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Abstract—Data in various research fields can be gathered as
repeated measure curves. Although they consist of finite points,
it is usually valuable to consider them as sample curves of
stochastic processes so that curve clustering is necessary for the
modelling and analysis of these latent stochastic processes. In this
paper, we model these curves through a hierachical mixture of
Gaussian processes and propose a split EM algorithm to learn the
parameters of the mixture of Gaussian processes with automated
model selection and thus to cluster these curves according to
the Gaussian processes. Specifically, during each iteration of the
proposed split EM algorithm, one Gaussian process is selected
with the highest acceptance probability for splitting and then it is
split into two Gaussian processes whose first two moments keep
the same as those of it. It is demonstrated by the experiments
on both synthetic and real datasets that our proposed split EM
is robust and effective for curve clustering and even outperform
the conventional EM algorithms.
Keywords:Curve clustering, Mixture of Gaussian processes, EM
algorithm, Parameter estimation, Model selection

I. INTRODUCTION

Curve Clustering is an important but very challenging
problem [1] [2]. When handling repeated measure data, we
often need to register or align the corresponding curves. By the
method of curve clustering, we can step over curve alignment
and classify the curves according to their variation directly.

However, there are two difficulties on curve clustering: the
first is how to transform a vector to a piece of stochastic
process–although data are gathered as finite points, they have
to be considered as a time series or a sample curve of stochas-
tic process; the second is how to model the heterogeneity—
Data may be collected from different sources, such as different
subject or region. In fact, the hierachical mixture of Gaussian
process functional regressions (Mix-GPFR) [3] [4] [5] [6]
can be used to overcome these two difficulties. Firstly, a
GPFR can effectively model each sample or response curve
with both the covariance parameters and the mean function
which is estimated by a linear combination of some given B-
spline basis functions. Secondly, the mixture model can be
used to model heterogeneity of curves from different sources.
Recently, our lab has made a series of progresses on the
parameter learning and model selection of the mixture of
Gaussian process functional regressions [7] [8] [9] [10] [11].

In this way, curve clustering is transformed into the mod-
elling or learning of the Mix-GPFR model with a given set
of response curves. The possible approach to solving this

mixture learning problem is the EM algorithm. Although many
efforts have been made to construct an effective and efficient
EM algorithm for the mixtures of Gaussian processes, this
task is still difficult. Moreover, the EM algorithm is sensitive
to the parameter initialization and may converge to a local
maxima of the log-likelihood function. On the other hand, the
EM algorithm requires the correct number of components in
the mixture; otherwise it leads to a wrong result. So, it is
critical for the EM algorithm to select the correct number of
components in the mixture on a given dataset. This is a well-
known model selection problem for the mixture modeling and
has been investigated in many ways (e.g., [12], [13], [14], [15],
[16]).

In order to solve the curve clustering problem, we try to
propose a split EM algorithm for the Mix-GPFR model which
starts with a single Gaussian process component standing
for all of the curves and then split one Gaussian process
with the highest acceptance probability for splitting into two
Gaussian processes whose first two moments keep the same
as those of the original one in each of the following iterations
until certain model selection criterion is satisfied. The key
to the success is the possible split criterion. In fact, various
split criterions have already been developed for the Gaussian
mixture model on the same model selection problem, but they
are not so suitable for our case as Gaussian distribution and
Gaussian process have quite different structures. Fortunately,
our recently proposed automatic split and merge scheme for
Gaussian processes in the mixture model under the MCMC
framework [17] provides an effective split criterion to the
split EM algorithm with automated model selection. That is,
by keeping the first two moments of those GPs unchanged
before and after split, we can derive a series of split formula
and calculate the acceptance probability for splitting under
the Bayesian condition. Moreover, we adopt BIC for model
selection in the design of the split EM algorithm.

