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Compound signature detection on LINCS L1000
big data†

Chenglin Liu,abc Jing Su,*b Fei Yang,b Kun Wei,b Jinwen Maa and Xiaobo Zhou*b

The Library of Integrated Network-based Cellular Signatures (LINCS) L1000 big data provide gene expression

profiles induced by over 10 000 compounds, shRNAs, and kinase inhibitors using the L1000 platform. We

developed csNMF, a systematic compound signature discovery pipeline covering from raw L1000 data

processing to drug screening and mechanism generation. The csNMF pipeline demonstrated better

performance than the original L1000 pipeline. The discovered compound signatures of breast cancer were

consistent with the LINCS KINOMEscan data and were clinically relevant. The csNMF pipeline provided a

novel and complete tool to expedite signature-based drug discovery leveraging the LINCS L1000 resources.

1 Introduction

Compound profiling, defined as the large-scale screening of
candidate compounds for their potential drug-like qualities
and toxicity using high-throughput technologies, is the funda-
mental step of drug discovery.1 Traditional compound profiling
approaches evaluate the pharmacological potential of com-
pounds by measuring their affinities for target enzymes or
proteins, inhibitory effects on enzyme activities, or suppressive
effects on cancer cell growth.2,3 However, compounds that
show strong affinity and inhibitory effects on expected targets
often also affect the activities or functions of other proteins in a
cell-specific way. Lacking the systematic and unbiased profiling
of the compound effects at the molecular level, candidate drugs
suggested by such compound profiling strategies often suffer
from a high failure rate in clinical trials.4 On one hand, such
drug targets besides the expected or designed ones are often
responsible for the high toxicity to vital organs, a leading cause
of clinical trial failures.5 On the other hand, the unrecognized

drug targets sometimes significantly contribute to the success
of drugs. For example, compounds that show similar effective-
ness against their designed targets in vitro at molecular levels
often show dramatically different efficacy at the cellular or
patient levels.6 However, the roles of such ‘‘lurking’’ drug
targets of successful drugs in the cellular or in vivo contexts
are rarely well known or used for compound profiling. Further-
more, the cell-specific efficacy of different compounds under-
scores the importance of cell-specific regulatory networks in
drug responses, that is, the roles and importance of the
unknown drug targets are highly disease-and-cell-type-specific
and thus require specific analysis strategies. Thus, there is
a critical need in compound profiling and drug discovery to
thoroughly examine the impacts of drugs or compounds on
cellular functions using a wide panel of essential proteins.

To address the challenges of drug screening coverage, the
Library of Integrated Network-Based Cellular Signatures
(LINCS) program (http://www.lincsproject.org/) has initiated
an effort to generate biomedical big data. The LINCS program
has been used to systematically explore the pharmacological
roles of more than 3700 potential drug targets in 15 cancer cell
lines at the individual-gene level. Using single-gene knockdown
or over-expression of each relevant gene then allows measure-
ment of changes of gene expression patterns. The LINCS
program also contains data for more than 5000 chemicals at
the cellular level, including known drugs and candidate com-
pounds, documented treatment-induced alterations of gene
expression on these cell lines. The LINCS program has also
performed auxiliary high-throughput assays such as the
kinome-wide screening of drug kinase inhibition effects using
KINOMEscans or KiNativTM scan. This is the first time that
the targeted proteins by drugs and compounds have been
systematically analyzed in the contexts of different cancer cell
types in such a scope. With LINCS as a reference library,
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compound profiling can be performed on the panel of more
than 3000 potential drug targets.

Compound profiling using LINCS big data as the reference
library is made possible by the first large-scale application of
the L1000 platform.7 As a novel genome-wide gene expression
assay platform, the L1000 is highly cost-efficient and robotically
automated. It allows the generation of 946 944 profiles of gene
expression data testing 5178 drugs and compounds and per-
turbations of 3712 genes across 15 different cancer cell types
(http://lincscloud.org/). As an ongoing national data generation
consortium, the LINCS L1000 big data is growing quickly in
examined drugs, compounds, genes, dosing, time points, com-
binations of treatment conditions, and cell lines.

