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Abstract

Continual learning (CL) incrementally learns a sequence of
tasks while solving the catastrophic forgetting (CF) problem.
Existing methods mainly try to deal with CF directly. In this
paper, we propose to avoid CF by considering the features
of each class holistically rather than only the discriminative
information for classifying the classes seen so far. This latter
approach is prone to CF because the discriminative informa-
tion for old classes may not be sufficiently discriminative for
the new class to be learned. Consequently, in learning each
new task, the network parameters for previous tasks have to be
revised, which causes CF. With the holistic consideration, after
adding new tasks, the system can still do well for previous
tasks. The proposed technique is called Per-class Continual
Learning (PCL). PCL has two key novelties. (1) It proposes a
one-class learning based technique for CL, which considers
features of each class holistically and represents a new ap-
proach to solving the CL problem. (2) It proposes a method
to extract discriminative information after training to further
improve the accuracy. Empirical evaluation shows that PCL
markedly outperforms the state-of-the-art baselines for one or
more classes per task. More tasks also result in more gains.

1 Introduction
Continual learning (CL) of a sequence of tasks in a neural
network often suffers from catastrophic forgetting (CF) (Mc-
Closkey and Cohen 1989). CF means that in learning a new
task, the network parameters learned for old tasks have to
be modified, which can cause accuracy degrading for the
old tasks. There are two main CL scenarios: class continual
learning (CCL) and task continual learning (TCL), which are
also called class incremental learning and task incremental
leaning respectively. In both scenarios, each task consists of
a number of classes. Once a task is learned, its training data
(as least the bulk of it) is discarded or forgotten. In CCL, only
a single classifier is built for all classes seen so far, which is
used to classify each test case of any class without the task-id
provided. In TCL, each task builds a separate classifier. In
testing, each test case and its task-id are given so that the test
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case is classified only by the model of that task. This paper
works in the CCL scenario and also assumes after learning a
task, its training data is forgotten or no longer accessible in
subsequent learning. The inaccessibility of the old task data
could be due to many reasons, e.g., unrecorded legacy data,
proprietary data, and privacy concerns such as in federated
learning where the model can be shared from one party to
another but the data must be kept private (Zhang et al. 2020).

There are three main approaches to dealing with CF (Chen
and Liu 2018; Parisi et al. 2019). The first approach tries to
avoid modifying those important parameters learned for old
tasks in learning the new task (Kirkpatrick et al. 2017; Zenke,
Poole, and Ganguli 2017; Li and Hoiem 2017). The second
approach memorizes a small set of training data of each old
task and use them in learning the new task (replaying) (Lopez-
Paz and Ranzato 2017; Rusu et al. 2016; Rebuffi, Kolesnikov,
and Lampert 2017). The third approach builds data generators
to generate pseudo-examples for old tasks to be used used in
learning the new task (Shin et al. 2017; Kamra, Gupta, and



new classes may come in the future. Any commitment is pre-
mature and subject to change later, which causes CF. With the
holistic consideration, each class can be identified naturally
without resorting to any information from other classes for
discrimination. This is achieved with the one-class loss in (Hu
et al. 2020), which has a novel regularization called H-reg
(holistic regularization). H-reg enables the learning algorithm
to fully consider the features of each class, i.e., not to overly
bias or favor any specific features. Sec. 3.4 extends PCL to
make it learn with multiple classes per task.

It is important to note that learning one class at a time is
probably the hardest case for CCL as it has the maximum
number of tasks. As the number of tasks increases, the accu-
racy often drops quickly. It is perhaps also the most common
case in practice because once a new class is encountered, we
want to learn it immediately rather than wait for a few new
classes to occur and learn them together. Thus, every CCL
system should be able to learn one class per task well.

Second, it proposes a method to extract discriminative
information after training for classification in testing by re-
ducing the shared knowledge among classes as the shared
knowledge blurs the decision boundary. This is useful be-
cause training each class separately is not ideal for classi-
fication, for which discriminative information is still more
effective. This operation is enabled by parameter transfer
from old classes to the new class in initialization, and it does
not change the trained models and thus does not cause CF as
the extraction is done after learning the new class.

