SYSTEMS OF POINTS WITH COULOMB INTERACTIONS
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1. General setups

We are interested in large systems of points with Coulomb-type interactions, described
through an energy of the form

N
(1.1) Hy(z .. Zg T — Tj) NZV(%‘Z‘).
z;éj i=1

Here the points z; beiong to the Euclidean space RY, although it is also interesting to consider
points on manifolds. The interaction kernel g(x) is taken to be

(1.2) ( & 2 case) g(r)=—log|z|, in dimension d =2,

(1.3) (‘!ou, case) g(z)= in dimension d > 3.

’w‘d—Q’

This is (up to a multiplicative constant) the Coulomb kernel in dimension d > 2, i.e. the
fundamental solution to the Laplace operator, solving

(1.4) — Ag = Cd(SO

where dg is the Dirac mass at the origin and cq is an explicit constant depending only on the
dimension. It is also interesting to broaden the study to the one-dimensional logarithmic case

(1.5) ( & 1case) g(r)= —log|z|, in dimensiond =1,
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which is not Coulombian, and to more general Riesz interaction kernels of the form
1
1.6 =— s>0.
(1.6) 8(0) = 1%

The one-dimensional Coulomb interaction with kernel —|z| is also of interest, but we will not
consider it as it has been extensively studied and understood, see [113,123,124].

Finally, we have included a possible external field or confining potential V', which is assumed
to be regular enough and tending to co fast enough at co. The factor N in front of V' makes the
total confinement energy of the same order as the total repulsion energy, effectively balancing
them and confining the system to a subset of RY of fixed size. Other choices of scaling would
lead to systems of very large or very small size as N — oo.

The Coulomb interaction and the Laplace operator are obviously extremely important and
ubiquitous in physics as the fundamental interactions of nature (gravitational and electro-
magnetic) are Coulombic. Coulomb was a French engineer and physicist working in the late
18th century, who did a lot of work on applied mechanics (suck: as modeling friction and
torsion) and is most famous for his theory of electrostatics and magnetism. He is the first
one who postulated that the force exerted by charged particies iz proportional to the inverse
distance squared, which corresponds in dimension d = 3 to the gradient of the Coulomb po-
tential energy g(z) as above. More precisely he wrote in [29] “ It follows therefore from these
three tests, that the repulsive force that the two bails [which were] electrified with the same
kind of electricity exert on each other, follows the inverse proportion of the square of the
distance." He developed a method based on systematic use of mathematical calculus (with
the help of suitable approximations) and mathewmatical modeling (in contemporary terms) to
predict physical behavior, systematically comparing the results with the measurements of the
experiments he was designing and conducting himself. As such, he is considered as a pioneer
of the “mathematization" of physics and in trusting fully the capacities of mathematics to
transcribe physical phenomena |28].

Here we are more specifically focusing on Coulomb interactions between points, or in physics
terms, discrete point charges. There are several mathematical problems that are interesting
to study, all in the asymptotics of N — oo :

(1) understand winunizers and possibly critical points of (1.1) ;
(2) understand the statistical mechanics of systems with energy Hy and inverse temper-
ature 5 >> 0, governed by the so-called Gibbs measure

1
(1.7) dPy p(z1, ..., 2N) = - e PN @ LN gy day.
N?ﬁ
rere Py g is the density of probability of observing the system in the configuration
(x1,...,xn) if the inverse of the temperature is 5. The constant Zy g is called the

“partition function" in physics, it is the normalization constant that makes Py 3 a
probability measure, ' i.e.

(1.8) ZNB = / e_”BHN(xl""’xN)dxl...dmN,
T Sy

where the inverse temperature 5 = Sy can be taken to depend on N, as there are
several interesting scalings of § relative to N;
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(3) understand dynamic evolutions associated to (1.1), such as the gradient flow of HN
given by the system of coupled ODEs

) 1
(1.9) xi:—ﬁviHN(xl,...,xN),
the conservative dynamics given for instance in dimension 2 by the systems of ODEs
) 1
(1.10) T; = NVZJ"HN(xl,...,xN) VJ' = (—62,(91),
or the Hamiltonian dynamics given by Newton’s law
. 1
(1.11) xz-:—NViHN(xl,...,xN);

(4) understand the previous dynamic evolutions with temperature =1 in the form of an
added noise (Langevin-type equations) such as

(1.12) di; = —%V{HN(HH, e an)dt + /B,
with W; independent Brownian motions, or
(1.13) dx; = %foN(a;l, o)t /B W,
in dimension 2 as above, or
(1.14) dx; = v;dt dv; = —%VZ‘H[\; (x1,...,zN)dt + \/FdWi.

From a mathematical point of view, the ctudy of such systems touches on the fields of
analysis (Partial Differential Equations an<d calculus of variations, approximation theory)
particularly for (1)-(3)-(4), probability (perticularly for (2)-(4)), mathematical physics, and
even geometry (when one considers such systems on manifolds or with curved geometries).
Some of the crystallization questions they lead to also overlap with number theory as we will
see below.

In the sequel we will mostly focus on the stationary settings (1) and (2), while mentioning
more briefly some known results about (3) and (4), for which many questions remain open.
Of course these varicis p;oints are not unrelated, as for instance the Gibbs measure (1.7) can
also be seen as an invariant measure for dynamics of the form (1.11) or (1.12).

The plan of the discussion is as follows: in the next section we review various motivations
for studying such questions, whether from physics or within mathematics. In Section 3 we
turn to the so-called “mean-field" or leading order description of systems (1) to (4) and review
the standard questions and known results. We emphasize that this part can be extended to
general interaction kernels g, starting with regular (smooth) interactions which are in fact
the easiest to treat. In Section 4, we discuss questions that can be asked and results that can
be obtained at the next order level of expansion of the energy. This has only been tackled
for problems (1) and (2), and the specificity of the Coulomb interaction becomes important
then.

