ~ to denote it:

∆s′
l−1
i′|i = sl−1

i′ ~ sl−1
i (7)

We add the speaker information to Eq. 3:

sli =sl−1
i + η ·∆sl−1

I|i + λ ·∆s′
l−1
I|i

∆s′
l−1
I|i =

∑
i′∈ϕ

∆s′
l−1
i′|i

(8)

where η and ∆sl−1I|i are the same as those in Eq. 3; λ is also

calculated with Eq. 4 with input ∆s′
l−1
I|i instead of ∆sl−1I|i .

3.3 Reformulation as Matrix Operations
So far, we have presented the proposed model. For computa-
tion, we reformulate it as matrix operations (also see UG-E in
Figure 2) and give the pseudo-code in Algorithm 1. Recall the
session S = (s1, s2, s3, s4), which is used to build the graph
G(V,E) in Figure 4(a). We build a state matrix S with the
vertices of the graph G (also the session S) as the diagonal
elements, and all the other elements are set to 0 (we name
this process the Building State Matrix function, denoted by

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5012

BSM(S)). We then use the “@” relation (a speaker respond-
ing to another speaker) as the connection between two vertices
to build the edge matrix E (shown in Figure 2). Recall the
speaker information modeling in Section 3.2 and the utterance
speaker adjacency matrix U . The main operation of Eq. 8 can
be formalized by:

∆E = Sl−1 ·E⊗ Sl−1; ∆U = Sl−1 ·U ~ Sl−1 (9)

Sl = Sl−1 +BSM(η �∆E + λ�∆U) (10)

where ∆E = {
Pm
j=1 ∆Ei,j}mi=1 and ∆U =

{
Pm
j=1 ∆Ui,j}mi=1 are two vectors, m is the length of

the given session; � denotes the Hadamard product; η and λ
can be calculated by:

η = {SQH(∆Ei)}mi=1;λ = {SQH(∆Ui)}mi=1 (11)

This is just the forward information flow. We can obtain the
backward information flow operation by changing Eq. 9:

∆E = Sl−1 ·ET ⊗ Sl−1; ∆U = Sl−1 ·UT ~ Sl−1 (12)

To obtain ∆E and ∆U in Eq. 10, we need to change the
direction of the sum, i.e., ∆E = {

Pm
j=1 ∆Ej,i}mi=1 and

∆U = {
Pm
j=1 ∆Uj,i}mi=1. S,E, and U can be very sparse.

But the proposed method can be well organized and the sparse
matrices can be addressed by sparse matrix operations. The
pseudo-code is given in Algorithm 1 in Appendix 1.

3.4 Decoder
As shown in Figure 2, we illustrate a session {i}mi=1 with the
corresponding encoding state denoted by S. To generate a
response to an utterance i, the decoder calculates a distribution
over the vocabulary and sequentially predicts word rk using a
softmax function:

p(r|S; θ) =

|r|∏
k=1

P (rk|Si,i, r<k; θ) =

|r|∏
k=1

softmax(f(hk, ck, rk−1)) (13)

where f(·) is the tanh function. rk−1 is the word generated
at the (k-1)-th time step, obtained from a word look-up table.
hk = GRU(hk−1, rk−1) is the hidden state variable of a GRU
at time step k. h0 = Si,i, and ck is the attention-based encod-
ing of utterance i at decoding time step k and it is calculated
by ck =

Pn
j=1

exp(ej,k)si,j∑m
j=1 exp(ej,k)

, where si,j is the encoder hid-
den state at time step j for utterance i, and ej,k = hkWasi,j
scores the match degree of hk and si,j .

4 Experiments
4.1 Experimental Setups
Data Preparation
Our experiment uses the Ubuntu Dialogue Corpus2 [Lowe et
al., 2015] as it is the only benchmark corpus with annotated
multiple interlocutors. It is also large with almost one million
multi-turn dialogues, over seven million utterances and 100
million words. Each record contains a response utterance with
its speaker ID and posting time.

1https://morning-dews.github.io/Appendix/IJCAI2019 GSN.pdf
2http://dataset.cs.mcgill.ca/ubuntu-corpus-1.0/

To build the training and testing datasets, we extract all ut-
terances with response relations indicated by the “@” symbol
in the corpus. For example, “A @ B” means that the utter-
ance is addressed to Speaker B by Speaker A. Utterances from
Speaker A and Speaker B are encoded into vector represen-
tations and used to construct the state matrix introduced in
Section 3.3 as vertices. A directed edge is installed from A to
B and used to build the edge matrix described in Sec. 3.3.

