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Abstract

Geometric aspects play an important role in the construction and anal-
ysis of structure-preserving numerical methods for a wide variety of ordi-
nary and partial differential equations. Here we review the development
and theory of symplectic integrators for Hamiltonian ordinary and par-
tial differential equations, of dynamical low-rank approximation of time-
dependent large matrices and tensors, and its use in numerical integrators
for Hamiltonian tensor network approximations in quantum dynamics.

1 Introduction
It has become a commonplace notion in all of numerical analysis (which here
is understood as comprising the construction and the mathematical analysis of
numerical algorithms) that a good algorithm should “respect the structure of
the problem” — and in many cases the “structure” is of geometric nature. This
immediately leads to two basic questions, which need to be answered specifically
for each problem:

• How can numerical methods be constructed that “respect the geometry”
of the problem at hand?

• What are benefits from using a structure-preserving algorithm for this
problem, and how do they come about?

In this note we present results in the numerical analysis of dynamic (evolution-
ary, time-dependent) ordinary and partial differential equations for which geo-
metric aspects play an important role. These results belong to the area that has
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become known as Geometric Numerical Integration , which has developed vividly
in the past quarter-century, with substantial contributions by researchers with
very different mathematical backgrounds. We just refer to the books (in chrono-
logical order) [ SSC94 , HLW02 , Sur03 , LR04 , HLW06 , Lub08 , FQ10 , Fao12 ,
WYW13 , BC16 ] and to the Acta Numerica review articles [ SS92 , IMKNZ00 ,
MW01 , MQ02 , HLW03 , DDE05 , BL07 , Chu08 , HO10 , Wan10 , CMKO11 , AEEVE12 ,
DE13 ]. In this note we restrict ourselves to some selected topics to which we
have contributed.
In Section 2 we begin with reviewing numerical methods for approximately

solving Hamiltonian systems of ordinary differential equations, which are ubiq-
uitous in many areas of physics. Such systems are characterized by the sym-
plecticity of the flow, a geometric property that one would like to transfer to the
numerical discretization, which is then called a symplectic integrator . Here, the
two questions above become the following:

• How are symplectic integrators constructed?

• What are favourable long-time properties of symplectic integrators, and
how can they be explained?

The first question relates numerical methods with the theories of Hamilton and
Jacobi from the mid-19th century, and the latter question connects numerical
methods with the analytical techniques of Hamiltonian perturbation theory, a
subject developed from the late 19th throughout the 20th century, from Lind-
stedt and Poincaré and Birkhoff to Siegel and Kolmogorov, Arnold and Moser
(KAM theory), to Nekhoroshev and further eminent mathematicians. This con-
nection comes about via backward error analysis , which is a concept that first
appeared in numerical linear algebra [ Wil60 ]. The viewpoint is to interpret
the numerical approximation as the exact (or almost exact) solution of a mod-
ified equation. In the case of a symplectic integrator applied to a Hamiltonian
differential equation, the modified differential equation turns out to be again
Hamiltonian, with a Hamiltonian that is a small perturbation to the original
one. This brings Hamiltonian perturbation theory into play for the long-time
analysis of symplectic integrators. Beyond the purely mathematical aspects,
it should be kept in mind that symplectic integrators are first and foremost
an important tool in computational physics. In fact such numerical methods
appeared first in the physics literature [ dV56 , Ver67 , Rut83 ], in such areas as
nuclear physics and molecular dynamics, and slightly later [ WH91 ] in celes-
tial mechanics, which has been the original motivation in the development of
Hamiltonian perturbation theory [ Poi92 , SM71 ]. It was not least with the use
of symplectic integrators that the centuries-old question about the stability of
the solar system was finally answered negatively in the last decade by Laskar;
see [ Las13 ] and compare also with [ Mos78 ].
In Section 3 we consider numerical methods for finite-dimensional Hamilto-