Accompanying such a great opportunity are the new challenges
of processing and analyzing data generated from the L1000
platform. The economical usage of the same type of Luminex
FLEXMAP 3Ds beads8 by two types of mRNA probes requires a
reliable deconvolution approach. Furthermore, biases intro-
duced by batch effects need subtle normalization and quality
control methods.

In this work, we present a ‘‘compound signature’’ based
approach to profiling the pharmacological potential of com-
pounds by associating these candidates with known drugs in
terms of the similarity of their possible targets, using the latest
LINCS L1000 data for breast cancer (MCF-7) cell lines. We
defined a ‘‘compound signature’’ as a group of small molecule
compounds sharing similar target genes. As a member of the
LINCS project, we developed a parallel data processing pipe-
line, the fuzzy c-means guided Gaussian mixture model (GMM),
to address the L1000 data processing challenges with superior
accuracy and efficiency. We then developed two compound
signature discovery approaches using data produced by the
GMM pipeline. The first one was the Enrichment of Gene
Effects to a Molecule (EGEM) score, which associated a com-
pound with its potential targets. The second approach was the
constrained sparse non-negative matrix factorization (csNMF)
approach, which used the EGEM scores of drugs, compounds,
and genes to reliably detect the compound signatures and
associate candidate compounds with known drugs by the
shared compound signatures. The LINCS kinomics data for
kinome-wide drug inhibitory effects were used to validate discovered
signatures. Functional analysis and known mechanisms of the
detected signatures further supported the results of compound
signature detection. The third approach was quadruple model
training, which correlated a drug with its targets, the affected
downstream transcription factors, and the transcriptional
alterations.

2 Materials and methods
2.1 Datasets

In this paper, we combined the small-molecule compound and
shRNA data released from the Broad Institute LINCS Data
Generation Center (http://api.lincscloud.org/). Two compound-
induced L1000 gene expression datasets were adopted, which

included data for treatment effects of 728 and 51 compounds on
the MCF-7 breast cancer cell line, respectively. The KINOMEscans

data measured the interactions of compounds and more than
450 kinase assays and disease-relevant mutant variants. Expres-
sion patterns after the single-gene knockdown of 3341 biologically
important genes by shRNA treatments were measured on the
same cell line. Compounds in the latter dataset were all kinase
inhibitors. Thus, we included the auxiliary KINOMEscans data of
these 51 kinase inhibitors released from the Harvard Medical
School LINCS Data Generation Center (http://lincs.hms.harvard.
edu/db/). This dataset was used to validate the discoveries of
compound signatures.

2.2 Work flow

The overall framework of the compound signature discovery
pipeline (Fig. 1) is composed of three phases:

Phase I. Raw L1000 data processing using the GMM pipeline.
At this phase, the L1000 raw data were processed, normalized,
cleaned for quality control, and annotated. The GMM pipeline
demonstrated better accuracy and efficiency compared to
another tool using the k-means method (http://lincscloud.org/
exploring-the-data/code-api/, date: 2012/06/27).

Phase II. Compound signature detection using the EGEM-based
csNMF model. In this phase, the EGEM method was used to
measure the EGEM score for each of the 3341 perturbed genes,
which described the potential of the gene of interest to be the
‘‘target’’ of a small-molecule compound. The targeting potentials of
such compound–gene pairs were represented by an EGEM matrix
(Fig. 1). Then the novel constrained sparse non-negative matrix
factorization (csNMF) algorithm was developed and performed on

Fig. 1 Overview of the compound signature discovery framework. This
method requires raw L1000 data after various compounds and gene knock-
down treatments. The raw data after the two types of treatments are
preprocessed to yield gene expression data in Phase I. In Phase II, the EGEM
matrix is constructed based on these gene expression data to measure
relationships among compounds and knock-down genes. This matrix is
then decomposed to a weight matrix and a coefficient matrix by the csNMF
method. Protein–protein interaction data are added in consideration of
biological connections. Signatures are identified based on strongly asso-
ciated genes (i.e., those with larger values in the coefficient matrix).
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the EGEM matrix to identify compounds of similar targets. Each
such compound subgroup is defined as a compound csNMF
signature, shares similar targets, and may show similar pharma-
ceutical potential.

