

Automatic Model Selection Algorithm Based on BYY Harmon^y Learning for Mi ture of Gaussian Process Functional Regressions Models

Xia g a g G , Ta H g, a d Ji_w e Ma^(\boxtimes)

De at et fIf : ai a dC tati al Scie ce, Sch 1 f Mathe atical Scie ce a d LMAM, Pekig Uierit, Beijing 100871, Chia jwma@math.pku.edu.cn

Abstract. $F \circ \cdot$ ite is it is determining the number of contribution of components is generally in the number of components in the number of components is absorbed in the number of components in the number of component referred t a model election. This area it for a danant alice model electi algorithm based Based is Ying-Yang (BYY) harmonical earning for mixture $f Ga$ ia ce f cti alcegue i ($\dot{\mathbf{k}}$ -GPFR) del BYY har learning has been successfully a hied to the model election problem of Gaussia $\dot{\mathbf{x}}$ tice del (GMM), bit it cannot be directly ed for that for ix-GPFR del. We dithe cae fini cble a d ceacige chai f c. c e. e.c. i. ci based Ga ia c c (GP) del , thr gh_{w} hich, we traficant a mix-GPFR del it a GMM. Thus, e can ake del election fc ix-GPFR del ia BYY harmony learning. Experimental results in $\frac{1}{x}$ that \therefore ed a t atic del electial g ith can d the ti al the optimal the optimal number fc et i a hi-scees edata et.

Ke^y ords: Mixte f Ga ia Proce Fui al Rege i · M del Selecti · Baeia Yig-Yag Harmony Learning · Curve Reconstruction

1 Introduction

Ga ia cee (GP) del area effective to f c Bae ia ie are are an etric cla i cati and regreti, e.g., classification and finally ritten digit and deligthe inverse deling inverse deling the inverse deal with \ln interaction in the multi- $\sec c$ e data et effectivel. To execut this limitation, in the original pro-ce functional regressions (in the GPFR) del_x external extensive proposed [\[2,](#page-11-1) [3\]](#page-11-2) and the extensive ϵ e each ha bee de tedt e ti atig their analyzing their efficies. a da 1 i g the t ceal-world c ble $[4–8]$ $[4–8]$.

Like the ite is the del, is GPFR del also face the c ble f del electi, a el deter i i g the number f Ga ia c ce f cti alcegre i (GPFR) cet. Sice a ia ciate becf GPFR cet will ie itablead to poste aliation ability, del election is figreation ability in tarte. In additit akig del electitilizing domain knowledge or experience, we can

al de ignaticatic del election algorithms. The traditional ethn ditional ethnical method is to choose the tial ber fGPFR compute the ghicertain tatitical election it erics in \mathbf{r} . Fc α a le, Qiaget al. [\[6\]](#page-11-5) cod the littig α ectation-maximization (SEM) algorith based the Base ia if cai criterion (BIC) [\[9\]](#page-11-6). H_we ex, all the exitig tatitical election citeria fle cause and improvement of GPFR components of G PFR components of G a d the e f a tatitical electicities incurs a high time contexity, ince we eed to repeat the whole parameter estimating correct for different numbers of GPFR c et. M ϵe^{α} et as the chastic induction methods, chaste et ible jump Mark chai M te Carl $[10]$ and Dirichlet contracted $[11]$, have also been used to deal with the del electic ble f ix-GPFR del [\[5,](#page-11-9) [7,](#page-11-10) [8\]](#page-11-4). H_w e α , the e eth¹ d re recellecting a large ber f a le_{rg} hich results in a high contrational contrational contrational contrational cost. F Ga ia κt see del (GMM), the a t atic del electial g sith baed Baeia Yig-Yag (BYY) harmoning $[a, 13]$ $[a, 13]$ have actual better re lt a d higher computation speed than those based on tatistical selection criterial a d t cha tic i lati eth d [\[14](#page-12-0)[–20\]](#page-12-1).cdü iig a baedBed harmonical learning or mix-GPFR de.alBed

ix-GRFR f ia_m hi, e ia de, bal ed 8 del *i*x-GPFR f; aalgorithedectivelectional debautatic $\mathfrak{e}\mathfrak{e}$. It i

Here, i ce the i dicat c xiable i calx, e denote it a z i tead f . F c the GMM, $\alpha_{\mathbf{g}}$ is tablish the following BYY step: $q(z = g) = \pi_g$; $q(\ |z = g) = \mathcal{N}(\ | \mu_g, \Sigma_g)$; $p(\) = \frac{1}{I} \sum_{i=1}^{I}$ *i*=1 $\delta(-i)$, i.e. the e is ical dentity function;

$$
p(z = g|) = \frac{\pi_g \mathcal{N}(\|\mathbf{\mu}_g, \mathbf{\Sigma}_g)}{\sum_{s=1}^G \pi_s \mathcal{N}(\|\mathbf{\mu}_s, \mathbf{\Sigma}_s)}.
$$
 (3)