Following the baselines, we take the last utterance in each
given session as the utterance to be generated3 (i.e., the output
target) and the other utterances in the session as the input. Fi-
nally, we extracted 380k sessions (about 1.75M utterances) as
the experiment corpus and each session has 3 to 10 utterances
and 2 to 7 interlocutors. We randomly divide the corpus into
the training, development (with 5k q/a pairs), and test (with
5k q/a pairs) sets. We report the results on the test set. In
testing, following the graph structure, the system knows which
utterances to respond to. This is reasonable as this is also the
case in a human dialogue, i.e., before responding, we know
which preceding utterances to rely to.

It is important to note here that GSN is a general model
that works well for both graph-structured (multi-party) and

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5013

Model BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGEL

seq2seq 10.45 4.13 2.08 1.02 3.43 9.67
seq2seq W-speaker 10.70 4.98 2.20 1.55 3.92 9.42
Seq2seq (last utte) 9.85 3.04 1.38 0.67 3.98 8.34
HRED [Serban et al., 2016] 10.80 4.60 2.54 1.42 4.38 10.23
HRED W-speaker 11.23 4.82 3.06 1.64 4.36 10.98
GSN No-speaker (1-iter) 9.42 3.05 1.61 0.95 3.74 7.63
GSN No-speaker (2-iter) 12.06 4.87 2.80 1.70 4.32 10.09
GSN No-speaker (3-iter) 12.77N 5.37N 3.17 1.99N 4.53 10.80
GSN W-speaker (1-iter) 10.31 4.06 2.34 1.45 3.88 9.96
GSN W-speaker (2-iter) 12.77 4.93 2.61 1.46 4.79 11.34
GSN W-speaker (3-iter) 13.50N 5.63N 3.24N 1.99N 4.85N 11.36N

Table 2: Experimental results, conducted in different settings, including sequential data and graph data using different models based on
automated evaluation. ‘Seq2seq (last utte)’ is trained by using only the last utterance before the final response of the session as the input (all
utterances before are ignored). ‘n-iter’ means that the results are obtained after n iterations. ‘No-speaker’ is our proposed GSN model without
speaker information flow while ‘W-speaker’ has it. Ndenotes the p-value < 0.01 in paired t-test against the best baseline (shaded row).

Benefited from dynamic iterations, GSN is very flexible
in generating responses for any utterance in a given session.
However, to be consistent with the baselines, only the last
utterance in each session is used as the target in training and
testing. The code of our model can be found here 4.

4.2 Training Details of Our GSN Model
We share the word embedding between the word-level encoder
and the decoder and limit the shared vocabulary to 30k. The
number of hidden units is set as 300 and the word embedding
dimension is set as 300. We have 2 layers for both word-level
encoder and decoder. The network parameters are updated
using the Adam algorithm [Kingma and Ba, 2014] with the
learning rate of 0.0001. All utterances are clipped to 30 words.
We run all experiments on a single GTX Titan X GPU, and
training takes 25 epochs.

4.3 Results and Analysis
Automated Evaluation
We use two kinds of metrics in automated evaluation: 1)
Following [Fu et al., 2017; Havrylov and Titov, 2017], we
use the evaluation package of [Chen et al., 2015], which in-
cludes BLEU 1 to 4, METEOR and ROUGEL. 2) We also use
embedding-based metrics [Forgues et al., 2014] which can
cover the weaknesses of the BLEU’s.

Table 2 shows the evaluation results. The first three rows
are for the baselines. The three rows in the middle are for our
GSN model using only the information flow over the graph
structure, and the last three rows are also for our GSN model
but with the addition of the speaker information flow. From
Table 2, we can make the following observations:

(1). GSN (row 11, with the speaker information flow after 3
iterations) markedly outperforms the baselines (rows 2 and 5)
by up to 2.27 BLEU points (BLEU 1).

(2). With-speaker (W-speaker) versions of GSN also clearly
outperform the no-speaker versions, indicating the importance
of the speaker information flow. To further verify whether
the improvement is due to adding more connections or adding
the speaker edges, we conducted experiments by adding some
random edges with different percentages until full connections

4https://github.com/morning-dews/GSN-Dialogues

among nodes (using No-speaker setting with 3 iterations). The
results showed a clear drop with the increase of randomly
added edges and received very poor result for full connection,
which further shows the usefulness of the proposed speaker
information modeling method. As the results are very poor,
they are not shown here.