Our paper is organized as follows. We introduce the hier-
achical MGP or mix-GPRF model in Section 2. Section 3
presents the split EM algorithm for the mix-GPRF model.
Specifically, Section 3.1 is devoted to the presentation of
split formula in our previous work. section 3.2 presents the
detail of the split EM algorithm. Section 4 and 5 contain
the experimental results on the synthetic and real datasets,
respectively. Finally, we conclude briefly in Section 5.
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II. THE HIERARCHICAL MIXTURE OF GAUSSIAN
PROCESSES

We adopt the hierachical mixture of Gaussian processes
which was firstly proposed in [4]. The m-th response curve
is considered as the k-th class stochastic process with a noise
corrosion: ym = fk(xm) + ϵk. For the heterogeneity, a set of
hidden variable zm = 1, · · · ,K for each curves that describes
which class the curve belong to is set to model K Gaussian
processes in the mixture. That is, for curves in the same class,
a common series of Gaussian process parameters are shared.
That is to say:

zm = k

ym ∼ N (µk(xm),Σk(xm))
(1)

here, the vector pair Dm = (xm,ym) represents the m-th
curve, and xm = {xm,i}Nm

i=1,ym = {ym,i}Nm
i=1 are points on

the mth curve.
For the k-th Gaussian process, the mean function is assumed

as a linear combination of B-spline basis functions [3]:

µk(xm) = Φ(xm)Bk, (2)

where Φ(x) = (Φ1(x), · · · ,ΦD(x)) is a set of D B-
spline basis functions, Φ(xm) is an Nm × D matrix, Bk =
(B1

k, · · · , BD
k )T is D×1 unknown B-spline coefficient matrix.

And the convariance function is:

Σk(xm) = vk exp
(
−wk

2
(xm,i − xm,j)

2
)
+ δi,jσ

2
k (3)

Therefore, the parameters for each GP class are (πk,θk), θk =
(wk, vk, σ

2
k). And all the parameters are (Π,Θ), where Π =

{πk}Kk=1,Θ = {θk}Kk=1.
After learning all the parameters with the EM algorithm,

the prediction of the m-th curve obeys the following formulas
[18]:

E[fm(x∗)|Dm] = σT (x∗)Σ−1(Xm,Xm;θk)Y m;

V ar[fm(x∗|Dm)] = C(x∗, x∗)− σT (x∗)Σ−1(Xm,Xm;θk)σ(x
∗),

(4)

III. SPLIT EM ALGORITHM

We begin with a brief introduction to the split formulas and
the probability to accept a proposed move according to our
previous work [17]. In the following subsection, we will try
to utilize it in the design of the split EM algorithm.

A. The Split Formulas

The formulas given here are derived by the Bayesian
inference, so all the parameters have their own priors:

wk ∼ IΓ(
1

2
,
1

2
), vk ∼ LN (−1, 12), σ2

k ∼ LN (−3, 32), k = 1, · · · ,K

where IΓ denotes the inverse gamma distribution, and

(π1, · · · , πK) ∼ Dir(1, · · · , 1).

During the split operation, the first two moments must
remain constant:

πk∗ = πk1 + πk2

πk∗Σk∗ = πk1Σk1 + πk2Σk2

replacing Σk with eq.3 and transforming the nonlinear rela-
tionship of convariance parameters into linear relationship by
Taylor expansion, we have the detailed balance framework:

πk∗ = πk1 + πk2 (5a)

πk∗σ2
k∗ = πk1σ

2
k1

+ πk2σ
2
k2

(5b)
πk∗vk∗ = πk1vk1 + πk2vk2 (5c)

πk∗vk∗wk∗ = πk1vk1wk1 + πk2vk2wk2 (5d)

For a split move, according to the reversible jump theory [5],
4 dimensional random vector u should be generated, where
ui ∼ Beta(2, 2), so that the dimension-matching requirement
in the Reversible Jump MCMC framework can be satisfied.
Thus, by combining the detailed balance framework and
reversible jump theory, we have the following split formulas:

πk1 = u1πk∗ , πk2 = (1− u1)πk∗ , u1 ∈ (0, 1) (6a)

σ2
k1

= u2σ
2
k∗

πk∗

πk1

, σ2
k2

= (1− u2)σ
2
k∗

πk∗

πk2

, u2 ∈ (0, 1)

(6b)

vk1 = u3vk∗
πk∗

πk1

, vk2 = (1− u3)v
k∗

0

πk∗

πk2

, u3 ∈ (0, 1)