2. Motivations

It is in fact impossible to list all possible topics in which such systems arise, as they are
really numerous. We will attempt to give a short, necessarily biased, list of examples, with
possible pointers to the relevant literature.
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2.1. Vortices in condensed matter physics and fluids. In superconductors with applied
magnetic fields, and in rotating superfluids and Bose-Einstein condensates, one observes the
occurrence of quantized “vortices" (which are local point defects of superconductivity or su-
perfluidity, surrounded by a current loop). The vortices repel each other, while being confined
together by the effect of the magnetic field or rotation, and the result of the competition be-
tween these two effects is that, as predicted by Abrikosov [1], they arrange themselves in a
particular triangular lattice pattern, called Abrikosov lattice, cf. Fig. 1 (for more pictures,
see www.fys.uio.no/super/vortex/). Superconductors and superfluids are modelled by the

Figure 1. Abrikosov lattice, H. F. fless et al. Bell Labs Phys. Rev. Lett. 62,
214 (1989)

celebrated Ginzburg-Landau energy {i15], which in simplified form ? can be written

(21) [rovr + LR

where 9 is a complex-valued unknown function (the ‘order parameter" in physics) and € is a
small parameter, aud gives rise to the associated Ginzburg-Landau equation

1
(2:2) A+ (1= [$f*) = 0
and its dynsamicai versions, the heat flow
1
(2.3) oY = A + ;21?(1 —[¢?)

and Schrodinger-type flow (also called the Gross-Pitaevskii equation)

(2.4) 00 = A+ (1~ 9P,

When restricting to a two-dimensional situation, it can be shown rigorously (this was
pioneered by [23] for (2.1) and extended to the full gauged model [25,158,159]) that the mini-
mization of (2.1) can be reduced, in terms of the vortices and as ¢ — 0, to the minimization of
an energy of the form (1.1) in the case (1.2) (for a formal derivation, see also [169, Chap. 1])
and this naturally leads to the question of understanding the connection between minimizers
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of (1.1) + (1.2) and the Abrikosov triangular lattice. Similarly, the dynamics of vortices under
(2.3) can be formally reduced to (1.9), respectively under (2.4) to (1.10). This was established
formally for instance in [64,142] and proven for a fixed number of vortices N and in the limit
e — 0 in [24,54,55,106,127-129] until the first collision time and in [21,22,165,176] including
after collision.

Vortices also arise in classical fluids, where in contrast with what happens in superconduc-
tors and superfluids, their charge is not quantized. In that context the energy (1.1)+(1.2)
is sometimes called the Kirchhoff energy and the system (1.10), known as the point-vortex
system, corresponds to the dynamics of idealized vortices in an incompressible fluid whose
statistical mechanics analysis was initiated by Onsager, cf. [67] (one of the motivations for
studying (1.13) is precisely to understand fluid turbulence as he conceived). it has thus been
quite studied as such, see [132] for further reference. The study of evolutiens like (1.11) is also
motivated by plasma physics in which the interaction between ions is Couiombic, cf. [100].

2.2. Fekete points and approximation theory. Fekete points arise in interpolation theory
as the points minimizing interpolation errors for numerical integration [157]. More precisely,
if one is looking for N interpolation points {z1,...,zx} in K such that the relation

[ sz =3 wj )

K j=1

is exact for the polynomials of degree < N — 1, one sees that one needs to compute the
coefficients w; such that fK zk = Zé\[:l wjxg? fer 0 < k < N —1, and this computation is easy
if one knows to invert the Vandermonde matrix of the {xj}jzlu_ ~. The numerical stability
of this operation is as large as the condiizon number of the matrix, i.e. as the Vandermonde
determinant of the (z1,...,xy). The points that minimize the maximal interpolation error
for general functions are easily shown to be the Fekete points, defined as those that maximize

Iz — 5]

i#]

- Zlog |:El — SCj’.
i#j
They are often studied on manifolds, such as the d-dimensional sphere. In Euclidean space,
one also considers “weighted Fekete points" which maximize

[Tl — je™ 22 V0

i<j

or equivalently minimize

or equivalently minimize

N
—% Zlog |y — x| + NZ V(zi)
i#j i=1
which in dimension 2 corresponds exactly to the minimization of Hy in the particular case
- & 2. They also happen to be zeroes of orthogonal polynomials, see [174].
Since —log|z| can be obtained as lim,_, (2|~ — 1), there is also interest in studying
“Riesz s-energies", i.e. the minimization of

(2.5) > —
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Figure 2. The triangular lattice solves the sphere packing problem in dimen-
sion 2

for all possible s, hence a motivation for (1.6
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For the systems studied here, one may expect, after a suitable blow-up of the system, what
physicists call a liquid for small 5, and a crystal for large 8. The meaning of crystal in this
instance is not to be taken literally as a lattice, but rather as a system of points whose 2-point
correlation function ,0(2) (z,y) does not decay too fast as x —y — oo. A phase-transition at
finite 8 has been conjectured in the physics literature for the . € 2 case (see e.g. [38,42,49])
but its precise nature is still unclear (see e.g. [179] for a discussion).

2.4. Two component plasma case. The two-dimensional “one component plasma', con-
sisting of positively charged particles, has a “two-component" counterpart whick consists in
N particles z1,...,xy of charge +1 and N particles y,...,yn of charge -1 interacting
logarithmically, with energy

HN (@1, TN, Y1, - yn) = — D log ey — x5 = Y log |y — ;] 4> log |z — ;1
i#] i#] 4]

and the Gibbs measure

1
—e_m{N(“"“’xN’yl""’yN)dml coodrpyduy .. dyn.
AN

Although the energy is unbounded below (positive and negative points attract), the Gibbs
measure is well defined for 8 small enough, more precisely the partition function converges
for § < 2. The system is then seen to form dipcles of oppositely charged particles which
attract but do not collapse, thanks to the thermal agitation. The two-component plasma
is interesting due to its close relation to two important theoretical physics models: the XY
model and the sine-Gordon model (cf. the review [177]), which exhibit a Kosterlitz-Thouless
phase transition [26] consisting in the binding of these “vortex-antivortex" dipoles. For further
reference, see [60,76,77,90].