Phase III. csNMF signature analysis and annotation using
the Quadruple Model. Since the L1000 gene expression patterns
reflect drug effects at the mRNA level, while most drugs directly
or indirectly affect protein activities and functions, there is a
gap between the actual drug targets at the protein level and the
measured drug-induced alterations of gene expressions. We
developed the Quadruple Model to reveal how compounds in
each csNMF signature, through perturbing the functions of the
identified drug targets, altered the downstream transcription
factors and caused the differential changes of the apparent
gene expression patterns. Quadruple models, composed of the
compound–target–transcription factor–gene expression compo-
nents, provided a novel means to reveal the underlying bio-
logical mechanisms shared by similar compounds in each
csNMF signature and therefore to systematically annotate
csNMF signatures at multiple regulatory levels.

2.3 Phase I: raw data pre-processing pipeline

The goal in Phase I was to reliably process, normalize, clean,
and annotate the L1000 raw data. The major challenges in this
phase were reliable peak calling, normalization and quality
control, and the computational burdens for processing big raw
data. The GMM pipeline (Fig. 2) was developed to address these
challenges. The Level 1 raw data in the Luminex bead array
(LXB) format (untreated controls, the compound, and single-
gene knocked down samples) were input into the GMM pipe-
line following the FCS v3.0 standard.9 The raw data for each
sample were deconvoluted and the fluorescent intensity peak
corresponding to each mRNA probe was identified using the
GMM model, annotated with the gene symbol, probe ID, gene
description, and the analyte and L1000 probe set information.
This information was then outputted in the GCT format,
defined as the Level 2 raw gene expression data. After normal-
ization and quality control, each set of perturbation-induced
data was compared with its negative control. Differential gene
expression (DEG) patterns, in the form of log fold changes
(LFCs), were outputted as the Level 3 perturbagen-induced gene
expression pattern data in the GCT format.

A GMM peak calling approach was developed for reliable
peak calling from raw L1000 data [Level 1 to Level 2]. The L1000
approach took advantage of the state-of-art Luminex-bead
based flow cytometry multiplex detection technology.10 Briefly,
DNA probes targeting a specific mRNA were immobilized on a
distinct type of analyte (Luminex beads filled with a distinct
dye). Each type of analyte was composed of a Luminex bead
filled with dye of a unique color, and probes for a specific
mRNA were immobilized on the surface of the bead. The probes
specifically hybridized with the fluorophore-labeled cDNAs
derived from the specific mRNAs in cell lysate. The gene
expression level was then determined by flow cytometry analysis:
the type of an analyte (a bead) was distinguished by the color of
the filled dye, and thus the corresponding probe types could be

identified according to the designed mapping table of analytes
and gene probes. The expression level of the corresponding gene
was measured by the sum of intensity from the fluorophore on
all beads of the same type. Hundreds of types of analytes were
used simultaneously to measure corresponding gene expression
in high throughput.