PCL architecture consists of a pre-trained model or fea-
ture extractor (although it is not required) as the base and
classification heads for the classes learned so far, one head
per class. Due to the rich representation in the pre-trained
model, in learning a new class, the base stays unchanged
and only a new head is added and trained with the data of
the class. Using a pre-trained feature extractor has been very
popular in natural language processing (NLP). For example,
in the past two years, the NLP field has been transformed by
pre-trained models such as BERT (Devlin et al. 2019), and
ALBERT (Lan et al. 2020). With the success in NLP, pre-
trained features have also become very popular recently in
computer vision (Studer et al. 2019; Misra and Maaten 2020;
He et al. 2020). Note that PCL also outperforms baselines
without pre-trained feature extractors (see Sec. 4).
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Figure 1: PCL architecture. Each class has a separate head.

in (Ke et al. 2020; Qin, Hu, and Liu 2020), which focus on
knowledge transfer. There is also a less frequently used CL
setting (Lv et al. 2019; van de Ven and Tolias 2019), which
is like TCL but the task-id is not provided during testing.

Since PCL learns one class at a time, it is related to one-
class learning (Schölkopf et al. 2001; Tax and Duin 2004;
Hu et al. 2020; Perera, Nallapati, and Xiang 2019; Ruff et al.
2018). PCL mainly uses the one-class classification method
in (Hu et al. 2020). However, one-class learning does not
learn a sequence of tasks or deal with CF. For CL, significant
changes need to be made to one-class learning.

Traditional lifelong learning methods are also related (Ru-
volo and Eaton 2013; Chen and Liu 2014; Benavides-Prado,
Koh, and Riddle 2020). However, they do not deal with CF.

3 Proposed PCL Model
The proposed PCL architecture is shown in Fig. 1, which
consists of a pre-trained Feature Extractor shared by all tasks
or classes, and Class Heads following it, one head for each
class learned so far. In our experiments, the same pre-trained
feature extractors are used for all baselines, and PCL also
outperforms baselines without pre-trained feature extractors.
Below, we first present learning with one class per task and
then extends it to learning with multiple classes per task.

Formally, we denote the head for each class Ci as fCi
(·).

Each head is an independent network with a simple structure
(a two-layer MLP with a single output unit following (Zeng
et al. 2019; Hu et al. 2019) and a small number of parameters
which ensures that adding new tasks will not lead to a huge
model. In testing, given a test instance x, we choose the head
that gets the highest fCi(·) output value as the class of x, i.e.,

y = argmax
Ci

[fC1(xf ), . . . , fCN (xf )]. (1)

where N is the total number of classes learned so far; xf de-
notes the feature obtained by the pre-trained feature extractor:
xf = F(x). x denotes the input data.

PCL has three key advantages: (1) it is easy to expand the
network capacity. As the number of classes (or tasks) increase,
we can simply add a separate head for each new class, which
is very small in size as we will see later; (2) as PCL exploits
features holistically based on one-class learning, it enables
the system to avoid CF as no modification or change to the
shared feature extractor or the old models (heads) is needed
when learning a new class; (3) PCL outperforms baselines
with or without pre-trained feature extractors. To make the
architecture work effectively, we use a novel loss function
called one-class loss, which has been used in (Hu et al. 2020)
for one-class learning. We discuss it next.

3.1 One-class Loss
In learning each class Ci, the one-class loss is:

L = E
x∼PCi

x

[− log(S(fCi(x)))]︸ ︷︷ ︸
NLL

+λ · E
x∼PCi

x

‖∇xfCi(x)‖n2︸ ︷︷ ︸
H-reg

(2)

where PCi
x denotes the data distribution of class Ci. The input

data can be the extracted features xf using pre-trained feature
extractor or the original data x. To simplify the notation, we
use x to denote both. x is also normalized, x := x/||x||2, in
our experiments. Exponent n and λ are hyper-parameters
controlling the strength of the penalty and balancing the
regularization respectively. S(·) is the Sigmoid function,
and S(fCi

(x)) ∈ (0, 1) can be seen as the probability of x
belonging to Ci. We now explain the two terms in Eq. (2).