2.5. Random matrix theory. The study of (1.7) has attracted a lot of attention due to
its connection with random matrix theory (we refer to [72] for a comprehensive treatment).
Random matrix theory (RMT) is a relatively old theory, pionereed by statisticians and physi-
cists such as Wishary, Wigner and Dyson, and originally motivated by the study of sample
covariance matrices for the former and the understanding of the spectrum of heavy atoms for
the two latter, sce [135]. For more recent mathematical reference see [9,57,72]. The main
question asked by RMT is : what is the law of the spectrum of a large random matrix 7 As
first noticed in the foundational papers of [63,189], in the particular cases (1.5) and (1.2)
the Gibbs measure (1.7) corresponds in some particular instances to the joint law of the
eigenvalues (which can be computed algebraically) of some famous random matrix ensembles:

o for. ¢ 2, 3=2and V(z) = |2/?, (1.7) is the law of the (complex) eigenvalues of an
N x N matrix where the entries are chosen to be normal Gaussian i.i.d. This is called
the Ginibre ensemble.

e for g1, 8 =2and V() = 22/2, (1.7) is the law of the (real) eigenvalues of an
N x N Hermitian matrix with complex normal Gaussian iid entries. This is called the
Gaussian Unitary Ensemble.

e for. ¢ 1,8 =1and V(z) = 22/2, (1.7) is the law of the (real) eigenvalues of an N x N
real symmetric matrix with normal Gaussian iid entries. This is called the Gaussian
Orthogonal Ensemble.
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e for. ¢ 1, 3 =4and V(z) = 22/2, (1.7) is the law of the eigenvalues of an N x N
quaternionic symmetric matrix with normal Gaussian iid entries. This is called the
Gaussian Symplectic Ensemble.

e the general-§ case of . ¢ 1 can also be represented, in a slightly more complicated
way, as a random matrix ensemble [62,111].

One thus observes in these ensembles the phenomenon of “repulsion of eigenvalues': they
repel each other logarithmically, i.e. like two-dimensional Coulomb particles.

The stochastic evolution (1.12) in the case . € 1 is exactly the Dyson Brownian motion,
which is of particular importance in random matrices since the GUE process is tue invariant
measure for this evolution, it has served to prove universality for the statistics cf eigenvalues
of general Wigner matrices, i.e. those with iid but not necessarily Gaussian entries, see [66]
(and [182] for another approach), and has thus been studied with that perspective, see for
instance [97] and references therein.

For the . ¢ 1 and . & 2 cases, at the specific temperature § = 2, the law (1.7) acquires a
special algebraic feature : it becomes a determinantal process, part ot a. wider class of processes
(see [30,96]) for which the correlation functions are explicitly given by certain determinants.
This allows for many explicit algebraic computations, and is vart of integrable probability on
which there is a large literature [31].

2.6. Complex geometry and theoretical physics. Two-dimensional Coulomb systems
(in the determinantal case 8 = 2) are of interest to georneters because they serve to construct
Kahler-Einstein metrics with positive Ricci curvature on complex manifolds, cf. [17,18]. An-
other important motivation is the construction of Laughlin states for the Fractional Quantum
Hall effect on complex manifolds, which cifectively reduces to the study of a two-dimensional
Coulomb gas on manifolds. The coefficients in the expansion of the (logarithm of the) parti-
tion function have interpretations as geometric invariants, cf. for instance [112].

3. The mean field limits and macroscopic behavior

3.1. Questions. The first question that naturally arises is to understand the limits as N —
oo of the empirical measure defined by *

1N
(3.1) UN = N;(sz

for configurations of points that minimize the energy (1.1), critical points, solutions of the
evolution problems, or typical configurations under the Gibbs measure (1.7), thus hoping
to derive eifective equations or minimization problems that describe the average or mean-
field behavior of the system. The term mean-field refers to the fact that, from the physics
perspective, each particle feels the collective field generated by all the other particles, averaged
by dividing it by the number of particles. That collective field is g * un, except that it is
singular at each particle, so to evaluate it at x; one would first have to remove the contribution
of xz; itself.
Another point of view is that of correlation functions. One may denote by

(3.2) P (@, ... )
Sated tde 9 figu! tgd «o% t & NN LIS IF IR RAETOR N PR Ni’c{"‘«é‘?cﬁbufv o
I VI y LS [ I ° °

wddad e ifen ottgl
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the k-point correlation function, which is the probability density (for each specific problem)
of observing a particle at x1, a particle at xg, ..., and a particle at z, (these functions should
of course be symmetric with respect to permutation of the labels). For instance, in the case
(1.7), p%v) is simply Py g itself, and the ,05(;) are its marginals (obtained by integrating Py s
with respect to all its variables but k). One then wants to understand the limit as N — oo
of each pg\];), with fixed k. Mean-field results will typically imply that the limiting p*)’s have
a factorized form

(3.3) p ¥ @y, ) = p(xy) .. play)

for the appropriate p which is also equal to p(l). This is called molecular chaos according to
the terminology introduced by Boltzmann, and can be interpreted as the particles becoming
independent in the limit. When looking at the dynamic evolutions of probiems (3) and (4),
starting from initial data for which p(k)(O, -) are in such a factorized form, one asks whether
this remains true for p(®)(¢,-) for t > 0, if so this is called propogation of (molecular) chaos.
It turns out that the convergence of the empirical measure (3.1) to a imit p and the fact that
each p(k) can be put in factorized form are essentially equivalent, see [88,95] and references
therein — ideally, one would also like to find quantitative rates of convergences in N, and
they will typically deteriorate as k gets large. In the foliowing we will focus on the mean-field
convergence approach, via the empirical measure.

In the statistical mechanics setting (2), the quest for estimates on Zyg as N — oo is
also a constant theme. Indeed, the quantity —2 ' log Zy 3 is called the free energy, and its
dependence on [ encodes a lot of the physical uantities of the system. For instance, points
of non-differentiability of log Zn g(3) are iriterpreted as phase-transitions.

3.2. The equilibrium measure. The leading order behavior of Hy is related to the func-
tional

[
(3.4) Ty (w) =5 i

oJd Rd XRd

e

ela ~ p)du(e)dn(o) + | Via)duta)

L)

defined over the space P(RY) of probability measures on RY (which may also take the value
+00). This is something one may naturally expect since Zy () appears as the continuum
version of the discrete energy Hpy. From the point of view of statistical mechanics, Zy is the
“mean-field" limit energy of Hp, while from the point of view of probability, Zy plays the
role of a rate function.