The LINCS project further boosted the throughput of the
classical Luminex multiplex technology. About 1000 ‘‘land-
mark’’ genes were needed to capture more than 80% of
information for expression patterns of about 22 000 genes.7

However, the current standard LXB platform could only reliably
detected about 500 distinct analyte colors. To fill the gap
between the number of distinguishable analyte dyes and the
number of genes to be measured, the LINCS program utilized a
convolution strategy. Totally 1000 types of analytes were con-
structed, each immobilized with the mRNA probes of a specific
landmark gene. Thus, each distinct dye color i was shared by
two types of analytes, namely GeneH(i) and GeneL(i). To distin-
guish the two types of analytes that shared the same color,
analytes GeneH(i) and GeneL(i) were added at a 1.25 : 0.75 ratio.
Thus, the gene expression of the two targeted mRNA types was
detected as two peaks on the fluorophore intensity histogram of
the same bead color (Fig. 2B) with the intensity levels (x-axis)
representing the mRNA expression levels and peak sizes corres-
ponding to the amount of analytes. The mRNA types were
determined by the sizes of the peaks. Reliable deconvolution

Fig. 2 Overview of the data pre-processing framework. The raw Luminex
data are transformed into gene expression data by the GMM peak calling
method. Quantile normalization is then performed to reduce the batch
effects, and quality control is executed to filter out poor-quality data.
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of the peaks of the two types of analytes that shared the same
color, a process called ‘‘peak calling’’ (Fig. 2B), became the
critical step for processing raw L1000 data.

To deconvolute such overlapped peaks, we assumed that the
fluorophore intensities of each analyte type (corresponding to a
specific mRNA type) had a Gaussian distribution. The distribution
of the mixture of analytes GeneH(i) and GeneL(i) corresponding to
the expression levels of GeneH and GeneL, respectively, should be
subject to a bimodal Gaussian distribution, with the proportion of
1.25 to 0.75. We initialized the estimations of the two Gaussian
distributions using buzzy c-means clustering11 and estimated the
GMM parameters using the Nelder–Mead method.12 Thus, the
overlapped peaks were deconvoluted as the two estimated Gaussian
peaks and the expression levels of the two genes sharing the same
analyte were extracted. Mathematical details are included in the
Supplementary methods, ESI† (the GMM model).

As a test of our peak calling method, we introduced another
method proposed by Broad Institute based on a k-means
algorithm (http://lincscloud.org/exploring-the-data/code-api/,
date: 2012/06/27). In this algorithm, the candidate numbers
of bead clusters were set as 2, 3, and 4 in the peak calling. This
peak calling method choses the numbers of clusters to yield a
ratio of peak areas closest to the expected support proportion,
which was 0.65 to 0.35 by default. If more than two clusters
were detected, the largest two clusters were defined as corres-
ponding to GeneH(i) and GeneL(i).

Data generation and quality control were realized in the data
transforming (normalization and quality control) step [Level 2
to Level 3]. The LINCS L1000 data were generated across several
years, and batches of assays were often different in terms of
Luminex beads, cells, operators, and environments. Therefore,
normalization to remove batch effects and quality control to
exclude poor experiments were crucial during data processing.
The perturbagen-induced gene expression assays were per-
formed on 384-well plates, each well corresponding to a sample.
The controls of perturbagen treatments were on the same plate,
and the replicated plates were used for repeated assays. Original
gene expression data generated by the GMM-algorithm were
quantile-normalized across all assays, and the log fold change
(LFC) data were determined by comparing data from treated
samples with those from the control samples on the same plate
(Fig. 2B). Data quality control was performed at multiple levels.
At the single-well level, the confidence of the gene expression
data was examined by corresponding detectable beads, and
those that were supported by less than 20 beads were discarded.
At the inter-plate level, data repeatability was examined by
Pearson’s correlations among replicates, and plates of poor
correlations were discarded (Fig. 2B).

Data availability. L1000 data of all three levels, source codes,
tutorial, user guide, and the latest updates are available from
our website (http://ctsb.is.wfubmc.edu/itNETZ/DPPCSD.html).
Processed (Level 2) and transformed (Level 3) data are also
available from pLINDAW (the pan-LINCS Data Warehouse).
SQL access: metacity.is.wfubmc.edu:3306. Please refer to
http://ctsb.is.wfubmc.edu/itNETZ/pLINDAW for more informa-
tion. Raw L1000 data (Level 1) can also be directly downloaded

from the LINCS cloud storage (http://lincscloud.org/) hosted by
the Broad Institute.

