

Automatic Model Selection Algorithm Based on BYY Harmon Learning for Mi ture of Gaussian Process Functional Regressions Models

XiagagG, , TaH g, ad Ji _w e Ma^(⊠)

De at et fIf: ati a dC tati al Scie ce, Sch l f Mathe atical Scie ce a d LMAM, Peki g U i e it, Beiji g 100871, Chi a jwma@math.pku.edu.cn

Abstract. F : ite ixt : e del, deter i i g the ber f c et i cefer: edt a del electi . Thi a e t f : x a da at atic del electi alg : ith ba ed Ba e ia Yi g-Ya g (BYY) har lear i g f : ixt : e f Ga ia ; ce f cti al: egge i (ix.-GPFR) del. BYY har lear i g ha bee cce f ll a liedt the del electi ; ble f Ga ia ixt : e del (GMM), b t it ca t be direct l ed f : that f ix.-GPFR del. We d t the ca e f thi ; ble a d ; e ac i g echa i f c ; e : e cti ba ed Ga ia ; ce (GP) del, thr gh, hich, w transform the interval of the interval of the second of the se

Ke ords: Mixt ce f Ga ia Pc ce F cti al Regre i · M del Selecti · Ba e ia Yi g-Ya g Hac Leac i g · C c e Rec tc cti

1 Introduction

Ga ia c ce (GP) del a e a effecti et lf c Ba e ia li ea a a etcic cla i cati a d cegre i , e.g., cla if i g the i age f ha d_{v} citte digit a d deli g the i e e d a ic fac b ta [1]. H v e e, the ca t deal v ith ltic ce c e data et effecti el . T e c e thi li itati , ixt ce f Ga ia c ce f cti al cegre i (ix -GPFR) del v e c ed [2,3] a d the exte i e c e earch ha bee de tedt e ti ati g their a a ete , a al i g their ef c a ce, a d a l i g the t ceal v cld c ble [4 8].

Like the ite ist ce del, is-GPFR del al face the c ble f del electi, a el dete i i gthe be fGa ia c ce f cti al cegei (GPFR) c et. Si ce a i a c ciate be f GPFR c et ill i e itabl leadt c ge e ali ati abilit, del electi i f geati cta ce. I additi t aki g del electi tili i g d ai k s ledge c e ei e ce, e ca

de ig at atic del electi alg; ith . The t aditi al eth dit ch e al the ti al be f GPFR c et the gh certai tatitical electic iteri. F; ex.a le, Qia g et al. [6]; ed the littig ex. ectati - ax.i i ati (SEM) alg ith ba ed the Ba e ia if ati citeri (BIC) [9]. H e e, all the exitig tatitical electi citeria fle ca e a i c e be fGPFR c eι adthe e fatatitical electi criteri i crahighti e c lecit, i ce e eed t \mathfrak{c} e eat the \mathfrak{k} h le a a et te ti atig \mathfrak{c} ce f \mathfrak{c} differe t be f GPFR et. M ce e, t chatic i lati eth d, chace e iblej с Mar k chai M te Catl [10] a d Dirichlet c ce e [11], ha e al bee edt deal, ith the del electi c ble f is GPFR del [5, 7, 8]. H $_{sc}$ e e, the e eth d $\mathfrak{r}e_k \mathfrak{r}e_k \mathfrak{r}$ $F \in Ga$ ia is the del (GMM), the at atic del electi algorith ba ed Ba e ia Yi g-Ya g (BYY) ha lear i g [12, 13] ha e ac i red better ce It a d higher c tati eed that he baied tati tical election iteria a d t cha tic i lati eth d [14 20].cdeiiig a ba edBed hat lear i g : ix -GPFR

de.alBed

ix.-QREFR f ia _y, hi, e ia de, **b2** ed 8

del ix-GPFR f; aalg; ith elective e tr debda t atic ; e lt i Here, i cethe i dicat ; ariable i cala, e de teita z i tead f . F ; the GMM, e e tabli h the f ll i g BYY te : $q(z = g) = \pi_g$; $q(|z = g) = \mathcal{N}(|\mu_g, \Sigma_g)$; $p(\cdot) = \frac{1}{I} \sum_{i=1}^{I} \delta(-i)$, i.e. the e is ical de it f cti ;

$$p(z = g|) = \frac{\pi_g \mathcal{N}(|\boldsymbol{\mu}_g, \boldsymbol{\Sigma}_g)}{\sum_{s=1}^G \pi_s \mathcal{N}(|\boldsymbol{\mu}_s, \boldsymbol{\Sigma}_s)}.$$
(3)