Assuming some lower semi-continuity of V' and that it grows faster than g at oo, it was
shown in {78] that the minimum of Zy over P(RY) exists, is finite and is achieved by a unique
py (unique by strict convexity of Zy), which has compact support and a density, and is
uniquely characterized by the fact that there exists a constant ¢ such that

Y +V >c in R
(3.5)

h*v +V = ¢ in the support of uy
where
(3.6) W)= | e = i)

is the “electrostatic" potential generated by uy .
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This measure py is called the (Frostman) equilibrium measure, and the result is true for
more general repulsive kernels than Coulomb, for instance for all regular kernels or inverse
powers of the distance which are integrable.

Example 3.1. When g is the Coulomb kernel, applying the Laplacian on both sides of (3.5)
gives that, in the interior of the support of the equilibrium measure, if V € C?,

(3.7) Cduy = AV

i.e. the density of the measure on the interior of its support is given by %. For example if

V is quadratic, this density is constant on the interior of its support. If V(z) = |z|? then by
symmetry uy is the indicator function of a ball (up to a multiplicative factor), this is known
as the circle law for the Ginibre ensemble in the context of Random Matrix Theory. An
illustration of the convergence to this circle law can be found in Figure 3. In dimension d =1,
with g = —log| - | and V(z) = 2?, the equilibrium measure is py(z) = 5=v4 — 221 ,<o,
which corresponds in the context of RMT (GUE and GOE ensembles) to the famous Wigner
semi-circle law, cf. [135,189)].

In the Coulomb case, the equilibrium measure py can also be interpreted in terms of the
solution to a classical obstacle problem (and in the Riesz case (1.6) withd —2 < s < d
a “fractional obstacle problem"), which is essentially dual to the minimization of Zy, and
better studied from the PDE point of view (in particular the regularity of uy and of the
boundary of its support). For this aspect, see [169, Chap. 2] and references therein.

Frostman’s theorem is the basic result of potential theory. The relations (3.5) can be seen
as the Euler-Lagrange equations associated to the minimization of Zy,. They state that in the
static situation, the total potential, sum of the potential generated by uy and the external
potential V' must be constant in the support of py, i.e. in the set where the “charges" are
present.

More generally V(h* + V) can be seen as the total “mean-field force" acting on charges
with density p (i.e. each particle feels the average collective force generated by the other
particles), and for the particle to be at rest one needs that force to vanish. Thus V(h* + V)
should vanish on the support of u, in fact the stationarity condition that formally emerges as
the limit for critical points of Hp is

(3.8) V(b + V) =0,

The problem with this relation is that the product Vh*u does not always make sense, since
a priori p is only a probability measure and A" is not necessarily continuous, however, in
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This result is usually attributed to [50], one may see the proof in [157] for the logarithmic
cases, the general case can be treated exactly in the same way [169, Chap. 2], and is valid for
very general interactions g (for instance radial decreasing and integrable near 0). In modern
language it can be phrased as a I'-convergence result. It can also easily be expressed in terms
of convergence of marginals, as a molecular chaos result.

3.4. Parallel results for Ginzburg-Landau vortices. The analogue mean field result and
leading order asymptotic expansion of the minimal energy has also been obtained for the two-
dimensional Ginzburg-Landau functional of superconductivity (2.1), see [158, Chap. 7]. It is
phrased as the convergence of the vorticity V x (i), Vi), normalized by the proper number
of vortices, to an equilibrium measure, or the solution to an obstacle problem. The analogue
of (3.8) is also derived for critical points in [158, Chap. 13|, where an appropriate weak sense
for this relation is given.

3.5. Deterministic dynamics results - problems (3). For general reference on problems
of the form (3) and (4), we refer to [178]. In view of the above discussion, in the dynam-
ical cases (1.9) or (1.10), one expects as analogue results the convergences of the empirical
measures % Zfil 0z, to probability densities p that satisfy the limiting mean-field evolutions

(3.11) Op = —div (V(RH + V) )
respectively
(3.12) Opp = —div (VE(R* + V)

where again h* = g« p as in (3.6). These are nonlocal transport equations where the density
u is transported along the velocity field —V (h* 4+ V'), i.e. advected by the mean-field force
that the distribution generates.

In the two-dimensional Coulomb case (1.2) with V' = 0, (3.12) is also well-known as the
vorticity form of the incompressible Euler equation, describing the evolution of the vorticity
in an ideal fluid, with velocity given by the Biot-Savart law. As such, this equation is well-
studied in this context, and the convergence of solutions of (1.10) to (3.12), also known as
the point-vortex approximation to Euler, has been rigorously proven, see [89, 164].

As for (3.11), it is a dissipative equation, that can be seen as a gradient flow on the space
of probability measures equipped with the so-called Wasserstein Ws (or Monge-Kantorovitch)
metric. In the dimension 2 logarithmic case, it was first introduced by Chapman-Rubinstein-
Schatzman [47] and E [65] as a formal model for superconductivity, and in that setting the
gradient flow description has been made rigorous (see [6]) using the theory of gradient flows
in metric spaces of [5,140]. The equation can also be studied by PDE methods [130, 172].
The derivation of this gradient flow equation (3.11) from (2.3) can be guessed by variational
arguments, i.e. “I’-convergence of gradient flows', see [166]. The analogue of the rigorous
passage from (1.9) or (1.10) to (3.11) or (3.12) has been accomplished at the level of the
full parabolic and Schrodinger Ginzburg-Landau PDEs (2.3) and (2.4) [105,114,170]. The
proof in the third paper relies on a “modulated energy" argument which consists in finding
a suitable energy, modelled on the Ginzburg-Landau energy, which measures the distance to
the desired limiting solution, and for which a Gronwall inequality can be shown to hold.

Convergence of solutions to (1.9)-(1.10) to solutions of (3.11), resp. (3.12), in general
dimensions-329(s90910.al)| TJq28(is)] T-J-365.634-6(teractio-3nottio-3)] TJ-361(7].)-4tis
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propagation of chaos exist for less singular interactions [93] or in dimension 1 [19]. Progress has
also been made for a class of Riesz interactions (more singular than Coulomb) in dimensions
1 and 2 in [61] by directly adapting the modulated energy approach of [170] to the discrete
setting.