M α ex. α eig ce the ceg lation term *r*, i.e. et $r = 1$. The n_{α} e have

$$
H(p||q) = J(\Theta) = \frac{1}{I} \sum_{i=1}^{I} \sum_{g=1}^{G} \frac{\pi_g \mathcal{N}(\mathbf{u}|\mathbf{\mu}_g, \Sigma_g)}{\sum_{s=1}^{G} \pi_s \mathcal{N}(\mathbf{u}|\mathbf{\mu}_s, \Sigma_s)} \mathbf{1}(\pi_g \mathcal{N}(\mathbf{u}|\mathbf{\mu}_g, \Sigma_g)), \quad (4)
$$

g, here *J*(Θ) i called harmony function and $\Theta = {\pi_g, \mu_g, \Sigma_g}_{g=1}^G$.
According to BYY harmoning, the maximum of *J*(Θ) corresponds to the

ti al \overline{bc} fGa ia components and the best and etce [\[14–](#page-12-0)[20\]](#page-12-1). Hence, we can ake del electi a de ti ate the a a eter b axi i i $g J(\Theta)$. I the c ce f x_i i i $g J(\Theta)$, the \dot{x} i $g \in \text{tri}$ f the redulat Gaussian components of the redundant Gaussian compon c enget enc. C are d_x ith the at atic del electial grith based tatistical electical telection criteria and t chastic in lation et hods, the based BYY harmonical ingular eact in ed better results and higher computation speed [\[14](#page-12-0)[–20\]](#page-12-1).

3 Automatic Model Selection Algorithm Based on BYY Harmony Learning

Firtly, we briefly introduce the mix-GPFR del. A GP is a collection fraud ariables, and its subset of which is subject to a Gaussian distribution [\[1\]](#page-11-0). To specify a GP { $f(\)$ $\in \mathcal{X} \subseteq \mathbb{R}^D$ }, $\frac{1}{x}$ e 1 eed t determine its mean function *m*() and c a ia ce f ci $c($, ' $),$ _x here.

$$
m() = \mathbb{E}[f()] \text{ a d c(}, ') = \mathbb{E}[(f() - m())(f(') - m('))] \tag{5}
$$

where the GP i denoted as

$$
f(\cdot) \sim \mathcal{GP}\big(m(\cdot), c(\cdot, \cdot)\big). \tag{6}
$$

In κ -GPFR del, i ce $D = 1$, κ e denote the input as *x* in tead of . The , a **ix**-GPFR del_x ith *G* GPFR components can be established through the f ll_x i g $f \cdot$ lae:

$$
q(z = g) = \pi_g
$$
, where $\pi_g \ge 0$ a d $\sum_{g=1}^{G} \pi_g = 1$; (7)

$$
q(y(x)|z = g) = \mathcal{GPFR}(x|\mathbf{b}_g, \mathbf{\theta}_g, r_g) = \mathcal{GP}\Big(m(x|\mathbf{b}_g), c(x, x'|\mathbf{\theta}_g) + r_g^{-1}\delta(x, x')\Big).
$$
\n(8)

394 X. G. et al.

I E. (8) , $\delta(x, x')$ i the Krecker delta function,

$$
m(x|\mathbf{b}_g) = \varphi(x)^T \mathbf{b}_g \text{ a d}c(x, x'|\mathbf{\theta}_g) = \theta_{g0}^2 \alpha. \left\{-\frac{(x-x')^2}{2\theta_{g1}^2}\right\},\tag{9}
$$

where $\varphi(x) = [\varphi_1(x), \varphi_2(x), \ldots, \varphi_P(x)]^T$ is a c 1 ect of B-lie [\[21\]](#page-12-2) and $c(x, x'| \theta_g)$ is referred to a the social covariance function. θ_g ₀, θ_{g1} , and r_g are itie aa eters.