M ce $\alpha_{,w}$ e ig ce the ceg la i ati te r, i.e. et r = 1. The $,_w$ e ha e

$$H(p||q) = J(\Theta) = \frac{1}{I} \sum_{i=1}^{I} \sum_{g=1}^{G} \frac{\pi_g \mathcal{N}(i|\boldsymbol{\mu}_g, \boldsymbol{\Sigma}_g)}{\sum_{s=1}^{G} \pi_s \mathcal{N}(i|\boldsymbol{\mu}_s, \boldsymbol{\Sigma}_s)} 1 \left(\pi_g \mathcal{N}(i|\boldsymbol{\mu}_g, \boldsymbol{\Sigma}_g)\right), \quad (4)$$

 $\begin{array}{ll} & \text{here } J(\Theta) \text{ i called har} & \text{f cti} & \text{a } d\Theta = \left\{ \pi_g, \mu_g, \Sigma_g \right\}_{g=1}^G. \\ & \text{Acc cdigt BYY har} & \text{lear ig, the area } f J(\Theta) \text{ cree} \end{array}$

Acc cdi g t BYY has lear i g, the axi $f J(\Theta) c$ core d t the ti all be fGa ia c e t a dthebet a a eter [14 20]. He ce, e ca ake del electi a de ti ate the a a eter b axi i i g $J(\Theta)$. I the c ce f axi i i g $J(\Theta)$, the ixi g c cti f the ced dat Ga ia c e t c e g et e . C a ed it the a t atic del electi alg cith ba ed tati tical electi criteria a d t cha tic i lati eth d, th e ba ed BYY has lear i g ha e ac i red better ce lt a d higher c tati eed [14 20].

3 Automatic Model Selection Algorithm Based on BYY Harmon Learning

Fir tl, $_{\mathfrak{K}}$ e brie it d ce the ix-GPFR del. A GP i a c llecti f c a d a iable, a ite b et f_{\mathfrak{K} hich i bject a Ga ia dit ib ti [1]. T ecif a GP {f()| $\in \mathcal{X} \subseteq \mathbb{R}^{D}$ }, $_{\mathfrak{K}}$ e l eedt dete i e it ea f cti m() a d c a ia ce f cti c(, '), $_{\mathfrak{K}}$ here.

$$m() = \mathbb{E}[f()] \operatorname{a} \operatorname{d} c(, ') = \mathbb{E}[(f() - m())(f(') - m('))].$$
(5)

where the GP i de ted a

$$f() \sim \mathcal{GP}(m(), c(, ')).$$
(6)

I is -GPFR del, i ce D = 1, e de te the i ta x i tead f. The, a is -GPFR del, i h G GPFR c e t ca be e tabli hed the ghthe f ll i g f c lae:

$$q(z = g) = \pi_g$$
, where $\pi_g \ge 0$ a d $\sum_{g=1}^G \pi_g = 1$; (7)

$$q(\mathbf{y}(x)|z=g) = \mathcal{GPFR}(x|\mathbf{b}_g, \mathbf{\theta}_g, r_g) = \mathcal{GP}(m(x|\mathbf{b}_g), c(x, x'|\mathbf{\theta}_g) + r_g^{-1}\delta(x, x')).$$
(8)

