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For simplicity, m(x) is usually assumed to be zero. Then, we choose the squared
exponential function, defined by
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, (2)

as the kernel function, where θd , d = 0, 1, . . .D are positive hyperparameters that are
optimized in the training process. More details about covariance functions can be found
in Rasmussen and Williams [1].

Suppose that we have a training dataset D = {(xn, yn)}Nn=1, where yn is obtained by
adding i.i.d. Gaussian noise, subject to N (

0, σ 2
)
, to fn = f (xn). Let X, f , and y denote

all training inputs, all corresponding latent function values, and all training outputs,
respectively. Then, the training process is performed by maximizing the log-likelihood
function, given by

L(y; θ , σ ) = 1

N
logp(y) = 1

N
logN

(
y|0,CNN + σ 2IN

)
, (3)

w.r.t. θ and σ, where CNN = c(X,X; θ) and IN is the identity matrix.
After the training process, given a test point (x∗, y∗), the aimof the prediction process

is to calculate the conditional distribution p(y∗|y) . We have

(
y
y∗

)
= N

(
0,

(
CNN + σ 2IN cT∗N

c∗N c∗∗ + σ 2

))
, (4)

where c∗N = c(x∗,X; θ) and c∗∗ = c(x∗, x∗; θ). It follows that

y∗|y ∼ N
(
c∗N

(
CNN + σ 2IN

)−1
y, c∗∗ + σ 2 − c∗N

(
CNN + σ 2IN

)−1
cT∗N

)
(5)

From Eq. (3–5), we see that the time complexity of training GPs scales as O(
N 3

)
and the space complexity as O(

N 2
)
, since we need to store CNN + σ 2IN and calculate

its inverse and determinant. That makes GPs intractable for large datasets.
Next, we shortly introduce the SGP model that can overcome the above limitation.

M inducing points {(zm, um)}Mm=1 are introduced to construct an SGP, where zm,m =
1, . . . ,M are pseudo-inputs independent of X, and um = f (zm). Let Z and u be all the
pseudo-inputs and all inducing variables, respectively. Then, it is obtained that

L(y; θ, σ ) = 1

N
log p(y)

= 1

N
log ∫ p(u, f, y)dfdu

= 1

N
log ∫ q(u, f)

p(u)p(f |u)p(y|f)
q(u, f)

dfdu

≥ 1

N
∫ q(u, f) log

p(u)p(f |u)p(y|f)
q(u, f)

dfdu (6)
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in which q(u, f) is any probability distribution over (u; f), and the inequality is obtained
through Jensen’s inequality. The coefficient 1/N is used to eliminate the impact of the
scale of the gradients. Assume that q(u, f) = q(u)p(f |u), where q(u) is an unconstrained
Gaussian distribution with mean vector μ and covariance matrix �. It follows that

L(y; θ , σ ) ≥F(θ , σ,Z, q(u))

= 1

N
∫ q(u)p(f |u) log

p(u)p(y|f)
q(u)

dfdu. (7)

Fixing θ , σ and Z, q∗(u) that maximizes F(θ , σ,Z, q(u)) can be found analytically. The
mean vector and covariance matrix of q∗(u) are

μ∗ = 1

σ 2CMMA−1CMNy and�∗ = CMMA−1CMM , (8)

respectively, where CMM = c(Z,Z; θ), CMN = c(Z,X; θ), and A = CMM +
σ−2CMNCT

MN . Then, we have

L(y; θ , σ ) ≥ F(θ, σ,Z) = F
(
θ , σ,Z, q∗(u)

)

= 1

N
logN

(
y|0,QNN + σ 2IN

)
− 1

2Nσ 2 tr(C), (9)

whereQNN = CT
MNC

−1
MMCMN and C = CNN −CT

MNC
−1
MMCMN . Next, the estimation of

θ and σ by maximizing L(y; θ , σ ) is replaced with the joint estimation of θ , σ , and Z by
maximizing F(θ, σ,Z). This replacement enables the reduction in the time and space
complexity.

After the above maximization, we can calculate an approximation of the true
conditional distribution p(y∗|y). We have

p
(
y∗|y) =

∫
p(u|y)p(f |u, y)p

(
y∗|u, f

)
dfdu. (10)

By substituting p(u|y) with q∗(u) and p(y∗|u, f) with p(y∗|u), we obtain an
approximate distribution

q
(
y∗) =

∫
q∗(u)p

(
y∗|u)

du. (11)

q(y∗) is a Gaussian distribution, whose mean and variance are

my
(
x∗) = 1

σ 2 c∗MA−1CMNy (12)

and

cy
(
x∗) = c∗∗ + σ 2 − c∗M

(
C−1
MM − A−1

)
cT∗M , (13)

respectively, where c∗M = c(x∗,Z; θ).
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In the two algorithms, and w represent {θ , σ,Z} for simplicity. Since Fk(θ , σ,Z)

has the coefficient 1/Nk , it is rational to consider the scales of the gradients ofFk(θ , σ,Z),
k = 1, . . . ,K to be same. Thus, we use the same learning rate sequence for different
clients. To improve the training efficiency, onlymax{Kρ, 1} clients are selected to update
model parameters locally in one round, where ρ ∈ (0, 1). In addition, we can employ
privacy-preserving techniques, such as fully homomorphic encryption [23, 24], to ensure
data security when transmitting gradients [18].