NLL (Negative Log Likelihood for one-class). Minimiz-
ing NLL means to train the model fCi(·) to output high
values for the training data of the class, which, according to
PCL’s decision rule in Eq. (1), helps recognize instances from
class Ci in testing. However, since we have only one class of
data, only optimizing NLL leads to two major problems.

Problem-I (incomparable outputs for fCi
(x)). The magni-

tudes of the parameter values cannot be controlled, which are
sensitive to the input data. This can cause the final outputs
fCi

(x) to be arbitrary and uncontrollable for different classes
and make fCi(x) values for different classes not comparable,
but comparability is very important for classification decision
making of PCL (see Eq. (1)). This leads to poor accuracy
results as we will see in Sec. 4.5.

Problem-II (feature bias). Features (or dimensions) of the
input data with high values are very likely to be emphasized
by the classification head and their related parameters are
likely to have very high values. But those features with high
values may not be important features for recognizing the
correct class of the input instance, which can lead to low
accuracy. This problem is due to the fact that we don’t have
other classes to compare with in order to identify the impor-
tant or discriminative features.

Holistic regularization (H-reg).1 H-reg aims to solve the
above two problems. For Problem-I, assume the head Ci is a
two-layer MLP with a single output unit (which is the case in
PCL) and σ(·) is the activation function. Then, we can show
fCi

(x) = w2 ·σ(w1x), where w1 and w2 are the parameters
of the first and second layer respectively. Thus, we have:

E
x∼PCi

x

‖∇xfCi(x)‖n2 = E
x∼PCi

x

‖w2 · ∇w1xσ(w1x) ·w1‖n2 .

(3)
The exact expression depends on the activation function. For
ReLU (used in PCL), the elements in∇w1xσ(w1x) are either
1 (ReLU(w1x) w ww w σ(w1x)



and magnitudes of fCi(·) for different classes because the
arbitrary growth of the parameter values will lead to high
penalties on H-reg and thus high losses, i.e., a trade-off be-
tween NLL and H-reg. Specifically, a high parameter value
leads to a high fCi

(·) and thus a low NLL, but a high value for
H-reg. Therefore, the training goal of the one-class loss is to
find a point where fCi

(·) outputs a value as high as possible
under the condition of having parameters with values as small
as possible. Equivalently, it is to achieve Sigmoid(fCi

(·))
close to 1 while fCi(·) as small as possible. This is achiev-
able as Sigmoid(fCi(·)) flattens out after fCi(·) reaches a
certain value. Since we do this in learning every class and
also due to the input normalization x := x/||x||2, H-reg can
bring fCi

(·) values for different classes to a comparable level
(a kind of calibration), which solves Problem-I above.

When ∇w1xσ(w1x) ≡ 1 for all elements is not true, the
0 valued elements in it simply block some neurons/units,
which we can ignore because the blocked neurons have no
contributions to the final fCi

(·) output. Note that we suggest
using piecewise linear function as the activation function,
e.g., ReLU and Leaky-ReLU, as both Sigmoid and Tanh are
too flat for high input values. Take Sigmoid as an example,
∇w1xσ(w1x) = σ(w1x)(1− σ(w1x)). If w1 is already bi-
ased (with high values), the regularization tends to be blocked
as we are likely to get 0 for the right-hand-side.

For Problem-II, as we know, the derivative ∇xfCi
(x)

shows the importance of each feature of x. The features
with large derivatives contribute more to the final output as
small changes in them can lead to large changes in the fCi

(x)
outputs and they also give large values for H-reg, which is
undesirable for loss minimization. In this case, minimizing
H-reg can ease the problem that the output is dominated
by some specific features of the input x. We can reach this
conclusion using Eq. (4), the dimensions in w2 ·w1 corre-
sponding to the contributions of the same feature dimensions
of the input. In this case, the output will not be saturated
by a few features of the input due to the H-reg expressed as
the right-hand-side of Eq. (4). In addition to this, since the
L2-norm in Eq. (4) gives more penalties to the features with
high values and little penalty to the features with low values,
the parameter values will be more balanced.