The Yig achie f the $\dot{\mathbf{k}}$ -GPFR del i

$$
q(z = g, y(x)) = q(z = g)q(y(x)|z = g) = \pi_g \mathcal{GPTR}(x|\mathbf{b}_g, \mathbf{\theta}_g, r_g)
$$
(10)

a dit Yag achiei

$$
p(z = g, y(x)) = p(y(x))p(z = g|y(x)) = p(y(x))\frac{\pi_g \mathcal{GPTR}(x|\mathbf{b}_g, \theta_g, r_g)}{\sum_{s=1}^G \pi_s \mathcal{GPTR}(x|\mathbf{b}_s, \theta_s, r_s)}.
$$
 (11)

We denote a training curve data et a $D = {C_i} I_{i=1}^I$, where $C_i = {(x_{in}, y_{in})}_{n=1}^N$ represent a training curve data of α $D = (U_1)_{i=1}^T$, α nece $U_i = ((x_m, y_m)I_{n=1})$
is ce e t a training curve file gth *N_i*. It is generally assumed that x_{i1}, \ldots, x_{iN_i} are \mathbf{r}_1 d 1 dit is the interval $[x_{i}, x_{i}, (i = 1, ..., I)$. Let $i = [x_{i1}, ..., x_{iN_i}]^T$, $\mathbf{V}_i = [y_{i1}, \dots, y_{iN_i}]^T$, and $\Theta = {\pi_g, \mathbf{b}_g, \mathbf{\theta}_g, \mathbf{r}_g}_{g=1}^G$. For the mix-GPFR del,

$$
H(p||q) = \sum_{g=1}^{G} f p(y(x))p(z = g|y(x))1 \ (q(z = g)q(y(x)|z = g))dy(x) \tag{12}
$$

can the act x_i at a the act x_i at e

$$
J(\Theta) = \frac{1}{I} \sum_{i=1}^{I} \sum_{g=1}^{G} \frac{\pi_g \mathcal{N}(\vec{P}_i | \mathbf{m}_{ig}, \mathbf{C}_{ig})}{\sum_{s=1}^{G} \pi_s \mathcal{N}(\vec{P}_i | \mathbf{m}_{is}, \mathbf{C}_{is})} 1 (\pi_g \mathcal{N}(\vec{P}_i | \mathbf{m}_{ig}, \mathbf{C}_{ig}))
$$
(13)

 $\mathbf{m}_{ig} = m(\iota_i | \mathbf{b}_g)$ a d $\mathbf{C}_{ig} = c(\iota_i \iota_i | \mathbf{\theta}_g) + r_g^{-1} \mathbf{I}_{N_i \cdot \mathbf{v}_g}$ here \mathbf{I}_{N_i}

 $\hat{\mathcal{C}}_i = \left\{ (x_n, \hat{y}_i) \right\}_{n=1}^N$ from $\hat{f}_i(x)_{\hat{y}_i}$ ith $x_n = x_i + (n-1)\Delta$. D. ci g a li g, the axia ce f Gaussian noise is

$$
\sigma_1^2 = \frac{1}{N_i} \sum_{n=1}^{N_i} \left(y_{in} - \hat{f}_i(x_{in}) \right)^2.
$$
 (14)

It i clear that

$$
\sigma_2^2 = \frac{1}{N_i} \sum_{n=1}^{N_i} (y_{in} - f_i(x_{in}))^2
$$
 (15)

ia biaed e ti ate f the a ia ce f Ga ia i e i the c ce f a lig C_i from *f_i*(*x*). He ce, σ_1^2 i ag de ti ate fibe a ia ce the a ii that there are

ig i ca t difference bet_wee $f_i(x)$ and $f_i(x)$. Intuitively, C_i i and C_i is a good and α and α $f C_i$. That it a , the difference bet_y een the teric eans of ctic econe difference in the posterior means of \hat{f} *C*_{*i*} a d *C*_{*i*}, c ecti el , i all, which will be alidated through experiments in Sect. [4.](#page-5-0)

Let $\hat{\mathcal{D}} = \sum_{i=1}^{n}$ $\mathbf{F}_i = [\hat{x}_1, \hat{x}_2, \dots, \hat{x}_N]^T$, and $\mathbf{F}_i = [\hat{y}_{i1}, \hat{y}_{i2}, \dots, \hat{y}_{iN}]^T$. \mathbf{F}_i can be regarded a a a \downarrow e fihe fll $_{\kappa}$ i g GMM:

$$
q(z = g) = \pi_{g_{\mathfrak{P}}}\text{ he } e\pi_g \ge 0 \text{ a d } \sum_{g=1}^{G} \pi_g = 1; \ q(\blacklozenge | z = g) = \mathcal{N}(\blacklozenge | \mathbf{m}_g, \mathbf{C}_g), \quad (16)
$$