2.4 Phase II: compound signature discovery

EGEM score and the EGEM matrix. A new metric called the
Enrichment of Gene Effect to a Molecule (EGEM) was developed
to identify proteins closely related to cellular responses to a
small molecule compound, using the LINCS L1000 landmark
gene expression data. A small molecule compound affected a
cell by directly or indirectly changing the activities and func-
tions of its target proteins drove downstream biological events,
and finally altered cellular gene expression patterns. We
hypothesized that the knockdown of a gene that is closely
related to the target proteins of a small molecule compounds
induces similar gene expression pattern changes. Thus,
identification of such genes could reveal the mechanisms of
cellular responses to these compounds and predict their pharma-
ceutical potentials. We defined the ‘‘target genes’’ of a compound
in the general meaning: the corresponding proteins of such genes
could be either the real drug targets or those at downstream or
upstream and were closely related to the real targets. The data for
3000 single-gene knockdown experiments were used as the target
gene reference library, and the data for compound treatments
were profiled against this reference library to identify possible
target genes of corresponding small molecule compounds.

We defined the EGEM score to describe the similarity
between the treatments of a compound and a shRNA targeting
a gene using the mutual enrichment of their resultant differ-
ential expressed landmark genes. The EGEM metric was
derived from the rank-based gene set enrichment analysis
(GSEA)13 and the connectivity analysis.14 Compound treat-
ments could be taken as ‘‘phenotypes’’ and the differentially
expressed genes (DEGs) of a single gene knocking down treat-
ment as a ‘‘signature gene set’’ in the GSEA terminology. The
EGEM metric enabled gene set enrichment analysis against
the LINCS target gene reference library. The construction of the
EGEM score is shown in Fig. S1 and details are provided in the
Supplementary data, ESI.†

We constructed an EGEM matrix A A Rn�m involving n driver
genes and m compounds by pairwise calculation of EGEM
scores between each compound and each knockdown. Thus,
the impacts of these compounds were delineated using the
3000-target-gene reference library.

Compound signature discovery by csNMF. As previously
mentioned, a ‘‘compound signature’’ was defined as a group of
small molecule compounds sharing similar target genes. We
developed a novel method, the constrained sparse non-negative
matrix factorization (csNMF), an NMF approach regularized by
both the protein–protein-interaction constraint and the sparseness
constraint, to effectively detect biomedically meaningful com-
pound signatures from the large EGEM matrix. Non-negative
matrix factorization (NMF)15 is a matrix decomposition method
widely used in pattern recognition16 and has demonstrated its
ability in solving various biclustering problems in bioinformatics,
including gene pattern recognition, disease module detection, and
phenotype classification.17 Canonically, a non-negative EGEM
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matrix A A Rn�m would be decomposed into two non-negative
matrices W and V, so that A E WV, where W A Rn�k was the
weight matrix of target genes, V A Rk�m was the clustering
matrix of compounds, and k { min (m,n) was the number
of co-clusters. Both weight matrices would be later used to
identify the k co-clusters.

We extended the canonical NMF approach to detect bio-
medically meaningful co-modules of both compounds and
target genes, in which drugs showed similar associations with
target genes according to the compound–target EGEM scores.
The overall objective function used to solve the csNMF was:

and the components were interpreted as described below. The
csNMF was optimized using the multiplicative algorithm.15,17

Simultaneous clustering of positive and negative EGEM
scores. A co-module consisted of both positive and negative
EGEM scores as long as they were significant and consistent
across compounds in the same module, but canonical NMF
approaches could only accept non-negative values. To simulta-
neously handle both positive and negative EGEM scores, from
the original EGEM matrix A, we extracted the positive EGEM
scores into the similar EGEM Matrix As and the absolute values
of the negative EGEM scores into the reverse EGEM Matrix AR,
both of the same dimensions as A. Both the two EGEM matrices
were presented in the overall objective function above and were
simultaneously optimized during iterative NMF model training.
The corresponding weight matrices of positively and negatively
associated target genes, Ws and Wr, respectively, were achieved
at each iteration step, and were merged after optimization.