3.2 Parameter Transfer in Initialization
Although H-reg has the effect of not biasing any input fea-
tures in learning each class, for classification, using discrim-
inative features is still more effective. We discuss how to
obtain such discriminative information for classification in
testing in Sec. 3.3. To achieve that goal, in training each new
class Ci, the network parameters θi of its model/head cannot
be initialized randomly without control because that will re-
sult in the parameters of different networks not in the same
parameter space and thus are not comparable.

We borrow a transfer learning technique, and make the
assumption of Gaussian distribution for neural networks pa-
rameters (Lee et al. 2017) to ease this problem. Specifically,
when learning a new class Ci, we use the mean of the model
parameters from class 1 to i− 1, i.e., µ∗

1:i−1, to initialize θi,
and L2-transfer in (Evgeniou and Pontil 2004; Kienzle and

Chellapilla 2006) is also added to Eq. 2,
L = E

x∼PCi
x

[− log(S(fCi(x)))]︸ ︷︷ ︸
NLL

+λ · E
x∼PCi

x

||∇xfCi(x)||n2︸ ︷︷ ︸
H-reg

+ η · ||θi − µ∗1:i−1||22︸ ︷︷ ︸
L2-transfer

(5)

where η is a hyper-parameter.

3.3 Discriminative Information Extraction (DIE)
for Classification in Testing

Since in training each class, we do not see the data of other
classes, models for different classes may learn some similar
knowledge as data of different classes may have some com-
monalities. Such commonalities blur the boundary between
different classes and make the classification challenging. For
classification in testing, we should reduce such commonal-
ities to obtain more discriminative information among the
classes learned so far for classification.

Inspired by (Lee et al. 2017, 2020), we propose a post-
processing step to eliminate the Shared Knowledge to reduce
their negative effects on classification in testing (no change
to training). Specifically, we assume that the posterior distri-
bution of the parameters is Gaussian qi ≡ q(θi|µi,Σi) for
each class Ci. We minimize the following local KL-distance
or the weighted sum of KL-divergence between each qi and
q1:N (N is the total number of classes learned so far):2

µ∗1:N ,Σ
∗
1:N = argmin

µ1:K ,Σ1:N

N∑
i=1

αi ·KL(qi||q1:N ) (6)

where αi is the mixing ratio with
PN

i=1 αi = 1 (we use
1/N in our experiment). The optimal solution of the local
KL-distance is µ∗

1:N =
PN

i=1 αiµi. We take µ∗
1:N as the

shared knowledge among all the classes and use it to adjust
the original parameters of each model:

θ∗i = θi − γ · µ∗1:N (7)
where γ is a small value, we set it to 0.1 in our experiments.

In testing, we use θ∗i as the parameters of the ith

model/class rather than the original θi in the network. How-
ever, θi is not physically changed to θ∗i , but computed using
Eq. (7) when needed in testing. Note that µ∗

1:N can be easily
incrementally computed and maintained.

3.4 Learning with Multiple Classes Per Task
We now extend PCL to also learn with multiple classes per
task, i.e., task Tj = {Ct, · · · , Ct+kj} with kj classes in the
task, t = 1+

Pj−1
r=1 kr is the beginning of task j. For each task

Tj , we first learn each class Ct+h ∈ Tj as above, fCt+h
(x),

and then use supervised learning with the cross-entropy as
the loss function to learn a model Sj(·) ∈ Rkj for all classes
in Tj . In testing, for each test instance x, we first find the
class Cj with the highest probability from each task model
Sj(x). Assume M tasks have been learned so far, the class y
for the test instance x is computed as follows,

y = argmax
Cj

[fC1(x), . . . , fCM (x)] (8)
2Given a sequence of N classes, q1:N denotes an approximation

of the true posterior distribution p(θ|C1, · · · , CN ) for the classes.
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Dataset Classes
Training

Test
Total Per class

MNIST 10 60,000 5,421-6,742 10,000
EMNIST-47 47 112,800 2,400 18,800

CIFAR10 10 50,000 5,000 10,000
CIFAR100 100 50,000 500 10,000

20news 20 11,314 377-600 7,532
DBPedia 14 560,000 40,000 70,000

Table 1: Datasets details

3.5 Number of Parameters
For the model of each class, a simple 2-layer MLP can al-
ready achieve good results. Each new class only expands the
network by the small MLP (see Sec. 4.1), i.e., about 0.0641M
parameters for each class for CIFAR10/CIFAR100 dataset.
For the case of learning with multiple classes per task, the
number of parameters is doubled, which is still very small.