(3). We also use the exist embedding-based persona method
to arm baselines (W-speaker) for a fair comparison with GSN
W-speaker version. We can see from Table 2 the gain is limited,
and our method still outperforms the baselines.

(4). The results of GSN improve as the number of itera-
tions increases, which indicates the importance of the dynamic
iterations. With more iterations, more utterances will be mod-
eled by GSN. Only after two iterations, our models with the
speaker information flow (row 10) already outperforms both
two baselines in 4 out of 6 evaluation metrics. Even for the
no-speaker versions (row 7), our model beats the best baseline
in 4 out of 6 evaluation metrics.

The BLEU scores had a tiny increase in the 4th iteration
(around 0.1% for GSN W-speaker, and 0.3 % for GSN No-
speaker). For other metrics, e.g., METEOR and ROUGEL,
there is little change. The 5th iteration is similar, but the scores
decrease from the 6th iteration. We thus choose 3 iterations.

Embedding-based metrics: Based on the embedding-based
metrics, our model also outperforms the baselines. Our model
gets 0.770 / 1.040 / 0.651 for the three embedding-based met-
rics (Embedding Average Score / Embedding Greedy Score
/ Embedding Extrema Score), which are all better than the
scores of the best baseline model (HRED), 0.515 / 0.905 /
0.325. See the details in Appendix1, which also includes a
case study with examples.

Sequential data and graph data: To verify the generic na-
ture of the GSN model, we conduct an ablation experiment
with only sequential data (sessions with only two interlocu-
tors) or graph data (remaining sessions with more than two
interlocutors). The results are shown in Table 3. We see that
GSN significantly outperforms the strong HRED baseline in
both sequential and graph settings. From both Tables 3 and 2,
we can see that GSN improves in the sequential case mainly
because of the additional encoding iterations.

Tables 3 and 2 also show that the proposed iterative graph-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5014

Model BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGEL

HRED [Serban et al., 2016] (sequential) 9.61 3.48 1.86 1.01 4.08 8.22
GSN No-speaker (2-iter sequential) 11.39 4.55 2.68 1.71 4.40 9.74
GSN W-speaker (1-iter sequential) 8.69 3.1 1.78 1.19 3.67 9.19
GSN W-speaker (2-iter sequential) 12.72 4.84 2.59 1.59 4.70 11.41
GSN W-speaker (3-iter sequential) 12.03 4.92 2.94 1.97 4.31 10.1
HRED [Serban et al., 2016] (graph) 12.16 4.90 2.68 1.49 4.42 10.90
GSN No-speaker (2-iter graph) 12.35 5.17 3.08 1.81 4.43 10.42
GSN W-speaker (1-iter graph) 10.66 4.36 2.52 1.50 3.97 10.10
GSN W-speaker (2-iter graph) 12.76 5.23 2.94 1.75 4.80 11.33
GSN W-speaker (3-iter graph) 13.85 5.83 3.33 1.98 5.10 11.66

Table 3: Experimental results of using sequential data (with only 2 interlocutors, the first five rows of the results) or graph data only (with
more than 2 interlocutors, the last five rows of the results). The symbol string ‘n-iter’, ‘No-speaker’ and ‘W-speaker’ in the table have the same
meaning as those in Table 2. The result of GSN No-speaker 3-iter isn’t given as it performs worse.

Human HRED No-speaker W-speaker
1-iter 3-iter 1-iter 3-iter

3.01 1.91 1.89 1.98 2.23N 2.37N

Table 4: Human evaluation results. Ndenotes p-value < 0.01 in
paired t-test against HRED. The perfect score is 4.

structured encoder UG-E and the graph-based speaker infor-
mation flow are effective. GSN is thus a good generalization
of the sequence-based models, and a desirable system for
both graph-structured (multi-party) and sequential (two-party)
dialogue response generation.

Human Evaluation
We also conducted human evaluation to measure the quality
of responses generated by all methods. We evaluate based
on “naturalness”, which includes 1) grammaticality, 2) flu-
ency and 3) rationality. We randomly sampled 100 utterance-
response pairs, shuffled the order of systems, and asked three
Ph.D. students to rate the pairs in terms of model quality on 0
to 4 scales (4 for the best) and we report their average scores.
More details can be found in Appendix1.