nian systems with multiple time scales where, in the words of Fermi, Pasta &
Ulam [ FPU55 ], “the non-linearity is introduced as a perturbation to a primarily
linear problem. The behavior of the systems is to be studied for times which are
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long compared to the characteristic periods of the corresponding linear problem.”
The two basic questions above are reconsidered for such systems. Except for
unrealistically small time steps, the backward error analysis of Section 2 does
not work for such systems, and a different technique of analysis is required.
Modulated Fourier expansions in time were originally developed (since 2000) for
studying numerical methods for such systems and were subsequently also recog-
nized as a powerful analytical technique for proving new results for continuous
systems of this type, including the original Fermi–Pasta–Ulam system. While
the canonical transformations of Hamiltonian perturbation theory transform
the system into a normal form from which long-time behaviour can be read off,
modulated Fourier expansions embed the system into a high-dimensional sys-
tem that has a Lagrangian structure with invariance properties that enable us to
infer long-time properties of the original system. Modulated Fourier expansions
do not use nonlinear coordinate transformations, which is one reason for their
suitability for studying numerical methods, which are most often not invariant
under nonlinear transformations.
In Section 4 we present long-time results for suitable numerical discretiza-

tions of Hamiltonian partial differential equations such as nonlinear wave equa-
tions and nonlinear Schrödinger equations. A number of important results on
this topic have been obtained in the last decade, linking the numerical analysis
of such equations to recent advances in their mathematical analysis. The view-
point we take here is to consider the Hamiltonian partial differential equation as
an infinite-dimensional system of the oscillatory type of Section 3 with infinitely
many frequencies, and we present results on the long-time behaviour of the nu-
merical and the exact solutions that have been obtained with modulated Fourier
expansions or with techniques from infinite-dimensional Hamiltonian perturba-
tion theory. We mention, however, that there exist other viewpoints on the
equations considered, with different geometric concepts such as multisymplec-
ticity [ Bri97 , MPS98 ]. While multisymplectic integrators, which preserve this
geometric structure, have been constructed and favourably tested in numerical
experiments [ BR01 , AM04 ] (and many works thereafter), as of now there appear
to be no proven results on the long-time behaviour of such methods.
In Section 5 we consider dynamical low-rank approximation , which leads to

a different class of dynamical problems with different geometric aspects. The
problem here is to approximate large (or rather too large, huge) time-dependent
matrices, which may be given explicitly or are the unknown solution to a matrix
differential equation, by matrices of a prescribed rank, typically much smaller
than the matrix dimension so that a data-compressed approximation is obtained.
Such problems of data and/or model reduction arise in a wide variety of appli-
cations ranging from information retrieval to quantum dynamics. On projecting
the time derivative of the matrices to the tangent space of the manifold of low-
rank matrices at the current approximation, this problem leads to a differential
equation on the low-rank manifold, which needs to be solved numerically. We
present answers to the two basic questions formulated at the beginning of this
introduction, for this particular problem. The proposed “geometric” numerical
integrator, which is based on splitting the orthogonal projection onto the tan-
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gent space, is robust to the (ubiquitous) presence of small singular values in
the approximations. This numerically important robustness property relies on
a geometric property: The low-rank manifold is a ruled manifold (like a hyper-
boloid). It contains flat subspaces along which one can pass between any two
points on the manifold, and the numerical integrator does just that. In this
way the high curvature of the low-rank manifold at matrices with small singular
values does not become harmful. Finally, we address the nontrivial extension to
tensors of various formats (Tucker tensors, tensor trains, hierarchical tensors),
which is of interest in time-dependent problems with several spatial dimensions.
Section 6 on tensor and tensor network approximations in quantum dynamics

combines the worlds of the previous two sections and connects them with recent
developments in computational quantum physics. The reduction of the time-
dependent many-particle Schrödinger equation to a low-rank tensor manifold
by the Dirac–Frenkel time-dependent variational principle uses a tangent-space
projection that is both orthogonal and symplectic. It results in a (non-canonical)
Hamiltonian differential equation on the tensor manifold that can be discretized
in time by the projector-splitting integrator of Section 5 , which is robust to small
singular values and preserves both the norm and the energy of the wavefunction.