4 Experiments
We now evaluate the proposed PCL technique (the code can
be found here3) and compare it with both classic and the
latest baselines with or without pre-trained feature extractors
in learning with one or more classes per task. To make the
comparison more complete, we also compare with the tradi-
tional nearest-mean approach that learns one class at a time
incrementally.

Experimental Datasets: We use four benchmark image
classification datasets and two text classification datasets
in our experiments: MNIST (LeCun, Cortes, and Burges
1998), EMNIST-47 (Cohen et al. 2017), CIFAR10 and CI-
FAR100 (Krizhevsky and Hinton 2009) for images; 20news
and DBPedia for text. Details of the datasets are given in
Table 1. For the setting of multiple classes per task, we form
tasks with k (k > 1) classes in each task. If the number of
remaining classes is less than k, we use them to form a task.

Compared Baselines: We use the following classic and
the latest state-of-the-art class continual learning (CCL) base-
lines. (1) EWC (Kirkpatrick et al. 2017) is a commonly
used baseline in most CL papers. (2) LwF (Li and Hoiem
2017) uses knowledge distillation to overcome forgetting. (3)
IMM (Lee et al. 2017) combines the sequentially trained
independent models for different tasks to perform all the
tasks in the sequence. (4) PGMA (Hu et al. 2019) adapts
the model to fit different data by parameter generation. (5)
RPSnet (Rajasegaran et al. 2019) progressively chooses op-
timal paths for each new task while encouraging parameter
sharing. This is the latest replay method that saves some
training examples from previous tasks. (6) OWM (Zeng et al.
2019) is based on the idea of orthogonal data projection and
has been shown to perform very well for a large number of
tasks. (7) HNET (von Oswald et al. 2020) is a latest method
that can work in the continual/incremental learning (CCL)
setting without memorizing/generating old data but only the
embeddings of old tasks. (8) PCL-L2 is PCL with its H-
reg replaced by the popular L2 regularization. See two more

3https://github.com/morning-dews/PCL

baselines in Sec. 4.4 when we compare with the traditional
nearest-mean approach.

It is important to note that most CCL methods can work
with one or more classes per task because when new classes
(one or more) are added, training uses the same cross entropy
loss considering all classes without using the data of old
classes. For our baselines, LwF cannot as it incrementally
adds a new head for a new task with its own cross entropy
loss, which does not work for one class. We changed it to one
cross entropy for all classes like other baselines assuming
the system knows the total number of classes to learn. For
all baselines, we use the open source code released by their
authors except EWC as the original code was not released,
for which we use a popular third party code.4

Evaluation protocol: Following the existing CL evalua-
tion method, for each dataset, after all tasks are learned, we
test using the test sets of all tasks and report the average
accuracy over 5 runs.

4.1 Training Details
For a fair comparison, our PCL uses the same classification
model as the baselines. Specifically, following (Zeng et al.
2019; Hu et al. 2019), we use a MLP with two layers and a
single output unit as the classification model after the shared
feature extractor. As PCL and LwF grow the network with
the increase of the arriving tasks, given a sequence of N
tasks, assuming the size of the hidden layer for non-growth
methods is m, we set the hidden size of our method and LwF
for each task as m/N . The parameter size of all the methods
will be of the same magnitude after learning all tasks. We
fix m/N to 100.5 For training, we use SGD with moment as
the optimizer (learning rate = 0.1). We run each experiment
five times. For each run of PCL or a baseline, we execute
500 epochs and use the maximum accuracy as the final result
of the run. We report the average result of the five runs. For
text data, we use the TF-IDF vector of the top 2000 most
frequent words to represent a document. We discuss the use
of pre-training features later. Additionally, for 20news, we
removed the headers, footers and quotes as those parts have
explicit class label information.