Sparseness constraint. We introduced a sparseness con-
straint according to the sparse NMF (sNMF) method proposed
by.18 In sNMF, the L1 norm constraint is added to V, and JWJF

was added to balance the accuracy of the optimization and the
sparseness of V. The rationale was that the elements clustered
into the co-modules should be a small portion of the matrix.
The sparseness constraint was necessary when biclustering a
very large EGEM matrix.

PPI constraint. We introduced protein–protein interaction
(PPI) constraints according to the PPI database19 to emphasize
clusters that were biologically meaningful and thereby controlling
false discovery. The rationale was that in the cellular regulatory
network, perturbations of some up- and down-stream proteins
(‘‘peers’’) of a protein targeted by the compound often also
showed similar changes in gene expression patterns. In the PPI
constraint component in eqn (3), P was the PPI prior matrix and
D was a diagonal matrix, with each row as the sum of the

corresponding row of P. The PPI constraint significantly
improved both the specificity and the sensitivity of the NMF
approach in compound signature discovery. On one hand,
false-positive signature genes were often sporadically distrib-
uted in the PPI network, and thus their weights downgraded
and more likely to be excluded. On the other hand, if in the
PPI network a group of ‘‘neighbor’’ genes showed consistent
but only moderate EGEM scores with a compound, because
of their favorably adjusted weights, they were more likely to
be clustered as signature genes of this compound. Introducing
prior knowledge of the PPI network to the NMF approach

thus contributed to more reliable discovery of compound
signatures.

Mathematical details (the NMF algorithm) and the pseudo
code (Table S1) are provided in the Supplementary data ESI.†

2.5 Phase III: compound signature analysis

We further examined the biomedical relevance and the pharma-
ceutical potentials of the detected compound signatures by com-
pound signature analysis using experimental and clinical data.

Biomedical relevance. We proposed quadruple models to
reveal the molecular events associated with compound signa-
tures and cross-validated the quadruple models using the
KINOMEscan experiments. A compound impacts the functions
of its target proteins directly or indirectly, triggers regulatory
networks, alters the activities of downstream transcription fac-
tors, and thus changes the gene expression patterns. To reveal
such an underlying mechanism of signatures, we proposed a
quadruple model (Fig. 4A), which included the compound, its
direct and indirect targets, downstream transcription factors,
and affected genes. Transcription factors for each signature were
identified by enrichment analysis according to signature-
associated affected genes using ChIP enrichment analysis, set-
ting a p-value of less than 0.05 and ratios of the interacting genes
to all genes that exceeded 0.1.20 The quadruples of compound
signatures were thus constructed. The biomedical relevance of a
typical signature (Signature 2) was validated by comparing the
predicted transcription factors from signature target genes with
the enriched transcription factors derived from the direct measure-
ment of kinase targets of four kinase inhibitors (ALW-II-38-3,
ALW-II-49-7, QL-XI-92, and CP724714) in this signature.

Pharmaceutical potential. The compound signatures were
composed of compounds and their associated target genes.
Compounds in a given signature shared similar target genes
and thus perturbed the cell functions in similar ways for the

min
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corresponding cancer cell line. If some had already demon-
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predictions of the csNMF modeling. The 51 kinase inhibitors
were analyzed against the 3341-target gene reference library. In
all, 6 compound signatures were detected (see Supplementary
data file 1, ESI†).