As far as (1.11) is concerned, the limiting equation is formally found to be the Vlasov-
Poisson equation

(3.13) Op+v-Vep+ V(R +V) - Vyup=0

where p(t,z,v) is the density of particles at time ¢ with position =z and velocity v, and
w(t,z) = [ p(t, z,v)dv is the density of particles. The rigorous convergence of (1.11) to (3.13)
and propagation of chaos are not proven in all generality (i.e. for all initial data) but it
has been established in a statistical sense (i.e. randomizing the initial condition) and often
truncating the interactions, see [29,94,109,118,119] and also the reviews on the topic [88,100].

Overall, much remains open in this class of problems, even at the mean field level and
how to treat singular interactions such as the Coulomb one is oniy kxncwn in the conservative
cases.

3.6. Noisy dynamics - problems (4). The noise terms in these equations gives rise to
an additive Laplacian term in the limiting equations. For instance the limiting equation for
(1.12) is expected to be the McKean equation

1 NN
(3.14) O = BAM —div (V" +V)u)

and the convergence is known for regular irteractions since the seminal work of [134], see also
the reviews [100, 181].

For singular interactions, the situation has been understood for the one-dimensional loga-
rithmic case [44], then for all Riesz interactions (1.6) [19]. Higher dimensions with singular
interactions is largely open. Tt ic expected that the noise should help the convergence and
propagation of chaos, but an appropriate method still remains elusive.

For the conservative case (1.13) the limiting equation is a viscous conservative equation of
the form

1
(3.15) O 3
which in the twe-dimensional logarithmic case (1.2) is the Navier-Stokes equation in vorticity
form. The convergence in that particular case was established in [75]. Recent progress
of [101] allows to treat quite rough interactions (including Coulomb) and prove convergence
in an appropriate statistical sense.

For the case of (1.14), the limiting equation is the McKean-Vlasov equation

1
B

with the same notation as for (3.13), and convergence in the case of bounded-gradient kernels
is proven in [102], see also references therein.

Ap — div (VA (R + V)

(3.16) Op+v-Vep+ V(R +V) - Vyp— =Ap=0

3.7. With temperature: statistical mechanics. Let us now turn to problem (2) and
consider the situation with temperature as described via the Gibbs measure (1.7). One
can determine that two temperature scaling choices are interesting: the first is taking [
independent of N, the second is taking Sy = % with some fixed . In the former, which can
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be considered a “low temperature" regime, the behavior of the system is still governed by the
equilibrium measure py. The result can be phrased using the language of Large Deviations
Principles (LDP), cf. [59] for definitions and reference.

Theorem 2. The sequence {Py g}n of probability measures on P(RY) satisfies a large de-
viations principle at speed N? with good rate function va where Ty = Ty — minp ey Ly =
Iy — Iy (uy). Moreover

1
3.17 li — log Zn g = —pL = — in Zy.
(3.17) M sz log Zng = —B v(pv) 67%51) v
The concrete meaning of the LDP is that if F is a subset of the space ¢t probability
measures P(RY), after identifying configurations (z1,...,zy) in (RN with their empirical
measures 4 SN | 8., we may write

(3.18) Py s(E) ~ ¢ AN? (ming Ty —minZy)

which in view of the uniqueness of the minimizer of Zy, implies that configurations whose em-
pirical measure does not converge to py as N — oo have exponencially decaying probability.
In other words the Gibbs measure concentrates as N — oc on configurations for which the
empirical measure is very close to uy, i.e. the temperature has no effect on the mean-field
behavior.

This result was proven in the logarithmic cases in [145] (in dimension 2), [15] (in dimension
1) and [16] (in dimension 2) for the particulzy case of a quadratic potential (and 8 = 2),
see also [18] for results in a more general {still determinantal) setting of multidimensional
complex manifolds, or [45] which recently treated more general singular g’s and V’s. It is
actually valid in any dimension, and is not at all specific to the Coulomb interaction (the
proof works as well for more general interaction potentials, see [169]).

In the high-temperature regime 3y = %, the temperature is felt at leading order and brings
an entropy term. More precisely there is a temperature-dependent equilibrium measure py g
which is the unique minirmrizer of

(3.19) o) = P () + [ elog .

Contrarily to the equilibrium measure, py,g is not compactly supported, but decays expo-
nentially fast at infinity. This mean-field behavior and convergence of marginals was first
established for logarithmic interactions [41,108] (see [136] for the case of regular interactions)
using an approach based on de Finetti’s theorem. In the language of Large Deviations, the
same L.DP as above then holds with rate function Iy,g — min Iy, g, and the Gibbs measure
now cencentrates as N — oo on a neighborhood of py g, for a proof see [79]. Again the
Coulomb nature of the interaction is not really needed. One can also refer to [149, 150] for
the mean-field and chaos aspects with a particular focus on their adaptation to the quantum
setting.

4. Beyond the mean field limit : next order study

We have seen that studying systems with Coulomb (or more general) interactions at leading
order leads to a good understanding of their limiting macroscopic behavior. One would
like to go further and describe their microscopic behavior, at the scale of the typical inter-
distance between the points, N~/4. This in fact comes as a by-product of a next-to-leading
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order description of the energy Hy, which also comes together with a next-to-leading order
expansion of the free energy in the case (1.7).

Thinking of energy minimizers or of typical configurations under (1.7), since one already
knows that Zfil 0z, — Npy is small, one knows that the so-called discrepancy in balls B, (x)
for instance, defined as

D(x,r) / Z(Sml—Nd,uv

is o(rYN) as long as r > 0 is fixed. Is this still true at the mesoscopic scales for r of the
order N™¢ with av < 1/d? Is it true down to the microscopic scale, i.e. for r = RNY/4 with
R > 17 Does it hold regardless of the temperature? This would correspond Ho a rigidity
result. Note that point processes with discrepancies growing like the peirimeter of the ball
have been called hyperuniform and are of interest to physicists for a variegy of applications,
cf. [184], see also [82] for a review of the link between rigidity and hyperuniformity. An
addition question is: how much of the microscopic behavior depends on V or in another
words is there a form of universality in this behavior? Such questions had only been answered
in details in the one-dimensional case (1.5) as we will see beJow.