Hyper-parameter Tuning: PCL has 3 parameters that
need tuning: λ and n in H-reg (Sec. 3.1) and η for transfer
(Sec. 3.2). We randomly select 10% of the examples from
the training set of each dataset as the validation set to tune
the hyper-parameters. After that, we use the tuned hyper-
parameters to train the system over the whole training set.
Grid search is used in tuning. The tuning range for λ is from
0 to 1 with step 0.1; n is from 1 to 20 with step 1; η is from 0
to 0.02 with step 0.0005. After tuning, we get the best hyper-
parameters of λ = 0.5 and n = 12. For η, different data have
different values, 0.001 for MNIST and EMNIST-47, 0.005
for CIFAR10 and DBPedia, 0.01 for CIFAR100 and 20news.



Dataset w/o PTF EWC LwF IMM PGMA RPSnet OWM PCL-L2 PCL
MNIST (10 tasks) no 9.91 19.96 29.16 71.36 40.29 94.46 83.85 97.00

EMNIST-47 (47 tasks) no 2.13 4.59 18.69 10.13 10.08 77.45 51.38 80.05
CIFAR10 (10 tasks) yes 10.21 19.39 51.22 56.22 55.54 83.03 77.95 84.93

CIFAR100 (100 tasks) yes 2.93 6.25 12.58 12.37 4.13 63.26 54.83 63.61
20news (20 tasks) no 4.98 5.61 5.00 11.37 8.32 52.02 49.01 54.37

DBPedia (14 tasks) yes 7.14 7.14 7.14 66.40 50.58 95.37 68.12 96.23
CIFAR10 (10 tasks) no 10.01 10.05 10.25 20.08 16.31 19.63 10.00 31.58

CIFAR100 (100 tasks) no 1.03 2.13 1.21 1.86 1.96 3.67 1.87 5.58
DBPedia (14 tasks) no 7.14 7.14 7.14 9.58 36.70 92.23 64.96 93.51

Table 2: Accuracy results for 1 class per task for PCL and all baselines except HNET as it does not work with one class per task.
Note that column “w/o PTF” denotes with/without using the shared pre-trained feature extractor for PCL and baselines.

4.2 Results for One Class Per Task
Pre-trained feature extractors: Pre-trained feature extrac-
tors have been frequently used in computer vision (Studer
et al. 2019; Misra and Maaten 2020) and natural language
processing (NLP) (Devlin et al. 2019). We now apply pre-
trained feature extractors to PCL and all baselines.

For CIFAR10 and CIFAR100, we pre-train a WRN model
to extract features with size 640 (Zagoruyko and Komodakis
2016) using ImageNet after manually removing classes from
ImageNet that are similar to those classes in CIFAR10 or
CIFAR100. After removal, we are left with 771 ImageNet
classes. No pre-trained feature extractors for MNIST and
EMNIST-47 as a simple model already generates very good
results. For the DBPedia text, we use the BERT (Devlin et al.
2019) feature extractor (the feature size is 768). BERT was
not effective for 20news as it has too many symbols that have
no embeddings in BERT and the dataset also has very long
texts (maximum being over 15000). ‘w/o PTF’ in the table
means with or without using a pre-trained feature extractor.

The first block of results in Table 2 are the accuracy values
for learning with one class per task in the above setting. Each
experiment is done 5 times and the average accuracy of the 5
runs is reported for each dataset and each model. Note again
that when pre-trained feature extractor is used, it is used in
PCL and also in all baselines. From the first block of the
results in the table, we can make the following observations:

(1). Learning a large number of classes one by one is very
challenging for most methods, i.e., EWC, LwF, IMM, PGMA
and RPSnet. Results in this setting are not reported in their
papers, but about all class continual/incremental learning
methods can naturally learn with one class per task.

(2). OWM is the strongest baseline, but PCL significantly
outperforms it on all datasets with p-value < 0.01 on paired
t-test. PCL gets a 2.54 points improvement on MNIST, 2.60
points on EMNIST-47, 1.89 points on CIFAR10, 2.35 points
on 20news, and 1.28 points on DBPedia.