 $\mathbf{e}_{\mathbf{g}}$ here $\mathbf{m}_{g} = m(|\mathbf{b}_{g})$ and $\mathbf{C}_{g} = c(|\mathbf{a}_{g}) + r_{g}^{-1}\mathbf{I}_{N}$. It Ying achive is

$$
q(z = g, \blacktriangledown) = q(z = g)q(\blacktriangledown)z = g) = \pi_g \mathcal{N}(\blacktriangledown) \mathbf{m}_g, \mathbf{C}_g)
$$
(17)

a dit Yag achiei

$$
p(z = g, \overline{\bullet}) = p(\overline{\bullet})p(z = g|\overline{\bullet}) = p(\overline{\bullet})\frac{\pi_g \mathcal{N}(\overline{\bullet})_{m_g, \mathbf{C}_g}}{\sum_{s=1}^G \pi_s \mathcal{N}(\overline{\bullet})_{m_s, \mathbf{C}_s}}.
$$
(18)

The , it core dighas foci is

$$
J(\Theta) = \frac{1}{I} \sum_{i=1}^{I} \sum_{g=1}^{G} \frac{\pi_g \mathcal{N}(\overline{\blacktriangledown_i}|\mathbf{m}_g, \mathbf{C}_g)}{\sum_{s=1}^{G} \pi_s \mathcal{N}(\overline{\blacktriangledown_i}|\mathbf{m}_s, \mathbf{C}_s)} \mathbf{1} \ (\pi_g \mathcal{N}(\overline{\blacktriangledown_i}|\mathbf{m}_g, \mathbf{C}_g)).
$$
 (19)

A i the ca e_{κ} ith GMM , the α , i f $J(\Theta)$ c corresponds to the ti also ber f GPFR components and the best and etc. Therefore, we can also delived selections of the selection of G a d learn the aran eter by aximize $J(\Theta)$ through numerical optimization eth d.

After the training coe, we can determine the class of a training correlation of a training curve according t the x_i a teriori probability, i.e. let

$$
z_i = \underset{g \in \{1, 2, \dots, G\}}{\arg} \underset{\sum_{s=1}^{G} \pi_s \mathcal{N}(\widehat{\blacktriangledown_i}|\mathbf{m}_g, \mathbf{C}_g)}{\sum_{s=1}^{G} \pi_s \mathcal{N}(\widehat{\blacktriangledown_i}|\mathbf{m}_s, \mathbf{C}_s)} (i = 1, 2, \dots, I). \tag{20}
$$

The red dat GPFR components don't get an intervents due to their example α all $\dot{\mathbf{x}}$ ig cti . The class fate test can also be determine in this way. Be ide, f c a te t c.c e, e can cedict the te t outputs by calculating their conditional dit is the interesting the known outputs. The details are referred to [\[4](#page-11-3)[–8\]](#page-11-4).

4 E perimental Results

I this ective exists is the their datasets and t_w real-world datasets to exifit the effective \overrightarrow{f} contract and automatic del election algorithm. We compare ix-GPFR del trained in ζ or ed algorithm with GP del, ix-GP del, GPFR del, a d μ -GPFR del trained through the traditional EM algorithm [\[2,](#page-11-1) [3\]](#page-11-2) a d the SEM alg c ith $[6]$.

Since we are mainly concerned with the vediction ability for κ -GPFR del, the rooted ean save error (RMSE) is chosen as the evaluation et inc. It is a d that there are *T* te t c c e a d the test t t f the *t* th $(t = 1, 2, ..., T)$ te t c. care y_{t1} , y_{t2} , ..., y_{tM} , where corresponding rediction aller are \hat{y}_{t1} , \hat{y}_{t2} , ..., \hat{y}_{tM} , re ectiel. It fll_k that

RMSE
$$
\stackrel{\text{...}}{=} \frac{1}{TM} \sum_{t=1}^{T} \sum_{m=1}^{M} (y_{tm} - \hat{y}_{tm})^2
$$
. (21)

A are tl, a aller RMSE i dicate a better redicti result.