394 X. G. et al.

I E . (8), $\delta(x, x')$ i the K ecker delta f cti ,

$$m(x|\mathbf{b}_g) = \varphi(x)^T \mathbf{b}_g \text{ a } \mathrm{d} c(x, x'|\mathbf{\theta}_g) = \theta_{g0}^2 \mathbf{\alpha} \cdot \left\{ -\frac{(x-x')^2}{2\theta_{g1}^2} \right\}, \tag{9}$$

where $\varphi(x) = [\varphi_1(x), \varphi_2(x), \dots, \varphi_P(x)]^T$ is a clear constraints of B-lie [21] and $c(x, x'|\boldsymbol{\theta}_g)$ is referred to a the standard end of the

The Yig achie f the ix.-GPFR deli

$$q(z = g, y(x)) = q(z = g)q(y(x)|z = g) = \pi_g \mathcal{GPFR}(x|\mathbf{b}_g, \mathbf{\theta}_g, r_g)$$
(10)

a dit Ya g achi e i

$$p(z = g, y(x)) = p(y(x))p(z = g|y(x)) = p(y(x))\frac{\pi_g \mathcal{GPFR}(x|\mathbf{b}_g, \mathbf{\theta}_g, r_g)}{\sum_{s=1}^G \pi_s \mathcal{GPFR}(x|\mathbf{b}_s, \mathbf{\theta}_s, r_s)}.$$
 (11)

We de te a trai i g c c e data et a $\mathcal{D} = \{\mathcal{C}_i\}_{i=1}^{I}$, there $\mathcal{C}_i = \{(x_{in}, y_{in})\}_{n=1}^{N_i}$ ce ce et a trai i g c c e f le gth N_i . It i ge erall a ed that x_{i1}, \ldots, x_{iN_i} are a d l dit b tedi thei ter al $[x_i, x_{ax}]$ $(i = 1, \ldots, I)$. Let $i = [x_{i1}, \ldots, x_{iN_i}]^T$, $i = [y_{i1}, \ldots, y_{iN_i}]^T$, a d $\Theta = \{\pi_g, \mathbf{b}_g, \mathbf{\theta}_g, r_g\}_{g=1}^G$. F c the **i**x-GPFR del,

$$H(p||q) = \sum_{g=1}^{G} \int p(y(x))p(z=g|y(x)) \, 1 \ (q(z=g)q(y(x)|z=g)) dy(x)$$
(12)

ca the a c x i ated b

$$J(\Theta) = \frac{1}{I} \sum_{i=1}^{I} \sum_{g=1}^{G} \frac{\pi_g \mathcal{N}(\mathbf{v}_i | \mathbf{m}_{ig}, \mathbf{C}_{ig})}{\sum_{s=1}^{G} \pi_s \mathcal{N}(\mathbf{v}_i | \mathbf{m}_{is}, \mathbf{C}_{is})} 1 \left(\pi_g \mathcal{N}(\mathbf{v}_i | \mathbf{m}_{ig}, \mathbf{C}_{ig}) \right)$$
(13)

 $\underset{\mathbf{w}}{\text{ ith }} \mathbf{m}_{ig} = m(\mathbf{i} | \mathbf{b}_g) \text{ a } \mathbf{d} \mathbf{C}_{ig} = c(\mathbf{i}, \mathbf{i} | \mathbf{\theta}_g) + r_g^{-1} \mathbf{I}_{N_i}, \underset{\mathbf{w}}{\mathbf{w}} \text{ here } \mathbf{I}_{N_i}$

 $\hat{\mathcal{C}}_i = \{ (x_n, \hat{y}_{in}) \}_{n=1}^N \text{fr} \quad \hat{f}_i(x)_{in} \text{ ith } x_n = x_i + (n-1)\Delta. \text{ D, ig a light equation is given by } i \in i$ f Ga ia i e i

$$\sigma_1^2 = \frac{1}{N_i} \sum_{n=1}^{N_i} \left(y_{in} - \hat{f}_i(x_{in}) \right)^2.$$
(14)

It i clear that

$$\sigma_2^2 = \frac{1}{N_i} \sum_{n=1}^{N_i} (y_{in} - f_i(x_{in}))^2$$
(15)

i a bia ed e ti ate f the acia ce f Ga ia i e i the c ce f a li g C_i f: $f_i(x)$. He ce, σ_1^2 i ag de ti ate f the a ia ce the a ti that there are

ig i cat differe ce bet, ee $f_i(x)$ a d $\hat{f}_i(x)$. It it i el , \hat{C}_i i ag da ; x.i at i