2 Hamiltonian systems of ordinary differential
equations

2.1 Hamiltonian systems
Differential equations of the form (with ˙ = d/dt)

ṗ = −∇qH(p, q), q̇ = +∇pH(p, q) (2.1)

are fundamental to many branches of physics. The real-valued Hamilton func-
tion H, defined on a domain of Rd+d (the phase space), represents the total
energy and q(t) ∈ Rd and p(t) ∈ Rd represent the positions and momenta,
respectively, of a conservative system at time t. The total energy is conserved:

H(p(t), q(t)) = H(p(0), q(0))

along every solution (p(t), q(t)) of the Hamiltonian differential equations.
Numerical example: We consider four variants of the Euler method, which for

a given (small) step size h > 0 compute approximations pn ≈ p(nh), qn ≈ q(nh)
via

pn+1 = pn − h∇qH(pn+α, qn+β), qn+1 = qn + h∇pH(pn+α, qn+β),

with α, β ∈ {0, 1}. For α = β = 0 this is the explicit Euler method, for
α = β = 1 it is the implicit Euler method. The partitioned methods with α ̸= β
are known as the symplectic Euler methods . All four methods are of order r = 1,
that is, the error after one step of the method is O(hr+1) with r = 1.
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Figure 2.1: Numerical simulation of the outer solar system.

We apply these methods to the outer solar system, which is an N -body
problem with Hamiltonian

H(p, q) =
1

2

N∑
i=0

1

mi
|pi|2 −G

N∑
i=1

i−1∑
j=0

mimj

|qi − qj |
,

where p = (p0, . . . , pN ), q = (q0, . . . , qN ) and | · | denotes the Euclidean norm,
and the constants are taken from [ HLW06 , Section I.2.4]. The positions qi ∈ R3

and momenta pi ∈ R3 are those of the sun and the five outer planets (in-
cluding Pluto). Figure 2.1 shows the numerical solution obtained by the four
versions of the Euler method on a time interval of 200 000 earth days. For
the explicit Euler method the planets spiral outwards, for the implicit Euler
method they spiral inwards, fall into the sun and finally are ejected. Both sym-
plectic Euler methods show a qualitatively correct behaviour, even with a step
size (in days) that is much larger than the one used for the explicit and im-
plicit Euler methods. Figure 2.2 shows the relative error of the Hamiltonian,(
H(pn, qn) − H(p0, q0)

)/
|H(p0, q0)|, along the numerical solution of the four

versions of Euler’s method on the time interval 0 ≤ nh ≤ 200 000. Whereas the
size of the error increases for the explicit and implicit Euler methods, it remains
bounded and small, of a size proportional to the step size h, for both symplectic
Euler methods.
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Figure 2.2: Relative error of the Hamiltonian on the interval 0 ≤ t ≤ 200 000.

2.2 Symplecticity of the flow and symplectic integrators
The time- t flow of a differential equation ẏ = f(y) is the map φt that associates
with an initial value y0 at time 0 the solution value at time t: φt(y0) = y(t).
Consider now the Hamiltonian system ( 2.1 ) or equivalently, for y = (p, q),

ẏ = J−1∇H(y) with J =

(
0 I
−I 0

)
.

The flow φt of the Hamiltonian system is symplectic (or canonical ), that is, the
derivative matrix Dφt with respect to the initial value satisfies

Dφt(y)
⊤ J Dφt(y) = J

for all y and t for which φt(y) exists. This quadratic relation is formally similar
to orthogonality, with J in place of the identity matrix I, but it is related to
the preservation of areas rather than lengths in phase space.
There is also a local converse: If the flow of some differential equation is

symplectic, then there exists locally a Hamilton function for which the corre-
sponding Hamiltonian system coincides with this differential equation.
A numerical one-step method yn+1 = Φh(yn) (with step size h) is called

symplectic if the numerical flow Φh is a symplectic map:

DΦh(y)
⊤ J DΦh(y) = J.