(3). PCL-L2 (PCL’s H-reg is replaced with L2 regulariza-
tion) does not do well for this setting (and nor for 2-class
per task below). One reason is that there is still a very high
Ex∼PCi

x
‖∇xfCi

(x)‖2, e.g., up to 5.11 on MNIST, but only
0.736 when optimizing H-reg, which shows that the output
of fCi

(·) is sensitive to the input x. For example, ∆x = 0.2
will lead to an output change of up to 1.02 which is much
higher than 0.147 for H-reg.

Without using a pre-trained feature extractor for CI-

FAR10, CIFAR100 or DBPedia: The second block of of re-
sults in Table 2 gives the accuracy values of the three datasets.
We can observe that PCL again did much better, but all the
results (baselines and PCL) are very low except for DBPedia
of PCL. This shows that pre-trained feature extractors are
very useful. Without them, the accuracy is too low to be of
practical use. With pre-trained feature extractor, the perfor-
mances of PCL and the baselines are all greatly improved.
For PCL, the average accuracy improves from 31.58 to 84.93
on CIFAR10, and from 5.58 to 63.61 on CIFAR100. For
baselines, we can also see clear improvements.

4.3 Results for More Classes Per Task
We now report the accuracy results for more than one class
per task. Our main goal is to test every system’s performance
when the number of tasks is large, which is probably the
most important criterion for evaluating CL methods. PCL
uses the method in Sec. 3.4. As above, for MNIST, EMNIST-
47 and 20news, we still use the original data. Pre-trained
feature extractors are used by PCL and baselines only for
CIFAR10, CIFAR100, and DBPedia as using pre-trained
feature extractors produce better results for the systems.

Two classes per task. The results for two classes per task
are given in Table 3 except HNET. HNET achieves 95.30 on
MNIST which we could reproduce and is already poorer than
our PCL (97.20) but better than most baselines. However, its
accuracy drops quickly with more tasks. It gets only 25.42
on EMNIST-47, much worse than PCL (80.97) with 24 tasks.
Its CIFAR10 (51.02) and CIFAR100 (3.22, 50 tasks) are also
very poor, so are the two text data. We did a lot of tuning
on the authors’ code, but could not get better results. From
Table 3, we can see that on the datasets with a smaller number
of tasks, i.e., MNIST, CIFAR10 and DBPedia, RPSnet is the
strongest baseline, but for datasets with a large number of
tasks, RPSnet does poorly although it is a replay method.
OWM is still the strongest baseline overall. PCL consistently
outperforms all baselines. Note that learning multi-classes
per task can always be replaced by learning 1 class at a time.
Comparing the results of PCL in the 1 class setting (the first
block in Table 2) and baselines in 2 classes setting (Table 3),
we see that PCL’s 1 class results are already better than those
of the baselines’ 2 classes results except RPSnet on CIFAR10,
but RPSnet on a large number of tasks is quite weak.

Comparing the performance in this setting with the 1 class
per task setting of PCL, we see that PCL works better in
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Model MNIST EMNIST-47 CIFAR10 CIFAR100 20news DBPedia

(Number of tasks) (5 tasks) (24 tasks) (5 tasks) (50 tasks) (10 tasks) (7 tasks)
EWC (Kirkpatrick et al. 2017) 18.78 4.17 31.82 3.67 6.88 14.11

LwF (Li and Hoiem 2017) 52.35 17.19 57.61 23.33 26.25 69.82
IMM (Lee et al. 2017) 67.25 20.51 77.29 26.52 24.60 73.79

PGMA (Hu et al. 2019) 81.70 21.85 74.31 17.47 13.10 83.06
RPSnet (Rajasegaran et al. 2019) 96.16 32.97 85.37 25.27 44.99 96.21

OWM (Zeng et al. 2019) 91.62 71.68 83.36 57.70 49.92 94.79
PCL-L2 85.35 53.02 79.35 55.21 50.52 68.23

PCL 97.20 80.97 85.78 63.72 54.72 96.91

Table 3: Accuracy for 2 classes per task using pre-trained features for PCL and baselines except HNET (see the reason in text)

Model EMNIST-47 CIFAR100

(Number of tasks) (10 tasks) (20 tasks)
PGMA 17.80 29.63
RPSnet 74.82 51.44
OWM 58.00 49.16
PCL 81.21 63.90

Table 4: Accuracy for 5 classes per task using pre-trained
features for PCL and 3 top baselines using EMNIST-47 and
CIFAR100 as they have a large number of classes

this 2 classes per task setting. All baselines have improved
(including PCL-L2) too. This is because with 2 classes tradi-
tional supervised learning can be performed and the number
of tasks is halved. PCL does not improve as much because
its 1 class per task setting is already quite strong.