Validation of predicted target genes using GO similarity.
Target genes in the same compound signature should be
strongly correlated. We utilized the gene ontology (GO) simila-
rities among the predicted targets within the same signature
(95% interaction rate, GOSemSim23) to examine whether target
genes were biologically associated. Signatures 2, 4, and 5
demonstrated strong GO connectivity (Table S2 in the Supple-
mentary data, ESI†). Although Signature 1 did not pass the
significance test, three inhibitors in Signature 1 shared the
primary target of EGFR and the other two inhibitors shared
FGFR3 and p38-alpha. Signatures 3 and 6 demonstrated very
high correlations of gene expression patterns among com-
pounds in the signatures (Signature 3: 0.947 � 0.059, Signature
6: 0.763 � 0.127).

Validation of predicted target genes using direct kinase
targets. We focused on Signature 2 for further analysis because
four kinase inhibitors in this signature (ALW-II-38-3, ALW-II-49-
7, QL-XI-92, and CP724714) were also experimentally profiled
by KINOMEscans for their direct kinase targets. We first
examined whether these kinase inhibitors if they shared kinase
targets, as predicted. Three of them (LW-II-38-3, ALW-II-49-7,
and QL-XI-92) directly shared the same nominal target, DDR1.
We then examined if their kinase targets demonstrated stron-
ger similarity than average by calculating the correlations of
interactions of these targets to all 450 kinases in the KINO-
MEscans dataset. These three kinase inhibitors were highly
related compared to the randomly selected compounds (corre-
lation coefficients around 0.7–0.8 compared to 0.10 for random
controls) (Table S3, Supplementary data ESI†). Kinase inhibitor
similarity according to EGEM scores also was consistent with
the direct kinase target similarity assayed by KINOMEscans

experiments (Fig. S2, Supplementary data, ESI†). Our results
were consistent with previous reports. For example, ALW-II-38-3
and ALW-II-49-7 are known to demonstrate very similar char-
acteristics.24 CP724714 did not show similar kinase targets to
the other three inhibitors, and was further analyzed using
quadruple models.

Validation of predicted target genes using the quadruple
model. Compounds that triggered similar molecular cascades
might instead share indirect targets, some of which might not
be kinases. CP724714, whose major target was HER2, did not
show similar kinase targets to the other 3 kinases, but it
induced a similar change in gene expression pattern according
to the EGEM matrix. Previous literature suggests a strong
co-occurrence between DDR1 and HER225 in breast cancer.
We thus examined whether the four kinase inhibitors in
Signature 2 instead shared similar downstream signaling path-
ways and affected activities of transcription factors in the same
way. The quadruple models of these four inhibitors were
constructed according to predicted target genes (Fig. 4B, red)
and were compared to those constructed according to direct
kinase targets from the KINOMEscans results (Fig. 4B, blue).

Among the 108 transcription factors enriched from predicted
targets and the 109 from experimental targets, 90 overlapped.
Thus, the predicted similarity between CP724714 and the other
three compounds could be explained in the quadruple models,
reflecting shared patterns of downstream transcription factor
activity.

3.3 Functional annotation to determine signature drug
potential for breast cancer

Since the csNMF approach was validated for 51 kinase inhibi-
tors, we implemented this approach to screen drug candidates
for breast cancer. We studied 728 compounds against the 3341
target gene reference library screened for the MCF-7 breast
cancer cell line and detected eight signatures. As shown in
Fig. 5A, compounds (columns) belonging to the same signa-
tures were grouped together; red regions denote similar gene
expression patterns between the compounds and the target
genes (rows), and the green regions denote the reverse effects.
In all, 8 compound signatures were identified (Supplementary
data file 2, ESI†).

To find the signatures of related compounds that might be
beneficial for breast cancer, we focused on functions such as
induction of apoptosis and suppression of proliferation. The
enrichment of different biological processes of signatures was
investigated by DAVID22 according to the gene ontology (GO)
terms of signature target genes. Only terms with a p-value less
than 0.05 were considered. To define similar compound–gene
effects, we considered the terms with positive regulation of cell
death and apoptosis; as to the reverse ones, we considered
the negative regulations (cancer treatment-related GO terms).
Signatures 7 and 8 were enriched for apoptosis (Fig. 5B).