(6c)

wk1 =
1− u4

u3
wk∗ , wk2 =

u4

1− u3
wk∗ , u4 ∈ (0, 1) (6d)

According to the acceptance probability formula of the
reversible jump move [5], the acceptance ratio for a split move
is min(1, A), where A is given by

A =
M∏

m=1

l(Y m|θk+1)

l(Y |θk)
× dk+1

bk
× k

1

6u1(1− u1)
πk∗︸ ︷︷ ︸

π

× 1

3
√
2π

σ2
k

σ2
k1
σ2
k2

× 1

6u2(1− u2)
σ2
k∗

1

u1(1− u1)︸ ︷︷ ︸
σ2

exp

(
−
(lnσ2

k1
+ 3)2

2 ∗ 32
−

(lnσ2
k2

+ 3)2

2 ∗ 32
+

(lnσ2
k∗ + 3)2

2 ∗ 32

)
︸ ︷︷ ︸

σ2

× 1√
2π

vk∗

vk1vk2

1

6u3(1− u3)
vk∗

1

u1(1− u1)︸ ︷︷ ︸
v

exp

(
− (ln vk1 + 1)2

2
− (ln vk2 + 1)2

2
+

(ln vk∗ + 1)2

2

)
︸ ︷︷ ︸

v

(
1

2
)1/2

(
wk1wk2

wk∗

)−3/2
1

6u4(1− u4)

wk∗

u3(1− u3)︸ ︷︷ ︸
w

exp

(
−1/2

(
1

wk1

+
1

wk2

− 1

wk∗

))
︸ ︷︷ ︸

w

(7)
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where d1 = 0, bkmax = 0, bk = dk = 0.5,∀k = 2, · · · , kmax −
1, kmax is the maximum component number that we set
according to each individual case.

B. The Framework of the Split EM Algorithm

A full algorithmic description of the split EM algorithm is
shown in Algorithm 1. It should be noted that our proposed
algorithm consists of two layers of iterations when it decides
which Gaussian process will be split: it runs to split all the
K components and to sample u so that we can choose the
one with the highest A (A in acceptance probability, that is
calculated by Eq.(7). In case of choosing a larger component
number with less increasing of the likelihood, we use BIC as
a stop criterion. What’s more, each curve should be minus the
k-th mean function that this curve belong to, since our split
criterion is based on the assumption of zero mean.

Algorithm 1 The split EM algorithm
Initialization: Start with one Gaussian process.
initialize Θ and Π according to their priors;
Execute the EM algorithm update all the paramters Θ ,
Π and B;
Split = false
repeat
y′m = ym −Bk ∗ Φm,m = 1, · · · ,K, if zm = k
Use y′m to execute the split EM algorithm:
for k = 1 to K do

for Iter = 1 to Iter num do
Generate a random vector u
Split k-th component according to Eq.(1)
Calculate the acceptance ratio A(k, Iter)

end for
Set Iter∗ = argmaxIter=1···Iter num A(k, Iter)
Ret A(k) = A(k, Iter∗)
Record the Iter∗-th parameters

end for
Set k∗ = argmaxk=1···K A(k)
Set A = A(k∗)
Record the k∗ parameters
Execute the EM algorithm update all the parameters as
Θnew ,Πnew and Bnew

Calculate BIC between Θnew,Πnew, Bnew and Θ,Π, B
if BIC<0 then

Split = true
Accept the new parameters as Θ, Π and B
Delete empty components

else
Split = false
Remain the old parameters

end if
until Split== false

IV. EXPERIMENTAL RESULTS ON A SYNTHETIC DATASET

We firstly conduct an experiment on a typical synthetic
dataset given in [7] to test the performance of our split EM al-

gorithm. This synthetic dataset consists of three Gaussian pro-
cesses with different parameters. The three mean functions are:
µ1 = 1

2 sin
(
− (x−4)2

8

)
+3, µ2 = − 3√

2π
exp

(
− (x−4)2

8

)
+3.7,

µ3 = − 1
2 arctan

(
x
2 − 2

)
+3, and the convariance parameters

of eq.(3) are listed in TABLE.I.