Five classes per task: We use EMNIST-47 and CIFAR100
to test 5 classes per task as they have a large number of
classes to form many tasks. We observe from Table 4 that
PCL outperforms all 3 top-performing baselines.

4.4 Comparing with the Nearest-Mean Approach
To be more complete, we also compare with two traditional
methods of class incremental learning based on nearest-
mean: iCaRL (Rebuffi, Kolesnikov, and Lampert 2017) and
the system in (Lee et al. 2018). Both save some examples or
the means of old classes. PCL and the baselines above save
no information of old classes. PCL outperforms them both.

iCaRL (Rebuffi, Kolesnikov, and Lampert 2017) finds the
nearest prototype over the mean of the saved exemplars per
class for classification. With pre-trained features, it achieves
82.56/69.23/40.35/43.29 and 92.70/74.87/68.28/45.75 in ac-
curacy for 1 class per task learning and 2 classes per task
learning on MNIST/EMNIST-47/CIFAR10/CIFAR100 re-
spectively, but the results of PCL are 97.0/80.5/84.93/63.61
and 97.20/80.97/85.78/63.72 respectively. iCaRL did very
poorly on the text data as it was not designed for text.

Lee et al. (2018) proposed a Mahalanobis distance-based
score using the saved means and a shared covariance for clas-
sification. Its continual learning code was not released. The
setup of this technique is very different. For comparison, we
follow its setup. For CIFAR100, it takes the first 50 classes
to do pre-training and then starts continual learning for the
rest of the 50 classes one by one. After each new class is

Components MNIST EMNIST-47 CIFAR10 CIFAR100
NLL 11.35 2.73 9.10 1.22
NLL + H-reg 89.58 68.72 82.80 59.10
NLL + H-reg + x-N 96.31 79.12 84.11 61.57
NLL + H-reg + x-N
+ DIE (PCL)

97.00 80.05 84.93 63.61

Table 5: Accuracy results of ablation study of PCL using MNIST,
EMNIST-47, CIFAR10 and CIFAR100. x-N: normalization of x,
and DIE: discriminative information extraction (Sec. 3.2 and 3.3)

learned, it computes the AUC (Area under the ROC Curve)
of the new class and draws a curve as the system learns the
51th class through the 100th class. Specifically, the AUCs of
their system go from 0.79 (51th task) to about 0.40 (100th
task), which are much lower than PCL’s results that go from
0.80 (51th task) to 0.75 (100th task). For CIFAR10, their sys-
tem used CIFAR100 for pre-training. After all 10 CIFAR10
classes are learned, it reported the average AUC score of
0.477, but PCL’s average AUC score is 0.627.

4.5 Ablation Study
We use MNIST, EMNIST-47, CIFAR10 and CIFAR100 (pre-
trained features are used for CIFAR10 and CIFAR100) with
one class per task for ablation study. Table 5 shows the results
of adding different components of PCL. We can see that all of
them are useful. H-reg is highly effective. It helps improve the
accuracy of PCL drastically, e.g., by 78.23 points for MNIST
and 73.70 points for CIFAR10. Data normalization also made
a big difference. Adding DIE (Discriminative Information
Extraction) enabled by parameter transfer (Sec. 3.2 and 3.3)
and improved the results further. More detailed analysis and
insights about the effect of H-reg, normalization and DIE as
well as error analysis are given in Appendix A.

5 Conclusion
This paper proposed a novel method, called PCL, for class
continual learning (CCL). It has two key novelties: using an
one-class learning for CCL, which can force the learning
algorithm to fully or holistically consider the features of
each class, i.e., not to bias/favor any specific features, and
(2) discriminative information extraction after training. PCL
learns with any number of classes per task, and it outperforms
the latest baselines using both image and text datasets. In our
future work, we plan to further improve the accuracy.
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