 $f_{\mathcal{C}_{i}}. \text{ That it } a, \text{ the differe ce bet}_{v} \text{ ce } f(x_{i}) a d_{\mathcal{H}_{i}}(x_{i}) r e \text{ th ce } i, e_{i} r ag da + \mathcal{H} a \text{ and } f_{\mathcal{C}_{i}}. \text{ That it } a, \text{ the differe ce bet}_{v} \text{ ce the twisse af ctilded the each of t$

$$q(z=g) = \pi_{g_{\mathbf{v}}} \text{ here } \pi_g \ge 0 \text{ a } d \sum_{g=1}^G \pi_g = 1; \ q(\mathbf{v}|z=g) = \mathcal{N}(\mathbf{v}|\mathbf{m}_g, \mathbf{C}_g), \quad (16)$$

here $\mathbf{m}_g = m(|\mathbf{b}_g)$ a d $\mathbf{C}_g = c(, |\mathbf{\theta}_g) + r_g^{-1}\mathbf{I}_N$. It Yi g achi e i

$$q(z = g, \mathbf{P}) = q(z = g)q(\mathbf{P}|z = g) = \pi_g \mathcal{N}(\mathbf{P}|\mathbf{m}_g, \mathbf{C}_g)$$
(17)

a dit Ya g achi e i

$$p(z = g, \mathbf{V}) = p(\mathbf{V})p(z = g|\mathbf{V}) = p(\mathbf{V})\frac{\pi_g \mathcal{N}(\mathbf{V}|\mathbf{m}_g, \mathbf{C}_g)}{\sum_{s=1}^G \pi_s \mathcal{N}(\mathbf{V}|\mathbf{m}_s, \mathbf{C}_s)}.$$
 (18)

The, it c c e di g ha: f cti i

$$J(\Theta) = \frac{1}{I} \sum_{i=1}^{I} \sum_{g=1}^{G} \frac{\pi_g \mathcal{N}(\mathbf{v}_i | \mathbf{m}_g, \mathbf{C}_g)}{\sum_{s=1}^{G} \pi_s \mathcal{N}(\mathbf{v}_i | \mathbf{m}_s, \mathbf{C}_s)} 1 \left(\pi_g \mathcal{N}(\mathbf{v}_i | \mathbf{m}_g, \mathbf{C}_g) \right).$$
(19)

A i the care, ith GMM, the axi $fJ(\Theta)$ c c e d t the ti al be f GPFR c e t a d the bet at a etc. The effe, e, e ca ake del electi

a dlear the ara eter b ari i $gJ(\Theta)$ the gherical ti i ati eth d. After the trai i $g \ ce$, e ca deter i e the cla fat ai i $g \ c \ ce$ acc c di gt the axi a terici c babilit, i.e. let

$$z_i = \mathop{\mathbf{a}}_{g \in \{1, 2, \dots, G\}} \frac{\pi_g \mathcal{N}(\mathbf{V}_i | \mathbf{m}_g, \mathbf{C}_g)}{\sum_{s=1}^G \pi_s \mathcal{N}(\mathbf{V}_i | \mathbf{m}_s, \mathbf{C}_s)} (i = 1, 2, \dots, I).$$
(20)

The ced dat GPFR c et d t get a trai i g c c e d et their er all ix ig \mathfrak{c} \mathfrak{cti} . The cla fatet c \mathfrak{c} e ca al be deter i e i thi \mathfrak{m} a. Be ide, f c ate t c c e, e ca cedict the te t t t b calc latig their c diti al di t ib ti gi e the k $\frac{1}{8}$ t t. The detail α e c efec ed t [4 8].

395

4 E perimental Results

I thi ecti , we e i e thetic data et a d_{V_x} ceal-wich data et t evif the effecti e e f c c ed a t atic del electi alg cith. We c are ix-GPFR del trai ed ia c c ed alg cith with GP del, ix-GP del, GPFR del, a d ix-GPFR del trai ed the ghthe traditi al EM alg cith [2, 3] a d the SEM alg cith [6].