4.1. Expanding the energy to next order. The first step that we will describe is how to
expand the energy Hy around the measure Npuy, following the approach initiated in [161]
and continued in [121,144,152,160]. It relies on a sphtting of the energy into a fixed leading
order term and a next order term expressed !u terms of the charge fluctuations, and on a
rewriting of this next order term via the “eleciric potential" generated by the points. More
precisely, exploiting the quadratic nature of the interaction, and letting /A denote the diagonal
in RY x RY, let us expand

Hy(z1,...,zN) = fZg(”" —L)+NZV.’IJ1
i N N
_ ZLI{/N”— (Z%) (25%) )+ N dVd(;dzi)(x)

= [ s v 8 [ vy

C N
+ N//Acg(x—y)duv(:v)(;ém—NMV)(y)—i-N dVd(;(Smi —Nuv)
N

(4.1) Y NCCELO S I (z% N ) ).

1=

1
Recalling that uy is characterized by (3.5), we see that the middle term
(4.2) N// (z — y)dpy (z Z% Nupy)(y) + N VchS — Npuy)

=N [ (W + V)d(z Oz, — Npuy)
Rd i=1
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can be considered as vanishing (at least it does if all the points x; fall in the support of uy).
We are then left with

(4.3) HN(I‘l,...,J}N):NQIv(,uv)—FFK,V(l‘l,...,l‘N)
with

(4.4)  F(zy,...,7x5 // (z—y 25% Npy ) (@) (25 ~ Npv ) (v)-

The relation (4.3) is a next-order expansion of Hy (cf. (3.9)), valid for arbitrary configura-
tions. The “next-order energy" FAY can be seen as the Coulomb energy of the neuiral system
formed by the N positive point charges at the x;’s and the diffuse negative charge —Npuy
of same mass. To further understand F4" let us introduce the potential generated by this
system, i.e.

N
(45) (@) = [ ele = p)d( Y6~ N ) o)
i=1 '
(compare with (3.6)) which solves the linear elliptic PDE (in the sense of distributions)
N
(4.6) —AHy =¢4 ( Z Oz, — J\T,uv')
i=1

and use for the first time crucially the Coulormb nature of the interaction to write

l\]
(4.7) // (r—vy de—Nuv>(w)d(26xi—N,uv)(y)
° =1

~_1 HNAHN = 1/ |V Hy|?
Cd Cd JRd

after integrating by parts by Green’s formula. This computatlon is in fact incorrect because

it ignores the diagonal terms which must be removed from the integral, and yields a divergent

integral [|VHy|? (it civerges near each point x; of the configuration). However, this com-

putation can be doune properly by removing the infinite diagonal terms and “renormalizing"

the infinite integral, replacing [ |[VHy|? by

/ IVHy [* — Neag(n)
Rd
where we replace Hy by Hp,, its “truncation” at level n (here n = N~ 1/d with o a small
fixed number) — more precisely Hy,, is obtained by replacing the Dirac masses in (4.5) by
uniform measures of total mass 1 supported on the sphere 0 B(x;, ) — and then removing the
appropriate divergent part cqg(n). The name renormalized energy originates in the work of
Bethuel-Brezis-Hélein [23] in the context of two-dimensional Ginzburg-Landau vortices, where
a similar (although different) renormalization procedure was introduced. Such a computation
allows to replace the double integral, or sum of pairwise interactions of all the charges and
“background", by a single integral, which is local in the potential Hy. This transformation is
very useful, and uses crucially the fact that g is the kernel of a local operator (the Laplacian).
This electric energy [ [VH N.n|? is coercive and can thus serve to control the “fluctuations’

SN 6z, — Npy, in fact it is formally é VA=Y (SN, 65, — Ny )||2,. The relations (4.3)—(4.7)
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can be inserted into the Gibbs measure (1.7) to yield so-called “concentration results" in the
case with temperature, see [167] (for prior such concentration results, see [33,46,131]).

4.2. Blow-up and limiting energy. As we have seen, the configurations we are interested
in are concentrated on (or near) the support of uy which is a set of macroscopic size and
dimension d, and the typical distance between neighboring points is N~Y9. The next step
is then to blow-up the configurations by N*/9 and take the N — oo limit in F Y. This
leads us to a renormalized energy that we define just below. It allows to compute a total
Coulomb interaction for an infinite system of discrete point charges in a constant neutralizing
background of fixed density 1. Such a system is often called a jellium in physics, and is
sometimes considered as a toy model for matter, with a uniform electron sea and ions whose
positions remain to be optimized.

From now on, we assume that X, the support of py is a set with a regular boundary and

v (
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Theorem 3. The minimum of W over lattices of volume 1 in dimension 2 is achieved
uniquely by the triangular lattice.

Here the triangular lattice means Z + Ze'™/3, properly scaled, i.e. what is called the
Abrikosov lattice in the context of superconductivity. This result is essentially equivalent

(see [48,139]) to a result on the minimization of the Epstein ¢ function of the lattice

Gy = 3

Ipl*
peEA 0]‘ |

proven in the 50’s by Cassels, Rankin, Ennola, Diananda, cf. [137] and references therein. It
corresponds to the minimization of the “height" of flat tori, in the sense of Arakelov geometry.

One may ask whether this triangular lattice does achieve the global miuimutw of W. The
fact that the Abrikosov lattice is observed in superconductors, combined with the fact that
W can be derived as the limiting minimization problem of Ginzburg-i.andau [159], justify
conjecturing this.

Conjecture 4.2. The triangular lattice is a global minimizer ¢t W in dimension 2.

It was also recently proven in [20] that this conjecture ic equivalent to a conjecture of
Brauchart-Hardin-Saff [37] on the next order term in the asyinptotic expansion of the mini-
mal logarithmic energy on the sphere (an important probiem in approximation theory, also
related to Smale’s “7th problem for the 21st centmry"), which is obtained by formal analytic
continuation, hence by very different arguments.

Note that the triangular lattice is also conjectured to have universally minimizing properties
[52] i.e. to be the minimizer for a broad class of interactions. An analogous role is played in
dimensions 8 and 24 by the Eg and Lecch latitices, respectively, which provide the solutions
to the best packing problem in [53,187].