3.2 Prediction

After an FSGP is trained through the above FederatedAveraging algorithm, we can use
Eq. (12) and Eq. (13) to calculate the approximate predictive distribution q(y∗). To show
that the calculation can preserve privacy, we rewrite Eq. (12) and Eq. (13) as

my
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σ 2 c∗M
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and
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T
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)−1
)
cT∗M , (15)

respectively, where CMNk = c(Z,Xk ; θ). From Eq. (14) and Eq. (15), we see that if
a client wants to calculate q(y∗), it solely needs the values of CMNkC

T
MNk

and CMNkyk
from the other clients. SinceDk cannot be recovered from the values of CMNkC

T
MNk

and
CMNkyk (see Theorem 1), the prediction is privacy-preserving.

Theorem 1. Dk cannot be recovered from the values of CMNkC
T
MNk

and CMNkyk .

Proof . Since an input x and a pseudo-input zm are both real vectors, it is rational to
consider that x is impossible to be equal to zm. Thus, any entry of CMNk belongs to the

open interval
(
0, θ20

)
. View each row of CMNk as a point in

(
0, θ20

)Nk .
(
0, θ20

)Nk is an
open set and the convex hull of theM points is a subset of it. It follows that there exist
infinitely many rotation transformations around the origin, denoted as ϕ, so that ϕ ( )

is still a subset of
(
0, θ20

)Nk . Each ϕ can be regarded as an Nk × Nk orthogonal matrix
Qϕ . Then, we have

CMNkC
T
MNk

= (
CMNkQϕ

)(
CMNkQϕ

)T (16)

and

CMNkyk = (
CMNkQϕ

)(
QT

ϕyk
)

(17)

Therefore, we cannot inferCMNk and yk from the values ofCMNkC
T
MNk

andCMNkyk .
Then, thatCMNk cannot be recovered leads to thatXk cannot be recovered.We can easily
generalize this result to other covariance functions.
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4 Experiments

In this section, we present the experimental results on two synthetic datasets and one
real-world dataset. The first dataset is drawn from the following function of one variable

f (x) = 3sin(2πx/20), x ∈ [−10, 10]. (18)

The 500 training inputs are evenly distributed in the above interval and corresponding
outputs are obtained by adding i.i.d. Gaussian noises, subject to N (

0, 0.52
)
, to latent

functionvalues. The300 test samples are generated in the sameway.The second synthetic
dataset is generated similarly. The latent function is

f (x) = 2.5sin(2π(x1 + x2)/90), x ∈ [−25, 25]2 (19)

This dataset consists of 4900(70 × 70) training samples and 900(30 × 30) test sam-
ples. TheGaussian noises followN (

0, 0.42
)
. The third dataset is KIN40Kdataset, which

contains 10000 training samples and 30000 test samples from R
8 × R.

We use the root mean squared error (RMSE) to measure the performance of SGPs,
FGPs and FSGPs, which is defined as

RMSE =
√
1

L

∑L

l=1
(tl − yl)2 (20)

where {yl}Ll=1 and {tl}Ll=1 are test outputs and corresponding predictions, respectively. It
is clear that smaller RMSE imply better performance.

Fig. 1. Synthetic dataset 1

In all the three experiments, T , P and λ are set to be 5000, 3 and 0.1, respectively.
Then, we sequentially set K = 5, 10, 10 and Kρ = 2, 5, 5, respectively. θ , σ , and Z are
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initialized as (1, . . . , 1)T , 0.1, and a random subset of X, respectively. When training
SGPs and FSGPs, θ , σ , and Z have the same initial values. Furthermore, the imbalance
problem is considered in the experiments by randomly determining the sizes of training
subsets. In the first experiment, the difference between the maximum number and the
minimum one is 59. In the other two experiments, the differences are 634 and 1299,
respectively.

Fig. 2. Synthetic dataset 2

The results on three datasets are presented in Fig. 1, Fig. 2, and Fig. 3, respectively. In
all the three experiments, FSGPs performbetter thanFGPs.On the two synthetic datasets,
FSGPs outperformFGPs slightlywhen the number of inducing variables is large enough.
However, on the KIN40K dataset, FSGPs obviously outperform FGPs when the number
of inducing variables is large enough, since the unknown latent function in KIN40K is
more complex than the two synthetic latent functions. In addition, we see that FSGPs
and SGPs have a similar ability, that is to say, FSGPs.

are comparable with SGPs. The three results show that although the whole training
datasets are divided into small subsets in training an FSGP, we can obtain comparable
performance through the federated aggregation algorithm.
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Fig. 3. KIN40K dataset

5 Conclusion

We have proposed an FSGP model that not only remains the scalability of SGPs, but
also can learn a shared model using isolated datasets stored on more than one client. The
FSGP model can preserve privacy since, in the training process, we need not transport
the data stored on one client to the other clients, and in the test process, the data cannot
be recovered. The experimental results on two synthetic datasets and one real-world
dataset show that the performance of our proposed FSGP model is comparable with that
of SGPs and better than that of FGPs in terms of the criterion we adopt. Two interesting
topics for the future is to develop a more effective algorithm to accelerate the training
processes and to combine vertical federated learning with GPs.
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