TABLE I
CONVARIANCE PARAMETERS

√
v

√
w σ

0.6325 1 0.0632

0.4472 0.7071 0.0632

0.3162 0.4472 0.0632

We generate 300 sample curves from this model(each GP
with 100 curves). For time-scale, we adopt 101 equally spaced
points in [0, 9], and choose 51 points randomly from those
points as training data. For prediction, we generate 600 curves
with each containing 150 points, and choose 40 points ran-
domly as known data points on each curves, the rest as test
data points.

As shown in Fig.1, we compare the real mean functions and
B-spline fitted mean functions during the iterations of our split
EM algorithm. In the one or 2 classes figure, B-spline fitted
mean functions are in the middle of the true mean functions,
and 3 classes B-spline fitted mean functions match the true
mean-functions quite well.

With the same training and test dataset, we implement
our split EM algorithm for (referred to as split-mix-GPFR)
in comparison with the same split EM algorithm for mix-
tures of Gaussian processes (referred to as split-mix-GP), the
conventional EM algorithm for mixtures of Gaussian process
functional regressions (referred to as mix-GPFR) [3] and the
conventional EM algorithm for mixtures of Gaussian processes
(referred to as mix-GP) [4]). Each algorithm is repeatedly
implemented 50 times and the experimental results are listed in
TABLE.II. The mean of RMSE stands for the average RMSE
on 50 trials amd the var of RMSE is the standard variance
of RMSE on 50 trials. The times of K = 3 appears during
50 trials is the frequency of K = 3 and the misclassification
rate is the average misclassification rate. It is remarkable that
the RMSEs of the two algorithms for mixtures of GPFRs
is smaller than those of the two algorithms for mixtures of
GPs. Thus, GPFR can fit the data more accurately. This result
shows that the GPFR model can improve the predict accuracy.
Although the RMSEs of the two split EM algorithms are quite
close to the two conventional EM algorithms, their RMSE
variances are much smaller, which proves the robustness of
our split EM algorithm. What’s more, both of the two split
EM algorithms can run with all the right component number–
3. However, 2 times of model selection or component number
error appears for mix-GPFR, 43 times of model selection error
appears in mix-GP during 50 trials. However, the average
misclassification rate can be reduced by both the functional
regression model and the split EM mechanism.
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(b) The 2sd iteration
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(c) The 3rd iteration

Fig. 1. The real mean function and B-spline fitted mean function during each iteration, where the blue line stands for the real mean function, while the red
line stands fo the B-spline fitted mean function obtained in the split EM algorithm.

In addition to the prediction, we also list the average RMSEs
of the convariance parameters in TABLE.III, in which the
second row shows the real values of these parameters, while
the rest rows show the learning results of mix-GPFR and split-
mix-GPFR, respectively. The relative error is calculated by
|θ̂−θ|
|θ| where θ and θ̂ are the real and estimated parameters.

The var of error is the variance of an estimate parameter on
50 trials. By contrasting it is found that the relative errors
of split-mix-GPFR are slightly smaller than those of mix-
GPFR except

√
w2 which is remarkable smaller. However,

the variances of the estimate parameters of split-mix-GPFR
are notably smaller than those of mix-GPFR, which further
demonstrates the robustness of our split mechanism.

TABLE II
THE EXPERIMENTAL RESULTS OF 4 ALGORITHMS OVER 50 TRIALS

mean of RMSE var of RMSE

mix-GP 0.0850 2.9e-6

split-mix-GP 0.0877 3.1e-10

mix-GPFR 0.0735 9.5e-8

split-mix-GPFR 0.0734↓ 3.5e-13↓

the times of K = 3
misclassification rate

appears during 50 repeat trials

mix-GP 4/50 48.27%

split-mix-GP 50/50 5.67%

mix-GPFR 48/50 3.18%

split-mix-GPFR 50/50↑ 0.33%↓

V. EXPERIMENTAL RESULTS ON A REAL DATASET

We further test our spit EM algorithm on a real dataset:
Berkeley Growth Study data. It contains the heights of 36
males and 54 females from 1 age to 18 age. We want to cluster