4.1 On Synthetic Datasets

The i e thetic data et are deted a S_2, S_3, \ldots, S_{10} , respectively, here the subcrit se se e tihe numbers for e t. F seach components, e a "le 20 training cce a d 10 tet cce from a GP with - e can from a from from a from $c \cdot e$ mean functions of α is a GP with α ad aa eter fihe Ga ia ce e edi generate the ine i the nicolata et are lit in Table [1,](#page-6-0) where S_l ($l = 2, 3, ..., 10$) are generated by the i t *l* GP. Each ccec it f 100 it, the interacted 1 dit is the idea in the 100 point in the left idea fate in case k and the 40 e the sight idea e the left ide fate $x \text{ c}$ care k_w a d the 40 e the right ide are $ed f \cdot te \vee i g.$

Firstly, edemonstrate the effectiveness of curve reconstrated on GP del thr.ghex.eiet. A trainig c ceirad 1 chef each ceti S_9 . Figure [1](#page-6-1) ce et the construction curve file is the intension curve of the nine training curve in Figure 1 is comed f9 b-g ce, each f_{κ} hich ce e t a training c c e, it cecns cuive, a d their teric ea fodi. A can be een from the g ce, although the e are ig i ca t difference bet_ween a training c ce and it reconstruction curve, their posteric ea f cti $\alpha e^{\int u}$ ilar, which i lie that c c educe each teletion ba ed GP del i effective.

When testing ϵ and ϵ ed algorith of *G* is initialized as *l* +3 f ϵ *S*_{*l*}. T illustrate the bad effect fa_{κ} ; g_{κ} be: f GPFR components on prediction abilit_y etcain ix-GPFR del c^{ons} i ti g f*l*−1 and *l*+1 GPFR components via the EM algorithm [\[2,](#page-11-1) [3\]](#page-11-2), which are denoted a \cdot ix-GPFR (-1) and \cdot ix-GPFR (+1), \cdot energiels. Similarly, \mathbf{k} -GP del_w ith *l* − 1 and *l* + 1 GP components are denoted as \mathbf{k} -GP (-1), and \therefore ix-GP (+1), \neq ectivel. Beside, *P* is et to be [2](#page-7-0)0. Table 2 \neq e e t the experimental experi \mathfrak{e} . \mathfrak{h} .

Fr Table 2_{xy} e ee that the RMSE f the GPFR del and the ix-GPFR del are aller than the effit of the GP del and the κ -GP del, respectively, which

Table 1. Mea f cti a d a a eter fine Ga ia c c e e d t generate the i e thetic data et .

Mea f cui	θ^T	$\sqrt{r^{-1}}$
x^2	[0.5, 0.5]	0.15
$\left(-4(x+1.5)^2+9\right)1_{\{x<0\}}+\left(4(x-1.5)^2-9\right)1_{\{x\ge0\}}$	[0.528, 0.4]	0.144
8 i $(1.5x - 1)$	[0.556, 0.3]	0.139
i $(1.5x) + 2x - 5$	[0.583, 0.2]	0.133
i $(4x) - 0.5x^2 - 2x$	[0.611, 0.1]	0.128
$-x^2$	[0.639, 0.1]	0.122
$(4(x+1.5)^2-9)1_{x<0}+(-4(x-1.5)^2+9)1_{x\ge0}$	[0.667, 0.2]	0.117
5 c $(3x + 2)$	[0.694, 0.3]	0.111
c $(1.5x) - 2x + 5$	[0.722, 0.4]	0.106
c $(4x) + 0.5x^2 + 2x$	[0.75, 0.5]	0.1

Fig. 1. The result fcs erecurs di the the tic data et The red, gree, ble, and black curve ce represent the original curve, the reconstructed curve, the posterior mean function of means function of \mathbb{R}^n the ciginal cc e, and the text can function of the reconstructed curve existed.

de tate the effective e f deligible ea f cti a a liear c biati f B-li e . B c a i g the $\dot{\mathbf{k}}$ -GP ($\dot{\mathbf{k}}$ -GPFR) del and the GP (GPFR) del, the eed frit d cig the ixtre trateduce is demonstrated. Furthermore, we can see that $a_w \rvert s = g$ ber f GPFR components affect the rediction result badle. For S_2, S_3, \ldots, S_9 , b th the SEM algorithm and our proposed algorithm find the correct ber f GPFR components and their RMSE are close. H_x e et the time components are close. However, the time complexity f the SEM alg cith is higher than that for contract algorithm. On the one hand, the SEM algorithed to repeat the whole parameter is gone of codifferent \therefore ber fGPFR c et. Othe the hand, i ce different training curve have differenting the loop of the loop structure to use the structure when $\sin \theta$ is the main problem programming. This is the main reastight the SEM algorithm has a high time complexity. For S_{10} , ince the SEM algorith fail to dithe true ber fGPFR components, it RMSE is larger than that $f \circ \mathfrak{c}$ ed alg \mathfrak{c} ith.

Taking S_9 f $\cos a$ le, $\cos a$ degree the clustering results of our proposed algorithm i Fig. [2,](#page-8-0) where different colors represent different components. On the left and right ide f Fig. 2 are the clustering result for clustering red algorithm the training and tet dataset, respectivel. It is clear that our correctle algorithm correctly find all the c et.

	\mathcal{S}_2		S_3		S_4	
	RMSE	Ti e(i)	RMSE	Ti $e(i)$	RMSE	Ti $e(i)$
GP	5.5831	6.87	4.7878	9.88	4.7798	13.09
$\dot{\mathbf{k}}$ -GP (-1)	5.5239	6.12	4.6125	8.90	4.3580	15.84
\bf{k} -GP $(+1)$	4.8240	7.39	4.6035	17.40	4.3488	23.31
GPFR	5.0759	6.68	4.6864	12.42	4.3051	17.72
$\mathbf{\hat{x}}$ -GPFR (-1)	5.0214	8.07	0.9416	15.95	0.9510	18.93
$\dot{\mathbf{k}}$ -GPFR $(+1)$	1.6846	14.20	1.0680	22.66	0.9319	25.79
k-GPFR (SEM)	0.4312	20.63	0.4856	41.59	0.5469	58.97
k-GPFR (BYY)	0.4401	9.46	0.4746	15.03	0.5403	18.64
	S_5		\mathcal{S}_6		S ₇	
	RMSE	Ti $e(i)$	RMSE	Ti $e(i)$	RMSE	Ti $e(i)$
GP	4.9213	17.85	4.9897	15.07	5.3096	20.47
$\dot{\mathbf{k}}$ -GP (-1)	4.4775	15.03	4.3834	20.14	4.3025	30.66
$\dot{\mathbf{k}}$ -GP $(+1)$	4.5205	28.59	4.3813	29.19	4.3082	30.53
GPFR	4.8079	26.73	4.8649	24.25	4.9871	21.45
$\dot{\mathbf{k}}$ -GPFR (-1)	0.8756	31.66	1.0776	29.67	1.3295	32.09
$\mathbf{\dot{x}}$ -GPFR $(+1)$	0.9252	30.58	1.0270	35.37	1.0281	38.44
k-GPFR (SEM)	0.5638	81.34	0.6057	87.52	0.6540	92.78
κ -GPFR (BYY)	0.5573	25.49	0.6137	23.66	0.6571	27.82
	S_8		S_9		S_{10}	
	RMSE	Ti $e(i)$	RMSE	Ti $e(i)$	RMSE	Ti $e(i)$
GP	4.8180	19.67	4.4758	17.82	4.8438	21.67
\bf{k} -GP (-1)	4.4904	24.13	4.1223	32.36	4.5730	32.78

Table 2. RMSE a ds. i gti e fall the eth d the thetic data et.

(*continued*)

	\mathcal{S}_2		S_3		\mathcal{S}_4	
	RMSE	Ti e(i)	RMSE	Ti e(i)	RMSE	Ti e(i)
\bf{k} -GP $(+1)$	4.4818	23.70	4.1214	30.95	4.5878	28.14
GPFR	4.6871	26.73	4.3686	21.67	4.6865	20.97
κ -GPFR (-1)	1.5325	33.78	1.0585	40.27	1.5279	41.56
κ -GPFR $(+1)$	1.1891	35.96	0.9789	39.38	1.0343	49.78
κ -GPFR (SEM)	0.6448	99.49	0.6233	116.85	1.4379	130.65
κ -GPFR (BYY)	0.6421	28.91	0.6199	28.62	0.6317	32.46

Table 2. (*continued*)

Fig. 2. Clust gee h f c c ed at alice del election algorithm S_7 and S_9 .

4.2 On Real-World Datasets

Here, et ilize the electricity load dataset is the Northwest China Grid Com-a [\[8\]](#page-11-4), which rec rd electricity loads every 15 min 2009 and 2010. Hence, daily electricitⁿl ad can be regarded a a c r e_x ith 96 points. We divide the data et into t_{κ} b-dataset according to the ear, which are referred to a \mathcal{R}_1 and \mathcal{R}_2 , respectively. Each b-data et c it f 200 training c c e f c and 165 te t c c e . M c e α , the 56 it the left ide fate $t \in \csc \sec k_{w}$ a d the 40 e the right ide are $ed f$ te tig.

Fig. 3. The cellt fcc ecechicit in the electricity load dataset. The ced, green, blue, a d black c c e c e e t the ciginal c c e, the cec t c d e d c c e, the teric e a f ci f the ciginal c c e, and the text can function of the cecile curve existed curve function of the reconstructed curve function of the reconstruction of the reconstruction of the reconstruction of the reconstruction of the r

Altheugh all the cover have the acid them inputs them as if the don't have the a ei t. Like the thetic data et , we randomly choose $f \mathcal{R}_1$, where the curve are releasing Fig. [3.](#page-9-0) A called each the figure, on ϵ ed c ϵ e cecus cuive a ed GP del is effective for the electricity load data et.

Sice the before ti \mathcal{R}_1 and \mathcal{R}_2 are unknown, we set $G =$ 3, 6, 9, 12, 15 f c the κ -GP and κ -GPFR del trained in g the EM algorith. For $s = ed$ algorithm and the SEM algorithm, *G* in ether be 15. Be ide, *P* in ether set of the 15. Besides, *P* in ether set of the 15. Besides, *P* in ether set of the 15. Besides, *P* in ether set of the 15. Beside set t be 30. The α , α i e tal ce lt α e de α ibed in Table [3.](#page-10-0) F α \mathcal{R}_1 and \mathcal{R}_2 , the RMSE f c c ed alg cith i aller than that f the SEM algorithm ince the number of the number of the since the number of the number c et gieb the SEM algorithicaller than the ti algorithm is smaller than the one. The clustering re μ are resulted in Fig. [4.](#page-10-1) On the left and right identify fig. [4](#page-10-1) are the clustering re \mathfrak{h} f \mathfrak{c} c ed algorith the training and test dataset, respectively. For \mathcal{R}_1 a d \mathcal{R}_2 , the before the number of computer is a component of components gotten via our proposed algorithm are 13 and 11, re ectiel. A ca be een frig. [4,](#page-10-1) curve belonging to different components are bi. 1 differe ti a certaii. ti ter al, that it a, the clustering result give b the alg cith α ecea able.

Fig. 4. Clust gee lt f c c ed at aic del electi alger ih \mathcal{R}_1 and \mathcal{R}_2 .

	\mathcal{R}_1		\mathcal{R}_{2}		
	RMSE	Ti $e(i)$	RMSE	Ti $e(i)$	
GP	0.9599	19.43	0.8977	20.39	
$\mathbf{\dot{x}}$ -GP (3)	0.9390	20.33	0.8846	21.42	
\bf{k} -GP (6)	0.9387	22.54	0.8854	22.66	
$\mathbf{\dot{r}}$ -GP (9)	0.9380	25.99	0.8853	26.09	
\bf{k} -GP (12)	0.9395	29.83	0.8847	31.23	
\bf{k} -GP (15)	0.9401	34.76	0.8872	36.91	
GPFR	0.5584	21.30	0.5499	21.59	
\mathbf{k} -GPFR (3)	0.2089	24.45	0.2133	20.64	
$\mathbf{\dot{x}}$ -GPFR (6)	0.1701	25.76	0.1731	24.77	
κ -GPFR (9)	0.1356	28.93	0.1455	29.45	
κ -GPFR (12)	0.1248	34.65	0.1314	33.63	
$\mathbf{\dot{x}}$ -GPFR (15)	0.1178	35.88	0.1301	36.78	
κ -GPFR (SEM)	0.1323	150.76	0.1377	170.17	
κ -GPFR (BYY)	0.1109	33.97	0.1201	34.58	

Table 3. RMSE and c in guine fall the ethod \mathcal{R}_1 and \mathcal{R}_2 .

5 Conclusion

I this a $\mathfrak{e}_{\gamma_{x}}$ e c e and automatic del election algorithm based BYY harmony learig f c κ -GPFR del. Si ce differe t training c c e have different inputs, BYY harmonic learning cannot be directly applied to the model election problem of B ix-GPFR del. T tackle this, e c e c e c e cecurve reconstruction based GP dels, the gh_w hich, we if the input full the training curves. Then, we can also del electi^{on} f c $\ddot{\mathbf{k}}$ -GPFR del ia BYY harmolearig. Experimental results on $\ddot{\mathbf{k}}$ thetic and real-world datasets h_{κ} that our proposed and are delived selection algorithear dthe tial b \mathbf{e} for et in a lti-source components dataset a dit ti e c lexit i l_{κ} ethan that f the SEM algorith.

Ackno ledgement. Thi_n k is sted by the National Ke R & D Program f Chia (2018AAA0100205).

References

- 1. Rassen, C.E., Willia, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Ca σ kidge (2006)
- 2. Shi, J.Q., Wang, B.: Ce e cedicting and clustering with mixtures of Gaussian coe f. ci alcegre i del Statit. C \therefore 1. **18**, 267–283 (2008)
- 3. Shi, J.Q., Ch i, T.: Ga ia Proce Regresi Analif for Fredinal Data. CRC Press, $B \text{ ca } \text{Ra} \quad (2011)$
- 4. W., D., Ma, J.: A DAEM algorithm for κt , ce for all κ ce for cui alcege i I : H a g, D.-S., Ha, K., H ai, A. (ed.) ICIC 2016. LNCS (LNAI), 1.9773, .294 303. S c i gec, Cha (2016). htt ://d i. cg/10.1007/978-3-319-42297-8_28
- 5. Qiang, Z., Ma, J.: Automatic del election fithe interest of Gaussian concentration of the mixtures of Gaussian processes for the mixtures of Gaussian processes for the mixtures of Gaussian processes for the mixtures of $c. (e.g. e.i. I.H., X., Xia, Y., Zhag, Y., Zha, D. (ed.) ISNN 2015. LNCS, 1.9377,$. 335–344. S ci ger, Cha (2015). http://doi.org/10.1007/978-3-319-25393-0_37
- 6. Qiang, Z., L., J., Ma, J.: C.: e clusting ia the lit learning finitude of Gaia ce e I : 2016 IEEE 13th I te ati al C fere ce Signal Processing (ICSP), pp. 1089–1094 (2016)
- 7. Qiang, Z., Ma, J.: M del election ediction for the mixture of Gaussian processes with RJMCMC. I: Shi, Z., Peart, C., Hag, T. (ed.) ICIS 2018. IAICT, 1.539, .310³317. S ci get, Cha (2018). http://doi.org/10.1007/978-3-030-01313-4_33
- 8. Li, T., Ma, J.: Dirichlet ce interest for interval regressions and its ariati al EM alg cith . Pattern Rec g . **134**, 109–129 (2023)
- 9. Sch_w a , G.: E ti atig the die if a del. A . Statit. **6**(2), 461–464 (1978)
- 10. Richard , S., Green, P.J.: On Baeia and infusive with an unknown ber f e t. J R al Stati t. S c. (Ser. B) **59**(4), 731–792 (1997)
- 11. Ecbar, M.D., Wet, M.: Baeia de it eti ati a di fere ce i g ixtre. J. A. Statit. A c. 90(430), 577–588 (1995)
- 12. X, L.: Ying-Yang achie: a Baeia -Kullback cheme for unified learning and q_c re lt ect a ti ati . I: Proceeding fihe 1995 International Conference Neural I f : ai P ce i g, l. 2, .977–988 (1995)
- 13. X, L.: Bet harmony, in ed RPCL and at model del election for uncursus et al. d supervised learning of Gaussian mixture, three-land and ME-RBF-SVM del . It. J. Ne. cal S_{t.} **11**(1), 43–69 (2001)
- 14. Che, G., Li, L., Ma, J.: A gradient BYY harmonic algorithm for traight line detecti. I: S., F., Zhang, J., Tan, Y., Can, J., Y., W. (ed.) ISNN 2008. LNCS, 1.5263, . 618–626. S c i get, Heidelberg (2008). http://doi.org/10.1007/978-3-540-87732-5_69
- 15. Li, L., Ma, J.: A BYY cale-incremental EM algorithm for Gaussian mixture learning. A 1. Math. C_{t.} 205(2), 832–840 (2008)
- 16. Li, L., Ma, J.: A BYY lit-a d- erge EM algorith for Gaussian intercelearning. In: Sun, F., Zha g, J., Ta, Y., Ca, J., Y., W. (ed.) ISNN 2008. LNCS, 1. 5263, p. 600–609. S ci ger, Heidelberg (2008). http://doi.org/10.1007/978-3-540-87732-5_67
- 17. Ma, J., Wang, T., X., L.: A gradient BYY harmonical right learning rule of a mixture with a t at add del electi. Ne. c ti g **56**, 481–487 (2004)
- 18. Ma, J., Ga, B., Wang, Y., Cheng, Q.: Cigate and natural gradients lengths BYY harmony learig Gaussian κt . ϵ_{w} it has the ated del election. Int. J. Pattern Recogn. Artif. Intell. **19**(5), 701–713 (2005)
- 19. Ma, J., Li, J.: The BYY a ealiglearig algorith for Gaussian κt . ce_{w} ith at ated del electi . Pattern Rec g **40**(7), 2029–2037 (2007)
- 20. Ma, J., He, X.: A fa t x ed- i t BYY harmonical igalgorithm Gaussian \mathbf{r} ture with a t at ed del electi . Pattern Rec g. Lett. **29**(6), 701–711 (2008)
- 21. B c, C.D.: O calc. latig_x it h B-li e . J. A c x i ati The c. 6, 50–62 (1972)