Such methods exist: the “symplectic Euler methods” of the previous subsec-
tion are indeed symplectic. This was first noted, or considered noteworthy,
in an unpublished report by de Vogelaere [ dV56 ]. The symplecticity can be
readily verified by direct calculation or by observing that the symplectic Eu-
ler methods are symplectic maps with the h-scaled Hamilton function taken as
the generating function of a canonical transformation in Hamilton and Jacobi’s
theory. More than 25 years later, Ruth [ Rut83 ] and Feng Kang [ Fen85 , Fen86 ]
independently constructed higher-order symplectic integrators using generating
functions of Hamilton–Jacobi theory. These symplectic methods require, how-
ever, higher derivatives of the Hamilton function. Symplectic integrators began
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to find widespread interest in numerical analysis when in 1988 Lasagni, Sanz-
Serna and Suris [ Las88 , SS88 , Sur88 ] independently characterized symplectic
Runge–Kutta methods by a quadratic relation of the method coefficients. This
relation was already known to be satisfied by the class of Gauss–Butcher meth-
ods (the order-preserving extension of Gaussian quadrature formulae to differ-
ential equations), which include methods of arbitrary order. Like the Euler
methods, Runge–Kutta methods only require evaluations of the vector field,
but no higher derivatives.
The standard integrator of molecular dynamics, introduced to the field by

Verlet in 1967 [ Ver67 ] and used ever since, is also symplectic. For a Hamiltonian
H(p, q) = 1

2p
⊤M−1p+V (q) with a symmetric positive definite mass matrix M ,

the method is explicit and given by the formulas

pn+1/2 = pn − h

2
∇V (qn)

qn+1 = qn + hM−1pn+1/2

pn+1 = pn+1/2 −
h

2
∇V (qn+1).

Such a method was also formulated by the astronomer Störmer in 1907, and
can even be traced back to Newton’s Principia from 1687, where it was used
as a theoretical tool in the proof of the preservation of angular momentum
in the two-body problem (Kepler’s second law), which is preserved by this
method (cf. [ Wan10 ]). The above method is referred to as the Störmer–Verlet
method, Verlet method or leapfrog method in different communities. The sym-
plecticity of this method can be understood in various ways by relating the
method to classes of methods that have proven useful in a variety of applica-
tions (cf. [ HLW03 ]): as a composition method (it is a composition of the two
symplectic Euler methods with half step size), as a splitting method (it solves
in an alternating way the Hamiltonian differential equations corresponding to
the kinetic energy 1

2p
⊤M−1p and the potential energy V (q)), •and as a vari-

ational integrator : it minimizes the discrete action functional that results from
approximating the action integral∫ tN

t0

L(q(t), q̇(t)) dt with L(q, q̇) =
1

2
q̇⊤Mq̇ − V (q)

by the trapezoidal rule and using piecewise linear approximation to q(t). The
Störmer–Verlet method can thus be interpreted as resulting from a discretiza-
tion of the Hamilton variational principle. Such an interpretation can in fact be
given for every symplectic method. Conversely, symplectic methods can be con-
structed by minimizing a discrete action integral. In particular, approximating
the action integral by a quadrature formula and the positions q(t) by a piece-
wise polynomial leads to a symplectic partitioned Runge–Kutta method. With
Gauss quadrature, this gives a reinterpretation of the Gauss–Butcher methods
(cf. [ Sur90 , MW01 , HLW06 ]).
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2.3 Backward error analysis
The numerical example of Section 2.1 , and many more examples in the literature,
show that symplectic integrators behave much better over long times than their
non-symplectic counterparts. How can this be explained, or put differently:
How does the geometry lead to favourable dynamics? There is a caveat: As was
noted early on [ GDC91 , CSS92 ], all the benefits of symplectic integrators are
lost when they are used with variable step sizes as obtained by standard step
size control. So it is not just about preserving symplecticity.
Much insight into this question is obtained from the viewpoint of backward

analysis , where the result of one step of a numerical method for a differential
equation ẏ = f(y) is interpreted as the solution to a modified differential equa-
tion (or more precisely formal solution, having the same expansion in powers of
the step size h)

˙̃y = f(ỹ) + hf1(ỹ) + h2f2(ỹ) + h3f3(ỹ) + . . . .