Si ce $_{\mathbf{x}}$ e are ai l c cæ ed $_{\mathbf{x}}$ ith the cedicti abilit f $\mathbf{\dot{x}}$ -GPFR del, the c ted ea are exc (RMSE) i ch e a the e al ati etcic. It i a ed that there are T tet c c e a d the tet t t t f the t th (t = 1, 2, ..., T) tet c c e are $y_{t1}, y_{t2}, ..., y_{tM}, \mathbf{\dot{x}}$ h e c c c di g cedicti al e are $\hat{y}_{t1}, \hat{y}_{t2}, ..., \hat{y}_{tM}$, c e ecti el. It f ll $_{\mathbf{x}}$ that

RMSE =
$$\frac{1}{TM} \sum_{t=1}^{T} \sum_{m=1}^{M} (y_{tm} - \hat{y}_{tm})^2.$$
 (21)

A are tl, a alle RMSE i dicate a better redicti re lt.

4.1 On S nthetic Datasets

The i e thetic data et ac de ted a S_2, S_3, \ldots, S_{10} , ce ecti el , w har ethe bait ce ce et the bac fc et .F ceach ce t, ea le 20 tai i g c ce a d 10 tet c ce fc a GP with - ace af cti. The eaf cti a d aca eta f the Ga ia ce e edt ge acte the i e thetic data et ace lit i Table 1, w har e S_l ($l = 2, 3, \ldots, 10$) are ge acted by the ct l GP. Each c ce it f 100 it, w h ei t ace ca d l dit bited i [-3, 3]. The 60 it the left ide fatet c ce ace k w ad the 40 e the cight ide ace edf cte ti g.

Fit 11, ede tratethe effectie e fc c e e c t cti ba ed GP del the ghex eri et . A trai i g c c e i ca d l ch e fe each c e t i S_9 . Fig c e l c e t the c c t cti c c e f the i e trai i g c c e . Fig c e l i c ed f 9 b-g c e , each f_w hich c e t a trai i g c c e , it c c t c t c c e , a d their teri c ea f cti . A ca be ee fe the g c e , alth gh there are ig i ca t differe ce bet_w ee a trai i g c c e a d it c c t c t c c c e, their teri c ea f cti are i i la , w hich i lie that c c ed c c e c c t c ti ba ed GP del i effectie.

Whe tetig c c ed alg cith , G i i itiali ed a l+3 f c S_l . T ill tratethe bad effect f a_{y_i} c g be f GPFR c et cedicti abilit, we et ai ix-GPFR del c i ti g fl-1 a dl+1 GPFR c et i athe EM alg cith [2,3], which are de ted a - ix -GPFR (-1), a d - ix -GPFR (+1), ce ectiel. Si i lat 1, ix -GP del with l-1 a dl+1 GP c et are de ted a - ix -GP (-1), a d - ix -GP (+1), ce ectiel. Be ide, P i ett be 20. Table 2 ce et the extent et al c it.

F: Table 2, v_{i} e eethat the RMSE f the GPFR del a d the \dot{v} .-GPFR del a e aller that the f the GP del a d the \dot{v} .-GP del, c e ecti el, v_{i} hich

Table 1. Mea f. cti a d a a eter f the Ga ia c ce e . ed t ge erate the i e thetic data et .

Mea f. cti	$\boldsymbol{\theta}^{T}$	$\sqrt{r^{-1}}$
x ²	[0.5, 0.5]	0.15
$\left(-4(x+1.5)^2+9\right)1_{\{x<0\}}+\left(4(x-1.5)^2-9\right)1_{\{x\geq 0\}}$	[0.528, 0.4]	0.144
8 i $(1.5x - 1)$	[0.556, 0.3]	0.139
i $(1.5x) + 2x - 5$	[0.583, 0.2]	0.133
i $(4x) - 0.5x^2 - 2x$	[0.611, 0.1]	0.128
$-x^2$	[0.639, 0.1]	0.122
$\left(4(x+1.5)^2-9\right)1_{\{x<0\}}+\left(-4(x-1.5)^2+9\right)1_{\{x\geq 0\}}$	[0.667, 0.2]	0.117
5 c (3x+2)	[0.694, 0.3]	0.111
c $(1.5x) - 2x + 5$	[0.722, 0.4]	0.106
c $(4x) + 0.5x^2 + 2x$	[0.75, 0.5]	0.1