Compounds in Signature 7 demonstrated potential benefit
as cancer treatments. Among them, letrozole and megestrol
acetate were FDA-approved chemotherapy drugs for breast
cancers.26 Oleoylethanolamide was reported to suppress cell
proliferation and was used to treat breast cancer.27 Calcipotriol
exhibited antiproliferative activity in the MCF-7 cell line,28 and
leinoleic acid was reported to inhibit cell growth in the same
cell line.29 Dibenzoylmethane and CITCO inhibited cell growth
in prostate cancer and brain tumor stem cells.30,31

Compounds in Signature 8 were related to antihypertensive
and antipsychotic drugs, such as piretanide32 and benperidol.33

Interestingly, other researchers reported that antipsychotic
drugs inhibited the functions of proteins related to breast
cancer drug resistance.34 However, some compounds, such as
gabazine35 and mesulergine,30 demonstrated high toxicity and
might not be suitable as drugs.

3.4 Clinical relevance of compound signatures

We examined the associations of the discovered compound
signatures with patient survival and other clinical traits. Clinical
features and gene expression profiles of 2116 breast cancer
patients collected from Belgium, England, and Singapore
(GEO:GSE45255) were examined by the gene set enrichment of
the 8 discovered breast cancer related compound signatures. For
example, in terms of distant metastasis-free survival, patients the
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Signature 4Low category responded poorly to chemotherapy
compared with those in the Signature 4High category (Fig. 5C).
Signature 4 was selectively associated with chemotherapy but not
hormone therapy (tamoxifen).

We performed a univariable and multivariable survival
analysis using discovered compound signatures as well as
conventional clinical features including patient age, tumor size,
PAM50 as well as molecular subtypes, lymph node involvement,
the ER status, and the pathological grades (Tables S4, S5 and
data file S3, ESI†). The results suggested that the compound
Signatures 4 and 5 are strongly associated with poor prognosis
for patients with chemotherapies but not for those with Tamoxifen
treatment. The analysis results were consistent with the drug
response survival results showed in Fig. 5.

Signatures also demonstrated associations with breast
cancer subtypes (Signature 2) and receptor status (Signatures
3 and 6 with estrogen receptor status), as shown in Fig. S3 in
the Supplementary data, ESI.†

Such association results demonstrate the clinical potential
of the compound signatures discovered in the MCF-7 breast
cancer cell line model. Follow-up investigations could include
testing the underlying mechanisms for the poor prognosis
of patients in the Signature 4Low category, by further studying
the predicted target genes using the established Signature 4
quadruple model.

4 Conclusions

We have developed the csNMF approach, a comprehensive and
complete pipeline, for network-based compound signature
discovery and drug screening under the target gene reference
library. The GMM approach, the L1000 raw data pre-processing
module, has demonstrated high accuracy, high efficiency, and
high scalability compared with the standard KM pipeline. The
EGEM-based csNMF signature discovery module benefited
from biological (PPI) and sparseness constraints and simulta-
neous co-clustering of both positive and negative values. The
quadruple model, which incorporates four consequential com-
ponents along the drug-induced molecular cascade (the drug,
drug targets, downstream transcription factors, and affected

gene expression), can reveal underlying regulatory mechanisms
of similar drugs. The predicted similarity of drug–target genes
was validated with experimental profiling. The extracted breast
cancer compound signatures also demonstrated strong clinical
relevance. Together, as a key module of the itNETZ platform, the
csNMF pipeline bridges the gap between the rich resource of the
LINCS signature library and biomedical and clinical research
needs, and provides biomedical researchers with a systematic
drug screening and mechanism discovery framework.
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