Table 4 shows that GSN (with the speaker information flow
after only 1 iteration or the no-speaker version after 3 itera-
tions) outperforms the best baseline (HRED), indicating that
GSN generates more natural responses. The reason that our
model (with the speaker information flow and just one itera-
tion, column 5 in Table 4) outperforms three iterations of our
model’s no-speaker version (column 4 in Table 4) is because
the model (with the speaker information flow) can generate
a more consistent response for the speaker. The generated
utterances are more preferred by humans.

5 Related Work
Existing dialogue models follow the sequential information
flow [Shang et al., 2015; Wen et al., 2017; Tao et al., 2019].
Recent progresses in seq2seq models [Sutskever et al., 2014;
Luong et al., 2015] have inspired several efforts [Li et al.,
2019; Young et al., 2018] to build dialogue systems.

Although seq2seq models have achieved good results for
dialogue generation, they regard all input utterances as a long
sequence, which greatly increases the complexity of the model

in passing information and computing gradients. As an im-
proved solution, the HRED models [Serban et al., 2016]
tackle this problem by constructing the sequential flow at the
utterance level. However, this setting is insufficient for model-
ing dialogues that have more than 2 interlocutors, which need
a graph-based model.

For multi-party dialogues, prior work have employed
retrieval-based approaches [Zhang et al., 2018a; Meng et al.,
2018]. No graph modeling method has been proposed, al-
though graph-based methods have been used for other NLP
tasks, e.g., Graph Convolutional Networks for classification
[Kipf and Welling, 2016] and semantic role labeling [Marcheg-
giani and Titov, 2017], Gated Graph Neural Networks for gen-
eration from AMR graphs and syntax-based neural machine
translation [Beck et al., 2018]. Different from these works, we
propose a generation model by formulating the complex dia-
logue problem using a graph-based solution. Also importantly,
compared to seq2seq and HRED, GSN not only can encode
graph structured information flows, but also sequential ones.

6 Conclusion
In this paper, we proposed a general graph-structured neural
network GSN to model both graph-structured (multi-party)
and sequential (two-party) dialogues. The core of the model
is an utterance-level graph-based encoder (UG-E), which is
a generalization of the conventional sequence-based encoder.
For the response generation in multi-party conversations, the
speaker information is also modeled in the graph. As our
results showed, GSN is general and is suitable for both multi-
party and two-party dialogues.

The current GSN relies on clear addressee information. Our
future work will try to automatically identify the conversation
structure and decide who to respond to. Dynamic routine and
attention can be leveraged to achieve this goal.

Acknowledgements
This work was partially supported by National Key Research
and Development Program of China (No.2017YFC0804001),
National Science Foundation of China (No. U1604153, No.
61876196, No. 61672058), Alibaba Innovative Research Fund.
Rui Yan was supported by CCF-Tencent Open Research Fund
and Microsoft Research Asia Collaborative Research Program.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5015

References
[Bahdanau et al., 2014] Dzmitry Bahdanau, Kyunghyun Cho,

and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. Computer Science, 2014.

[Beck et al., 2018] Daniel Beck, Gholamreza Haffari, and
Trevor Cohn. Graph-to-sequence learning using gated
graph neural networks. ACL, 2018.

[Chen et al., 2015] Xinlei Chen, Hao Fang, Tsung-Yi Lin,
Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár,
and C Lawrence Zitnick. Microsoft coco captions:
Data collection and evaluation server. arXiv preprint
arXiv:1504.00325, 2015.

[Cho et al., 2014] Kyunghyun Cho, Bart van Merriënboer,
Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase rep-
resentations using rnn encoder–decoder for statistical ma-
chine translation. In EMNLP, 2014.

[Forgues et al., 2014] Gabriel Forgues, Joelle Pineau, Jean-
Marie Larchevêque, and Réal Tremblay. Bootstrapping
dialog systems with word embeddings. In Nips, modern
machine learning and natural language processing work-
shop, volume 2, 2014.

[Fu et al., 2017] Kun Fu, Junqi Jin, Runpeng Cui, Fei Sha,
and Changshui Zhang. Aligning where to see and what
to tell: Image captioning with region-based attention and
scene-specific contexts. PAMI, 39:2321–2334, 2017.

[Havrylov and Titov, 2017] Serhii Havrylov and Ivan Titov.
Emergence of language with multi-agent games: Learning
to communicate with sequences of symbols. In NIPS, 2017.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5016