The question then is how geometric properties of the numerical method, such
as symplecticity, are reflected in the modified differential equation. It turns
out that in the case of a symplectic integrator applied to a Hamiltonian differ-
ential equation, each of the perturbation terms is a Hamiltonian vector field,
fj(y) = J−1∇Hj(y) (at least locally, on simply connected domains). The formal
construction was first given by Moser [ Mos68 ], where the problem of interpo-
lating a near-identity symplectic map by a Hamiltonian flow was considered.
For the important class of symplectic partitioned Runge–Kutta methods (which
includes all the examples mentioned in Section 2.2 ), a different construction in
[Hai94 ], using the theory of P-series and their associated trees, showed that the
perturbation Hamiltonians Hj are indeed global , defined on the same domain on
which the Hamilton function H is defined and smooth. Alternatively, this can
also be shown using the explicit generating functions for symplectic partitioned
Runge–Kutta methods as derived by Lasagni; see [ HLW06 , Sect. IX.3]. This
global result is in particular important for studying the behaviour of symplec-
tic integrators for near-integrable Hamiltonian systems, which are considered in
neighbourhoods of tori. It allows us to bring the rich arsenal of Hamiltonian
perturbation theory to bear on the long-time analysis of symplectic integrators.
The step from a formal theory (with the three dots at the end of the line)

to rigorous estimates was taken by Benettin & Giorgilli [ BG94 ] (see also [ HL97 ,
Rei99 ] and [ HLW06 , Chapter IX] for related later work), who showed that in
the case of an analytic vector field f , the result y1 = Φh(y0) of one step of the
numerical method and the time- h flow φ̃h(y0) of the corresponding modified
differential equation, suitably truncated after N ∼ 1/h terms, differ by a term
that is exponentially small in 1/h:

∥Φh(y0)− φ̃h(y0)∥ ≤ Ch e−c/h,

uniformly for y0 varying in a compact set. The constants C and c can be
given explicitly. It turns out that c is inversely proportional to a local Lipschitz
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constant L of f , and hence the estimate is meaningful only under the condition
hL ≪ 1. We note that in an oscillatory Hamiltonian system, L corresponds to
the highest frequency in the system.
A different approach to constructing a modified Hamiltonian whose flow is

exponentially close to the near-identity symplectic map is outlined by Neish-
tadt [ Nei84 ], who exactly embeds the symplectic map into the flow of a non-
autonomous Hamiltonian system with rapid oscillations and then uses averaging
to obtain an autonomous modified Hamiltonian.

2.4 Long-time near-conservation of energy
The above results immediately explain the observed near-preservation of the
total energy by symplectic integrators used with constant step size: Over each
time step, and as long as the numerical solution stays in a fixed compact set, the
Hamilton function H̃ of the optimally truncated modified differential equation
is almost conserved up to errors of size O(he−c/h). On writing H̃(yn)− H̃(y0)
as a telescoping sum and adding up the errors, we thus obtain

H̃(yn)− H̃(y0) = O(e−c/2h) for nh ≤ ec/2h.

For a symplectic method of order r, the modified Hamilton function H̃ is O(hr)
close to the original Hamilton function H, uniformly on compact sets, and so
we have near-conservation of energy over exponentially long times :

H(yn)−H(y0) = O(hr) for nh ≤ ec/2h.

Symplecticity is, however, not necessary for good energy behaviour of a nu-
merical method. First, the assumption can clearly be weakened to conju-
gate symplecticity, that is, the one-step method yn+1 = Φh(yn) is such that
Φh = χ−1

h ◦Ψh ