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Abstract. For finite mixture models, determining the number of components is
referred to as model selection. This paper puts forward an automatic model selec-
tion algorithm based on Bayesian Ying-Yang (BYY) harmony learning for mixture
of Gaussian process functional regressions (mix-GPFR) models. BYY harmony
learning has been successfully applied to the model selection problem of Gaus-
sian mixture models (GMMs), but it cannot be directly used for that of mix-GPFR
models. We find out the cause of this problem and propose a coping mechanism of
curve reconstruction based on Gaussian process (GP) models, through which, we
transform a mix-GPFR model into a GMM. Thus, we can make model selection
for mix-GPFR models via BYY harmony learning. Experimental results show that
our proposed automatic model selection algorithm can find the optimal number
of components in a multi-source curve dataset.

Keywords: Mixtures of Gaussian Process Functional Regressions · Model
Selection · Bayesian Ying-Yang Harmony Learning · Curve Reconstruction

1 Introduction

Gaussian process (GP) models are an effective tool for Bayesian nonlinear nonparamet-
ric classification and regression, e.g., classifying the images of handwritten digits and
modeling the inverse dynamics of a robot arm [1]. However, they cannot deal with multi-
source curve datasets effectively. To overcome this limitation, mixture of Gaussian pro-
cess functional regressions (mix-GPFR) models were proposed [2, 3] and then extensive
research has been devoted to estimating their parameters, analyzing their performance,
and applying them to real-world problems [4–8].

Like other finite mixture models, mix-GPFR models also face the problem of
model selection, namely determining the number of Gaussian process functional regres-
sion (GPFR) components. Since an inappropriate number of GPFR components will
inevitably lead to poor generalization ability, model selection is of great importance. In
addition to making model selection utilizing domain knowledge or experience, we can
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also design automatic model selection algorithms. The traditional method is to choose
the optimal number of GPFR components through certain statistical selection criterion.
For example, Qiang et al. [6] proposed the splitting expectation-maximization (SEM)
algorithm based on the Bayesian information criterion (BIC) [9]. However, all the exist-
ing statistical selection criteria often cause an improper number of GPFR components
and the use of a statistical selection criterion incurs a high time complexity, since we
need to repeat the whole parameter estimating process for different numbers of GPFR
components. Moreover, stochastic simulation methods, such as reversible jump Markov
chain Monte Carlo [10] and Dirichlet processes [11], have also been used to deal with
the model selection problem of mix-GPFR models [5, 7, 8]. However, these methods
require collecting a large number of samples, which results in a high computational cost.

For Gaussian mixture models (GMMs), the automatic model selection algorithms
based on Bayesian Ying-Yang (BYY) harmony learning [12, 13] have acquired better
results and higher computation speed than those based on statistical selection criteria
and stochastic simulation methods [14–20
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Here, since the indicator variable is scalar, we denote it as z instead of z. For the GMM,
we establish the following BYY system: q(z = g) = πg ; q(x|z = g) = N (

x|μg,�g
)
;

p(x) = 1
I

I∑
i=1

δ(x − xi), i.e. the empirical density function;

p(z = g|x) = πgN
(
x|μg,�g

)
∑G

s=1 πsN (x|μs,�s)
. (3)

Moreover, we ignore the regularization term r, i.e. set r = 1. Then, we have

H (p||q) = J (�) = 1

I

I∑

i=1

G∑

g=1

πgN
(
xi|μg,�g

)
∑G

s=1 πsN (xi|μs,�s)
ln

(
πgN

(
xi|μg,�g

))
, (4)

where J (�) is called harmony function and � = {
πg,μg,�g

}G
g=1

.
According to BYY harmony learning, the maximum of J (�) corresponds to the

optimal number of Gaussian components and the best parameters [14–20]. Hence, we can
make model selection and estimate the parameters by maximizing J (�). In the process
of maximizing J (�), the mixing proportions of the redundant Gaussian components
converge to zero. Compared with the automatic model selection algorithms based on
statistical selection criteria and stochastic simulation methods, those based on BYY
harmony learning have acquired better results and higher computation speed [14–20].

3 Automatic Model Selection Algorithm Based on BYY Harmony
Learning

Firstly, we briefly introduce the mix-GPFR model. A GP is a collection of random
variables, any finite subset of which is subject to a Gaussian distribution [1]. To specify
a GP {f (x)|x ∈ X ⊆ R

D}, we only need to determine its mean function m(x) and
covariance function c

(
x, x′), where.

m(x) = E
[
f (x)

]
and c

(
x, x′) = E

[
(f (x) − m(x))

(
f
(
x′) − m

(
x′))]. (5)

whereupon the GP is denoted as

f (x) ∼ GP(
m(x), c

(
x, x′)). (6)

In mix-GPFR models, since D = 1, we denote the input as x instead of x. Then, a
mix-GPFR model with G GPFR components can be established through the following
formulae:

q(z = g) = πg, where πg ≥ 0 and
G∑

g=1

πg = 1; (7)

q(y(x)|z = g) = GPFR(
x|bg, θg, rg

) = GP
(
m

(
x|bg

)
, c

(
x, x′|θg

) + r−1
g δ

(
x, x′)).

(8)
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In Eq. (8), δ
(
x, x′) is the Kronecker delta function,

m
(
x|bg

) = ϕ(x)Tbg and c
(
x, x′|θg

) = θ2
g0exp

{
−

(
x − x′)2

2θ2
g1

}
, (9)

where ϕ(x) = [ϕ1(x), ϕ2(x), . . . , ϕP(x)]T is a column vector of B-splines [21] and
c
(
x, x′|θg

)
is referred to as the squared exponential covariance function. θg0, θg1, and rg

are positive parameters.
The Ying machine of the mix-GPFR model is

q(z = g, y(x)) = q(z = g)q(y(x)|z = g) = πgGPFR(
x|bg, θg, rg

)
(10)

and its Yang machine is

p(z = g, y(x)) = p(y(x))p(z = g|y(x)) = p(y(x))
πgGPFR(

x|bg, θg, rg
)

∑G
s=1 πsGPFR(x|bs, θs, rs)

. (11)

We denote a training curve dataset as D = {Ci}Ii=1, where Ci = {(xin, yin)}Ni
n=1

represents a training curve of length Ni. It is generally assumed that xi1, . . . , xiNi are

randomly distributed in the interval [xmin, xmax] (i = 1, . . . , I). Letxi = [
xi1, . . . , xiNi

]T ,

yi = [
yi1, . . . , yiNi

]T , and � = {
πg,bg, θg, rg

}G
g=1. For the mix-GPFR model,

H (p||q) =
G∑

g=1

∫ p(y(x))p(z = g|y(x)) ln(q(z = g)q(y(x)|z = g))dy(x) (12)

cannot be approximated by

J (�) = 1

I

I∑

i=1

G∑

g=1

πgN
(
yi|mig,Cig

)
∑G

s=1 πsN (yi|mis,Cis)
ln

(
πgN

(
yi|mig,Cig

))
(13)

with mig = m
(
xi|bg

)
and Cig = c

(
xi, xi|θg

) + r−1
g INi , where INi
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Ĉi = {(
xn, ŷin

)}N
n=1 from f̂i(x) with xn = xmin+(n − 1)�. During sampling, the variance

of Gaussian noise is

σ 2
1 = 1

Ni

Ni∑

n=1

(
yin − f̂i(xin)

)2
. (14)

It is clear that

σ 2
2 = 1

Ni

Ni∑

n=1

(yin − fi(xin))
2 (15)

is an unbiased estimate of the variance of Gaussian noise in the process of sampling Ci
from fi(x). Hence, σ 2

1 is a good estimate of the variance on the assumption that there are

no significant differences between fi(x) and f̂i(x). Intuitively, Ĉi is a good approximation
of Ci. That is to say, the difference between the posterior mean functions recovered from
Ĉi and Ci, respectively, is small, which will be validated through experiments in Sect. 4.

Let D̂ =
{
Ĉi

}I
i=1

, x = [x1, x2, . . . , xN ]T , and ŷi = [
ŷi1, ŷi2, . . . , ŷiN

]T . ŷi can be

regarded as a sample of the following GMM:

q(z = g) = πg where πg ≥ 0 and
G∑

g=1

πg = 1; q(ŷ|z = g
) = N (

ŷ|mg,Cg
)
, (16)

where mg = m
(
x|bg

)
and Cg = c

(
x, x|θg

) + r−1
g IN . Its Ying machine is

q
(
z = g, ŷ

) = q(z = g)q
(
ŷ|z = g

) = πgN
(
ŷ|mg,Cg

)
(17)

and its Yang machine is

p
(
z = g, ŷ

) = p
(
ŷ
)
p
(
z = g|ŷ) = p

(
ŷ
) πgN

(
ŷ|mg,Cg

)
∑G

s=1 πsN
(
ŷ|ms,Cs

) . (18)

Then, its corresponding harmony function is

J (�) = 1

I

I∑

i=1

G∑

g=1

πgN
(
ŷi|mg,Cg

)
∑G

s=1 πsN
(
ŷi|ms,Cs

) ln
(
πgN

(
ŷi|mg,Cg

))
. (19)

As is the case with GMMs, the maximum of J (�) corresponds to the optimal number
of GPFR components and the best parameters. Therefore, we can make model selection
and learn the parameters by maximizing J (�) through numerical optimization methods.

After the training process, we can determine the class of a training curve according
to the maximum a posteriori probability, i.e. let

zi = argmax
g∈{1,2,...,G}

πgN
(
ŷi|mg,Cg

)
∑G

s=1 πsN
(
ŷi|ms,Cs

) (i = 1, 2, . . . , I). (20)

The redundant GPFR components don’t get any training curves due to their very
small mixing proportions. The class of a test curve can also be determine in this way.
Besides, for a test curve, we can predict the test outputs by calculating their conditional
distribution given the known outputs. The details are referred to [4–8].



396 X. Guo et al.

4 Experimental Results

In this section, we use nine synthetic datasets and two real-world datasets to verify the
effectiveness of our proposed automatic model selection algorithm. We compare mix-
GPFR models trained via our proposed algorithm with GP models, mix-GP models,
GPFR models, and mix-GPFR models trained through the traditional EM algorithm [2,
3] and the SEM algorithm [6].

Since we are mainly concerned with the prediction ability of mix-GPFR mod-
els, the rooted mean square error (RMSE) is chosen as the evaluation metric. It is
assumed that there are T test curves and the test outputs of the t th (t = 1, 2, . . . ,T ) test
curve are yt1, yt2, . . . , ytM , whose corresponding prediction values are ŷt1, ŷt2, . . . , ŷtM ,
respectively. It follows that

RMSE =
√√√√ 1

TM

T∑

t=1

M∑

m=1

(
ytm − ŷtm

)2
. (21)

Apparently, a smaller RMSE indicates a better prediction result.

4.1 On Synthetic Datasets

The nine synthetic datasets are denoted as S2,S3, . . . , S10, respectively, where the sub-
scripts represent the numbers of components. For each component, we sample 20 training
curves and 10 test curves from a GP with non-zero mean function. The mean functions
and parameters of the Gaussian processes used to generate the nine synthetic datasets
are list in Table 1, where Sl (l = 2, 3, . . . , 10) are generated by the first l GPs. Each
curve consists of 100 points, whose inputs are randomly distributed in [−3, 3]. The 60
points on the left side of a test curve are known and the 40 ones on the right side are
used for testing.

Firstly, we demonstrate the effectiveness of curve reconstruction based on GP models
through experiments. A training curve is randomly chosen from each component in S9.
Figure 1 presents the reconstruction curves of the nine training curves. Figure 1 is com-
posed of 9 sub-figures, each of which presents a training curve, its reconstruction curve,
and their posterior mean functions. As can be seen from the figure, although there are
significant differences between a training curve and its reconstruction curve, their pos-
terior mean functions are similar, which implies that our proposed curve reconstruction
based on GP models is effective.

When testing our proposed algorithm, G is initialized as l+3 for Sl . To illustrate the
bad effect of a wrong number of GPFR components on prediction ability, we train mix-
GPFR models consisting of l−1 and l+1 GPFR components via the EM algorithm [2, 3],
which are denoted as “mix-GPFR (-1)” and “mix-GPFR (+1)”, respectively. Similarly,
mix-GP models with l − 1 and l + 1 GP components are denoted as “mix-GP (-1)” and
“mix-GP (+1)”, respectively. Besides,P is set to be 20. Table 2 presents the experimental
results.

From Table 2, we see that the RMSEs of the GPFR model and the mix-GPFR model
are smaller than those of the GP model and the mix-GP model, respectively, which
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Table 1. Mean functions and parameters of the Gaussian processes used to generate the nine
synthetic datasets.

Mean functions θT
√
r−1

x2 [0.5, 0.5] 0.15
(
−4(x + 1.5)2 + 9

)
1{x<0} +

(
4(x − 1.5)2 − 9

)
1{x≥0} [0.528, 0.4] 0.144

8 sin(1.5x − 1) [0.556, 0.3] 0.139

sin(1.5x) + 2x − 5 [0.583, 0.2] 0.133

sin(4x) − 0.5x2 − 2x [0.611, 0.1] 0.128

−x2 [0.639, 0.1] 0.122
(
4(x + 1.5)2 − 9

)
1{x<0} +

(
−4(x − 1.5)2 + 9

)
1{x≥0} [0.667, 0.2] 0.117

5 cos(3x + 2) [0.694, 0.3] 0.111

cos(1.5x) − 2x + 5 [0.722, 0.4] 0.106

cos(4x) + 0.5x2 + 2x [0.75, 0.5] 0.1

Fig. 1. The results of curve reconstruction on the synthetic datasets. The red, green, blue, and
black curves represent the original curve, the reconstructed curve, the posterior mean function of
the original curve, and the posterior mean function of the reconstructed curve, respectively.

demonstrates the effectiveness of modeling the mean function as a linear combination
of B-splines. By comparing the mix-GP (mix-GPFR) model and the GP (GPFR) model,
the need for introducing the mixture structure is demonstrated. Furthermore, we can
see that a wrong number of GPFR components affects the prediction results badly. For
S2,S3, . . . ,S9, both the SEM algorithm and our proposed algorithm find the correct
number of GPFR components and their RMSEs are close. However, the time complexity
of the SEM algorithm is higher than that of our proposed algorithm. On the one hand,
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the SEM algorithm needs to repeat the whole parameter learning process for different
numbers of GPFR components. On the other hand, since different training curves have
different inputs, we have to use the loop structure when programming. This is the main
reason why the SEM algorithm has a high time complexity. For S10, since the SEM
algorithm fails to find the true number of GPFR components, its RMSE is larger than
that of our proposed algorithm.

Taking S9 for example, we present the clustering results of our proposed algorithm
in Fig. 2, where different colors represent different components. On the left and right
sides of Fig. 2 are the clustering results of our proposed algorithm on the training and
test datasets, respectively. It is clear that our proposed algorithm correctly find all the
components.

Table 2. RMSE and running time of all the methods on the synthetic datasets.

S2 S3 S4

RMSE Time (min) RMSE Time (min) RMSE Time (min)

GP 5.5831 6.87 4.7878 9.88 4.7798 13.09

mix-GP (-1) 5.5239 6.12 4.6125 8.90 4.3580 15.84

mix-GP (+1) 4.8240 7.39 4.6035 17.40 4.3488 23.31

GPFR 5.0759 6.68 4.6864 12.42 4.3051 17.72

mix-GPFR (-1) 5.0214 8.07 0.9416 15.95 0.9510 18.93

mix-GPFR (+1) 1.6846 14.20 1.0680 22.66 0.9319 25.79

mix-GPFR (SEM) 0.4312 20.63 0.4856 41.59 0.5469 58.97

mix-GPFR (BYY) 0.4401 9.46 0.4746 15.03 0.5403 18.64

S5 S6 S7

RMSE Time (min) RMSE Time (min) RMSE Time (min)

GP 4.9213 17.85 4.9897 15.07 5.3096 20.47

mix-GP (-1) 4.4775 15.03 4.3834 20.14 4.3025 30.66

mix-GP (+1) 4.5205 28.59 4.3813 29.19 4.3082 30.53

GPFR 4.8079 26.73 4.8649 24.25 4.9871 21.45

mix-GPFR (-1) 0.8756 31.66 1.0776 29.67 1.3295 32.09

mix-GPFR (+1) 0.9252 30.58 1.0270 35.37 1.0281 38.44

mix-GPFR (SEM) 0.5638 81.34 0.6057 87.52 0.6540 92.78

mix-GPFR (BYY) 0.5573 25.49 0.6137 23.66 0.6571 27.82

S8 S9 S10

RMSE Time (min) RMSE Time (min) RMSE Time (min)

GP 4.8180 19.67 4.4758 17.82 4.8438 21.67

mix-GP (-1) 4.4904 24.13 4.1223 32.36 4.5730 32.78

(continued)
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Table 2. (continued)

S2 S3 S4

RMSE Time (min) RMSE Time (min) RMSE Time (min)

mix-GP (+1) 4.4818 23.70 4.1214 30.95 4.5878 28.14

GPFR 4.6871 26.73 4.3686 21.67 4.6865 20.97

mix-GPFR (-1) 1.5325 33.78 1.0585 40.27 1.5279 41.56

mix-GPFR (+1) 1.1891 35.96 0.9789 39.38 1.0343 49.78

mix-GPFR (SEM) 0.6448 99.49 0.6233 116.85 1.4379 130.65

mix-GPFR (BYY) 0.6421 28.91 0.6199 28.62 0.6317 32.46

Fig. 2. Clustering results of our proposed automatic model selection algorithm on S7 and S9.

4.2 On Real-World Datasets

Here, we utilize the electricity load dataset issued by the Northwest China Grid Com-
pany [8], which records electricity loads every 15 min in 2009 and 2010. Hence, daily
electricity loads can be regarded as a curve with 96 points. We divide the dataset into
two sub-datasets according to the year, which are referred to as R1 and R2, respectively.
Each sub-dataset consists of 200 training curves for and 165 test curves. Moreover, the
56 points on the left side of a test curve are known and the 40 ones on the right side are
used for testing.



400 X. Guo et al.

Fig. 3. The results of curve reconstruction on the electricity load dataset. The red, green, blue,
and black curves represent the original curve, the reconstructed curve, the posterior mean function
of the original curve, and the posterior mean function of the reconstructed curve, respectively.

Although all the curves have the same inputs, we treat them as if they don’t have the
same inputs. Like the synthetic datasets, we randomly choose 9 training curves of R1,
whose reconstruction curves are presented in Fig. 3. As can be seen from the figure, our
proposed curve reconstruction based on GP models is effective for the electricity load
dataset.

Since the numbers of components in R1 and R2 are unknown, we set G =
3, 6, 9, 12, 15 for the mix-GP and mix-GPFR models trained using the EM algorithm.
For our proposed algorithm and the SEM algorithm, G is set to be 15. Besides, P is set
to be 30. The experimental results are described in Table 3. For R1 and R2, the RMSE
of our proposed algorithm is smaller than that of the SEM algorithm since the number of
components given by the SEM algorithm is smaller than the optimal one. The clustering
results are presented in Fig. 4. On the left and right sides of Fig. 4 are the clustering
results of our proposed algorithm on the training and test datasets, respectively. For R1
and R2, the numbers of components gotten via our proposed algorithm are 13 and 11,
respectively. As can be seen from Fig. 4, curves belonging to different components are
obviously different in a certain input interval, that is to say, the clustering results given
by the algorithm are reasonable.
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Fig. 4. Clustering results of our proposed automatic model selection algorithm on R1 and R2.

Table 3. RMSE and running time of all the methods on R1 and R2.

R1 R2

RMSE Time (min) RMSE Time (min)

GP 0.9599 19.43 0.8977 20.39

mix-GP (3) 0.9390 20.33 0.8846 21.42

mix-GP (6) 0.9387 22.54 0.8854 22.66

mix-GP (9) 0.9380 25.99 0.8853 26.09

mix-GP (12) 0.9395 29.83 0.8847 31.23

mix-GP (15) 0.9401 34.76 0.8872 36.91

GPFR 0.5584 21.30 0.5499 21.59

mix-GPFR (3) 0.2089 24.45 0.2133 20.64

mix-GPFR (6) 0.1701 25.76 0.1731 24.77

mix-GPFR (9) 0.1356 28.93 0.1455 29.45

mix-GPFR (12) 0.1248 34.65 0.1314 33.63

mix-GPFR (15) 0.1178 35.88 0.1301 36.78

mix-GPFR (SEM) 0.1323 150.76 0.1377 170.17

mix-GPFR (BYY) 0.1109 33.97 0.1201 34.58
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5 Conclusion

In this paper, we propose an automatic model selection algorithm based on BYY harmony
learning for mix-GPFR models. Since different training curves have different inputs,
BYY harmony learning cannot be directly applied to the model selection problem of
mix-GPFR models. To tackle this, we propose curve reconstruction based on GP models,
through which, we unify the inputs of all the training curves. Then, we can make model
selection for mix-GPFR models via BYY harmony learning. Experimental results on
synthetic and real-world datasets show that our proposed automatic model selection
algorithm can find the optimal number of components in a multi-source curve dataset
and its time complexity is lower than that of the SEM algorithm.

Acknowledgement. This work is supported by the National Key R & D Program of China
(2018AAA0100205).
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