In dimension d > 3 the minimization of W even restricted to the class of lattices is an open
question, except in dimensions 4, & and 24 where a strict local minimizer is known [163] (Eg
and Leech in dimensions 8 and 24). Similarly, one may conjecture that in low dimensions,
the minimum of W is achieved by some particular lattice. In large dimensions, lattices are
not expected to be minimizing.

These questions belongs to the more general family of crystallization problems, see [27]
for a review. A typical such question is, given an interaction kernel g in any dimension, to
determine the peint positions that minimize

> el — )
i#j
(with some kind of boundary condition), or rather

lim

A 1Bl (i =),

i#j,x;,2;€EBR

and to determine whether the minimizing configurations are perfect lattices. Such questions
are fundamental in order to understand the cristalline structure of matter. One should im-
mediately stress that there are very few positive results in that direction in the literature (in
fact it is very rare to have a proof that the solution to some minimization problem is peri-
odic, except in dimension 1). Some exceptions include the two-dimensional sphere packing
problem and an extension of Radin’s proof [146] by Theil [183] for a class of very short range
Lennard-Jones potentials.
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4.4. Convergence results for minimizers. Given a (sequence of) configuration(s) (z1,...,xn),
we examine as mentioned before the blow-up point configurations {(uy (z)N)Y/4(x; —z)} and
their infinite limits C. We also need to let the blow-up center x vary over %, the support
of py. Averaging near the blow-up center = yields a “point process" Pj;: a point process
is precisely defined as a probability distribution on the space of possibly infinite point con-
figurations, denoted Config. Here the point process Py is essentially the Dirac mass at the
blown-up configuration {(uy (x)N)Y/%(z; — z)}. This way, we form a “tagged point process'
Py (where the tag is the memory of the blow-up center), probability on ¥ x Config, whose
“slices" are the Py,. Taking limits N — oo (up to subsequences), we obtain limiting tagged
point processes P, which are all stationary, i.e. translation-invariant. We may salsc define the
renormalized Coulomb energy at the level of tagged point processes as
- L / / W(C)dP*(C)dz.

2cq Jx
In view of (4.3) and the previous discussion, we may expect the foilowing informally stated

result (which we state only in the Coulomb cases, for extensions to (1.5) see [160] and to (1.6)
see [144]).

W(P) :

Theorem 4 ( [152,161]). Consider configurations such that

HN(:’U]J"‘va) - N2IV(’JY'\’ < (:\'N2_%.

Then up to extraction Py converges to some P ¢nd

(4.12) Hy (21, ... 2n) ~ N*Ty () + N2 aW(P) + o( N> 4)
Y and in particular
(4.13) minHy = N2Ty () + N27¢ min W + o(N27¢).

Since W is an average of W, the result (4.13) can be read as: after suitable blow-up around
a point z, for a.e. x € ¥, the minimizing configurations converge to minimizers of W. If one
believes minimizers of W 4o ressemble lattices, then it means that minimizers of H should
do so as well. In any case, W can distinguish between different lattices (in dimension 2, the
triangular lattice has less energy than the square lattice) and we expect W to be a good
quantitative measure of disorder of a configuration (see [32]).

The analogcus result was proven in [159] for the vortices in minimizers of the Ginzburg-
Landau energy (2.1): they also converge after blow-up to minimizers of W, providing a first
rigorous justification of the Abrikosov lattice observed in experiments, modulo Conjecture
4.2. The same result was also obtained in [87] for a two-dimensional model of small charged
dropicts iuteracting logarithmically called the Ohta-Kawasaki model — a sort of variant of
Gamov’s liquid drop model, after the corresponding mean-field limit results was established
in [86].

One advantage of the above theorem is that it is valid for generic configurations and not just
for minimizers. When using the minimality, better “rigidity results" (as alluded to above) of
minimizers can be proven: points are separated by W for some fixed C' > 0 and there

is uniform distribution of points and energy, down to the microscopic scale, see [138,143,144].
Theorem 4 relies on two ingredients which serve to prove respectively a lower bound and
an upper bound for the next-order energy. The first is a general method for proving lower

[L“J P"e! o d:2,1’ejc el Jd gt 144 ala—etc“‘;" %logN‘lei, do1 td «
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bounds for energies which have two instrinsic scales (here the macroscopic scale 1 and the
microscopic scale N~1/ 4) and which is handled via the introduction of the probability measures
on point patterns Py described above. This method (see [161,169]), inspired by Varadhan,
is reminiscent of Young measures and of [4]. The second is a “screening procedure" which
allows to exploit the local nature of the next-order energy expressed in terms of Hy, to
paste together configurations given over large microscopic cubes and compute their next-
order energy additively. To do so, we need to modify the configuration in a neighborhood
of the boundary of the cube so as to make the cube neutral in charge and to make VHy
tangent to the boundary. This effectively screens the configuration in each cube in the sense
that it makes the interaction between the different cubes vanish, so that the energy [ |VHy|?
becomes proportional to the volume. One needs to show that this modification can be made
while altering only a negligible fraction of the points and a negligible amount of the energy.
This construction is reminiscent of [3]. It is here crucial that the interaction is Coulomb so
that the energy is expressed by a local function of Hp, which itseif solves an elliptic PDE,
making it possible to use the toolbox on estimates for such PDFs.

The next order study has not at all been touched in the casz of dynamics, but it has been
tackled in the statistical mechanics setting of (1.7).

4.5. Next-order with temperature. Here the interesting temperature regime (to see non-
trivial temperature effects) turns out to be Sy = SV PN

In contrast to the macroscopic result, several cbservations (e.g. by numerical simulation,
see Figure 3) suggest that the behavior of the system at the microscopic scale depends heavily

on 3, and one would like to describe this inore precisely. In the particular case of (1.5) or

Figure 3. Case. ¢ 2 with N = 100 and V(z) = |z|?, for 8 = 400 (left) and
8 =5 (right).

(1.2) with 8 = 2, which both arise in Random Matrix Theory, many things can be computed
explicitly, and expansions of log Zy g as N — oo, Central Limit Theorems for linear statistics,
universality in V' (after suitable rescaling) of the microscopic behavior and local statistics of
the points, are known [12,14,33-36,107,173]. Generalizing such results to higher dimensions
and all §’s is a significant challenge.