Fig. 1. The cell fc c e cec that in the thetic data et . The ced, give , bl e, a d black c c e ce ce the cigi alc c e, the cec that ced c c e, the texic ea f cli f the cigi alc c e, a d the texic ea f cli f the cec that ced c c e, ce e cli el.

de trate the effectie e f deligthe ea f cti a aliear c bi ati fB-lie.B c arigthe ix-GP(ix-GPFR) dela dthe GP(GPFR) del, the eed f c it d cig the ixt ce t ct ce i de trated. F cther ce, we ca ee that $a_{y_i} c_{j_i} g$ be f GPFR c et affect the cedicti ce lt badl.F c S_2, S_3, \ldots, S_9 , b th the SEM alg cith a d c c ed alg cith d the c creet be f GPFR c et a dtheir RMSE are cl e.H we exthet i ec lexit f the SEM alg cith i higher that that f c c ed alg cith. O the e ha d, the SEM alg cith eed t ce eat the where here a eter lear i g c ce f c different be fGPFR c et. O the then had, i ce different that i g c ce hae different i t, we have the ethel that ce ce where constrained is the sem alg cith fail that d the the end of GPFR c et, it RMSE i larger that that f c ce ed alg cith that f c ce et, it RMSE i larger that

Taki $g S_9 f$; e.a le, e ce e t the cl teri g ce lt f; e dalg cith i Fig. 2, e here different cl c ce ce e t different c e t. O the left a d cight ide f Fig. 2 are the cl teri g ce lt f; c e dalg cith the trai i g a d te t data et, ce e cti el. It i clear that c c ed alg cith c cc e ct d all the c e t.

Ti e(i)	
13.09	
15.84	
23.31	
17.72	
18.93	
25.79	
58.97	
18.64	
87	
Ti e(i)	
20.47	
30.66	
30.53	
21.45	
32.09	
38.44	
92.78	
27.82	
S_{10}	
Ti e(i)	
21.67	
32.78	

Table 2. RMSE a dc. i gti e f all the eth d the thetic data et.

(continued)

	S_2		\mathcal{S}_3		\mathcal{S}_4	
	RMSE	Tie(i)	RMSE	Ti e(i)	RMSE	Tie(i)
іхGP (+1)	4.4818	23.70	4.1214	30.95	4.5878	28.14
GPFR	4.6871	26.73	4.3686	21.67	4.6865	20.97
ixGPFR (-1)	1.5325	33.78	1.0585	40.27	1.5279	41.56
ixGPFR (+1)	1.1891	35.96	0.9789	39.38	1.0343	49.78
ixGPFR (SEM)	0.6448	99.49	0.6233	116.85	1.4379	130.65
ixGPFR (BYY)	0.6421	28.91	0.6199	28.62	0.6317	32.46

 Table 2. (continued)

Fig. 2. Cl teri gre li f c c ed at atic del electi alg cith S_7 a d S_9 .

4.2 On Real-World Datasets

Here, we till ethe electricit 1 ad data et i de b the N $\mathfrak{cth}_{\mathbb{K}}$ et Chi a Grid C a [8], which \mathfrak{cecc} d electricit 1 ad e e 15 i i 2009 a d 2010. He ce, dail electricit 1 ad ca becegarded a a c $\mathfrak{ce}_{\mathbb{K}}$ ith 96 it. We di ide the data et it type b-data et acc \mathfrak{cdi} gt the ear, which are cefer celt a \mathcal{R}_1 a d \mathcal{R}_2 , $\mathfrak{cectiel}$. Each b-data et c it f 200 trai i g c \mathfrak{cec} f \mathfrak{cad} 165 te t c \mathfrak{cec} . M \mathfrak{cec} , the 56 it the left ide fatet c $\mathfrak{cearek}_{\mathbb{K}}$ a d the 40 e the \mathfrak{cight} ide are df \mathfrak{cteti} g.

Fig. 3. The cell for exect that the electricit 1 ad data et. The ced, goee, bl.e, a d black c c e ce ce e t the cigi al c c e, the cec that cted c c e, the teric ea fact if the cigi al c c e, a d the teric ea fact if the cec that cted c c e, ce e ctiel.

Alth ghall the c c e ha ethe a ei t, we treat the a if the d that ethe a ei t. Like the thetic data et, we cad l ch e9 trai i g c c e f \mathcal{R}_1 , where c t cti c c e are c e ted i Fig. 3. A cabe ee f the g c c, c c e d c c e c c t cti ba ed GP del i effecti e f c the electricit l ad data et.

Fig. 4. Cl texi g ce lt f c c ed at atic del electi alg cith \mathcal{R}_1 a d \mathcal{R}_2 .

	\mathcal{R}_1		\mathcal{R}_2	
	RMSE	Ti e(i)	RMSE	Ti e(i)
GP	0.9599	19.43	0.8977	20.39
і кGP (3)	0.9390	20.33	0.8846	21.42
i xGP (6)	0.9387	22.54	0.8854	22.66
i xGP (9)	0.9380	25.99	0.8853	26.09
ix. -GP (12)	0.9395	29.83	0.8847	31.23
ix. -GP (15)	0.9401	34.76	0.8872	36.91
GPFR	0.5584	21.30	0.5499	21.59
ixGPFR (3)	0.2089	24.45	0.2133	20.64
ixGPFR (6)	0.1701	25.76	0.1731	24.77
ixGPFR (9)	0.1356	28.93	0.1455	29.45
ixGPFR (12)	0.1248	34.65	0.1314	33.63
ixGPFR (15)	0.1178	35.88	0.1301	36.78
ixGPFR (SEM)	0.1323	150.76	0.1377	170.17
ixGPFR (BYY)	0.1109	33.97	0.1201	34.58

Table 3. RMSE a d: i gti e fall the eth d \mathcal{R}_1 a d \mathcal{R}_2 .

5 Conclusion

I thi a $\alpha_{v_{x_{i}}} e c$ ea at atic del electi alg ith ba ed BYY ha lear ig f; ix-GPFR del. Si ce different trai ig c; e ha e different int, BYY har lear ig can the direct a lied to the del electing ble f ix-GPFR del. Totacklethi, e c eccence tracting ba ed GP del, through which, e if the int fall the training c; e. The, e can alke del electing f; ix-GPFR del is BYY har lear ig. Excent et al cent the track et al tracklethic transformed by the constraint of the transformed by the

Ackno ledgement. Thi _v, ck i cted b the Nati al Ke R & D P; g a f Chi a (2018AAA0100205).