TABLE III
THE AVERAGE RMSES OF CONVARIANCE PARAMETERS OVER 50 TRIALS

√
v1

√
w1 σ1

real value 0.6325 1 0.0632

mix-GPFR 0.6271 0.9919 0.0631

relative error 0.84% 0.81% 0.31%

var 1.9e-5↑ 1.3e-5↑ 3.7e-8↑

split-mix-GPFR 0.6275 0.9927 0.0631

relative error 0.78% 0.73% 0.25%

var 3.0e-8↓ 2.7e-9↓ 3.9e-12↓
√
v2

√
w2 σ2

real value 0.4472 0.7071 0.0632

mix-GPFR 0.4467 0.7865 0.0634

relative error 0.1% 11.23% 0.23%

var 0.0052↑ 0.2181↑ 3.2e-6↑

split-mix-GPFR 0.4521 0.7014 0.0636

relative error 1.1% 0.81% 0.6%

var 5.3e-8↓ 7.3e-8↓ 3.4e-12↓
√
v3

√
w3 σ3

real value 0.3162 0.4472 0.0632

mix-GPFR 0.3411 0.4544 0.0634

relative error 7.87% 1.62% 0.31%

var 0.002↑ 0.002↑ 9.1e-9↑

split-mix-GPFR 0.3268 0.4414 0.0634

relative error 3.33% 0.27% 1.3%

var 4.4e-9↓ 2.2e-10↓ 1.5e-12↓

the total population according to the velocity and acceleration
of height growth.

Firstly, these velocity and acceleration data are smoothed by
a classic smoothing procedure in [19]. Secondly, let each point

1092

Authorized licensed use limited to: Peking University. Downloaded on June 03,2022 at 10:03:45 UTC from IEEE Xplore.  Restrictions apply. 



2 4 6 8 10 12 14 16 18
-5

0

5

10

15

20

25

30

35

Fig. 2. The smooth and noisy velocity and acceleration curves. Red curves stand for female, green stand for male.
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(a) The velocity mean functions clustered into 4 classes.
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(b) acceleration mean functions clustered into 3 classes.

Fig. 3. The clustering results of the velocity and acceleration curves, with
the mean function of each class being plot.

on the smooth curves be plus by a N (0, 1) gaussian noise,
so that Gaussian process can deal well with smooth curves,
since convariance in Eq.(3) for a smooth curve is sometimes

female
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4

data1

data2

data3

data4

male

1

2
4

(a) The pie of velocity

female

(b) The pie of acceleration

Fig. 4. The proportions of different classes for female and male,respectively

invertible. In Fig.2, we plot the smooth and noisy velocity and
acceleration curves, where red curves stand for female, while
green ones stand for male. As a result, our split EM algorithm
clusters the velocity curves into 4 classes and the acceleration
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curves into 3 classes, being shown in Fig.3, while Fig.4 shows
the proportions of all the resulted classes for female and male,
respectively.

In Fig.3a, the red mean function reaches a peak at age 14,
which is later than the other three. Referring to Fig.4a, we
can observe that the red class takes a considerable proportion
in the male group than that in female group. Therefore, the
time of pubertal spurt for most of the males is later than the
females.

In Fig.3b, the blue class has a sharpest deceleration for ve-
locity before age 4, and arrives a second sharpest deceleration
for velocity at age 12 which is earlier than the other three. So,
children in this class have a earlier time of pubertal spurt than
the others. Referring to Fig.4b, we can observe that the blue
class takes a larger proportion in the female group than in that
male group. So, some cases of female’s pubertal spurt arrive
earlier than others, but rarely cases of male is such case.

Therefore, by the method whether the velocity curves are
clustered as the 1st class to distinguish male or female, 47
out of 54 female are classified right, 36 out of 39 male are
classified right. The misclassification error is 9.68%, which is
smaller than 31.18% in [2].

VI. CONCLUSION

We have established a split EM algorithm for mixtures
of Gaussian processes functional regressions which can
make curve clustering effectively and efficiently. In fact, the
Gauasian process functional regression model can learn the
curve cluster more effectively and accurately. Moreover, the
split mechanism based on the reversible jump theory under
the MCMC framework and BIC makes the split EM algorithm
effective with automated model selection. The experimental
result on the both synthetic and real datasets demonstrate that
our proposed split EM is robust and effective for curve clus-
tering and even outperform the conventional EM algorithms.
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