4.6. Large Deviations Principle. A first approach consists in following the path taken for
minimizers and using the next-order expansion of Hy given in (4.12). This expansion can
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Figure 4. Simulation of the Poisson point process with intensity 1 (left), and
the Ginibre point process with intensity 1 (right)

be formally inserted into (1.7), however this is not sufficient: to get a complete result, one
needs to understand precisely how much volume in configuration space (RY)Y is occupied
near a given tagged point process P — this will give rise to an entropy term — and how
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B) between W, which prefers order of the configurations (and expectedly crystallization in
low dimensions), and the relative entropy term which measures the distance to the Poisson
process, thus prefers microscopic disorder and decorrelation between the points. As § — 0,
or temperature gets very large, the entropy term dominates and one can prove [120] that the
minimizer of ?5 converges to the Poisson process. On the contrary, when § — oo, the W
term dominates, and prefers regular and rigid configurations. (In the case (1.5) where the
minimum of W is known to be achieved by the lattice, this can be made into a complete
proof of crystallization as 8 — oo, cf. [120]). When f is intermediate then both terms are
important and one does not expect crystallization in that sense nor complete decorrelation.
For separation results analogous to those quoted about minimizers, one ray see [7] and
references therein.

The existence of a minimizer to 75 is known, it is certainly nonunique due to che rotational
invariance of the problem, but it is not known whether it is unique modulo rotations, nor is
the existence of a limiting point process P (independent of the subseqguence) in general. The
latter is however known to exist in certain ensembles arising in random matrix theory: for
(1.5) for any 3, it is the so-called sine-S process [114, 185], and for (1.2) for f = 2 and V
quadratic, it is the Ginibre point process [83], shown in Figure 4. It was also shown to exist
for the jellium for small 3 in [99]. A consequence of Theoreiu 5 is to provide a variational
interpretation to these point processes. One may hope te¢ understand phase-transitions at the
level of these processes, possibly via this variational interpretation, however this is completely
open. While in dimension 1, the point process i expecied to always be unique, in dimension
2, phase-transitions and symmetry breaking in pesitional or orientational order may happen.
One would also like to understand the decay of tt.e two-point correlation function and its pos-
sible change in rate, corresponding to a phase-transition. In the one-dimensional logarithmic
case, the limits of the correlation functicus are computed for rational ’s [71] and indicate a
phase-transition.

A second corollary obtained as a by-product of Theorem 5 is the existence of a next order
expansion of the free energy — 37 'log Z N,3-

Corollary 4.3 ( [121]).
(4.15) ~ B3 Yog Zyp = NH%IV(/LV) + Nmin Fg + o(N)
in the cases (1.3); and in the cases (1.2), (1.5),
—B tog Zn g = N*Ty (uy) — % log N + N min Fg + o(N)
or more explicitly
(4.16)
1

- N 1
—B tlog Zy s = NQIV(MV)—%logN—i—NCB—i-N (B — 2d> /E,uv(x) log py () de+o(N),

where Cg depends only on 3, but not on V.

This formulae are to be compared with the results of [12,33,34,173] in the . & 1 case, the
semi-rigorous formulae in [190] in the dimension 2 Coulomb case, and are the best-known
information on the free energy otherwise. We recall that understanding the free energy is
fundamental for the description of the properties of the system. For instance, the explicit
dependence in V exhibited in (4.16) will be the key to proving the result of the next section.
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Finally, note that a similar result to the above theorem and corollary can be obtained in
the case of the two-dimensional two-component plasma alluded to in Section 2.4, see [122].

4.7. A Central Limit Theorem for fluctuations. Another approach to understanding the
rigidity of configurations and how it depends on the temperature is to examine the behavior
of the linear statistics of the fluctuations, i.e. consider, for a regular test function f, the

quantity
N

> fla) —N/fduv-

=1

Theorem 6 ( [168]). In the case (1.2), assume V € C* and the previous assumptions on py
and 0%, and let f € CH(R?) or C3(X). If ¥ has m > 2 connected components %;, add m — 1
conditions fazi Af¥ =0 where f> is the harmonic extension of f outsice .. Then

N
> flxi) —N/ fduy
i=1 Y

converges in law as N — oo to a Gaussian distribution with,

i S By g
mean = o— (ﬁ 4) - Af(1g +log AV) voriance= 578 /]R2 V=)=

The result can moreover be localized with f surnorted on any mesoscale N~%, a < %, and it
is true as well for energy minimizers, taking formally f = co.

This result can be interpreted in terms of the convergence of Hy (of (4.5)) to a suitable
so-called “Gaussian Free Field", a sort of two-dimensional analogue of Brownian motion. This
theorem shows that if f is smooth encugh, the fluctuations of linear statistics are typically of
order 1, i.e. much smaller than the sum of NV iid random variables which is typically or order
V/N. This a manifestation of rigidity, which even holds down to the mesoscales. Note that
the regularity of f is necessary, the result is false if f is discontinuous, however the precise
threshhold of regularity is not known.

In dimension 1, tiiis theorem was first proven in [107] for polynomial V' and f analytic. It
was later generalized 1n [13,14,33,34,173,188]. In dimension 2, this result was proven for the
determinantal case 8 = 2 in [148] (for V' quadratic) and [8] under analyticity assumptions. It
was then proven for all g simultaneously as [168] in [11], with f assumed to be supported in
3.

The epproach for proving such results has generally been based on Dyson-Schwinger (or
“locp") equations. If the extra conditions do not hold, then the CLT is not expected to hold.
Rather. the limit should be a Gaussian convolved with a discrete Gaussian variable, as shown
in the. & 1 case in [34].

To prove Theorem 6, following the approach pioneered by Johansson [107], we compute
the Laplace transform of these linear statistics and see that it reduces to understanding the
ratio of two partition functions, the original one and that of a Coulomb gas with potential
V replaced by V; = V + ¢f with ¢ small. Thanks to [171] the variation of the equilibrium
measure associated to this replacement is well understood. We are then able to leverage on
the expansion of the partition function of (4.16) to compute the desired ratio, using also a
change of variables which is a transport map between the equilibrium measure py and the
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perturbed equilibrium measure. Note that the use of changes of variables in this context is
not new, cf. [12,33,107,173]. In our approach, it essentially replaces the use of the loop or
Dyson-Schwinger equations.

4.8. More general interactions.
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