References

- 1. Ra e, C.E., Willia, C.K.I.: Ga ia R ce e f c Machi e Lear i g. MIT Re, Ca bridge (2006)
- 2. Shi, J.Q., Wag, B.: C. c e cedicti a d cl. teri g with intre f Ga ia c ce f cti alcegre i del. Stati t. C t. 18, 267 283 (2008)
- 3. Shi, J.Q., Chi, T.: Ga ia P. ce Rege i A al i f c F. cti al Data. CRC P.e., B ca Rat (2011)
- 4. W., D., Ma, J.: A DAEM alg cith f c ixt ce fGa ia c ce f cti al cege i . I : H a g, D.-S., Ha , K., H ai , A. (ed .) ICIC 2016. LNCS (LNAI), 1.9773, .294 303. S ci ge, Cha (2016). htt ://d i. cg/10.1007/978-3-319-42297-8_28
- 5. Qia g, Z., Ma, J.: A t atic del electi f the ixt ce f Ga ia ce f cege i . I : H , X., Xia, Y., Zha g, Y., Zha , D. (ed .) ISNN 2015. LNCS, 1. 9377, . 335 344. S ci ge, Cha (2015). htt ://d i. cg/10.1007/978-3-319-25393-0_37
- 6. Qia g, Z., L , J., Ma, J.: C ; e cl tei g ia the lit lear i g f ixt ; e f Ga ia ; ce e . I : 2016 IEEE 13th I ter ati al C fere ce Sig al Pr ce i g (ICSP), . 1089 1094 (2016)
- 7. Qia g, Z., Ma, J.: M del electi cedicti f c the ix.t ce f Ga ia c ce e v. ith RJMCMC.I : Shi, Z., Pe at , C., H a g, T. (ed .) ICIS 2018. IAICT, 1.539, .310 317. S ci ge, Cha (2018). htt ://d i. cg/10.1007/978-3-030-01313-4_33
- 8. Li, T., Ma, J.: Dirichlet c ce intre f Ga ia c ce f cti al cegre i a dit ariati al EM alg cith. Patter Rec g. 134, 109 129 (2023)
- 9. $Sch_{\alpha} a$, G.: E ti ati g the di e i f a del. A . Stati t. 6(2), 461 464 (1978)
- 10. Richard , S., Gree, P.J.: O Baeia aal i f ixtre with a k w. be f c et. J R al Statit. S c. (Ser. B) **59**(4), 731 792 (1997)
- 11. E c ba, M.D., Wet, M.: Ba e ia de it e ti ati a difere ce i g ixt ce. J.A. Statit. A c. **90**(430), 577 588 (1995)
- 12. X, L.: Yi g-Ya g achi e: a Ba e ia -K llback che e f ; i ed lear i g a d e_k, ; e lt ect ; a ti ati .I : Pr ceedi g fthe 1995 I ter ati al C fere ce Ne ; al I f ; ati Pr ce i g, 1.2, .977 988 (1995)
- 13. X, L.: Bethar, ied RPCL a dat ated del electi f; e ied a d e ied lear ig Ga ia intre, three-la e et a d ME-RBF-SVM del. It. J. Ne ral S t. 11(1), 43 69 (2001)

- 14. Che, G., Li, L., Ma, J.: A g adie t BYY ha lea i g alg cith f c traight li e detecti . I : S , F., Zha g, J., Ta , Y., Ca , J., Y , W. (ed .) ISNN 2008. LNCS, l. 5263, .618 626. S ci ge, Heidelberg (2008). htt ://d i. cg/10.1007/978-3-540-87732-5_69
- Li, L., Ma, J.: A BYY cale-i c e tal EM alg ; ith f; Ga ia is. t c lear i g. A l. Math. C 1. 205(2), 832 840 (2008)
- 16. Li, L., Ma, J.: A BYY lit-a d- erge EM alg rith fr Ga ia ixt relear i g. I : S., F., Zha g, J., Ta, Y., Ca, J., Y., W. (ed.) ISNN 2008. LNCS, l. 5263, . 600 609. S ri ger, Heidelberg (2008). htt ://d i. rg/10.1007/978-3-540-87732-5_67
- 17. Ma, J., Wag, T., X., L.: A gradiet BYY har lear i gr. le Ga ia intre_w ith at ated del electi. Ner c ti g 56, 481–487 (2004)
- 18. Ma, J., Ga, B., Wag, Y., Cheg, Q.: C j gate a d at calgradie tc le f GBYY har lear i g Ga ia intregith at ated del electi . It. J. Patter Recg. Actif. I tell. 19(5), 701 713 (2005)
- 19. Ma, J., Li, J.: The BYY a eali g lear i g alg rith f r Ga ia intre with a t ated del electi . Patter Rec g 40(7), 2029 2037 (2007)
- 20. Ma, J., He, X.: A fat, x.ed- it BYY har lear i g alg cith Ga ia ixt ce_y, ith at ated del electi . Patter Rec g . Lett. **29**(6), 701 711 (2008)
- 21. B c, C.D.: O calc lati g_w ith B- li e . J. A c x.i ati The c. 6, 50 62 (1972)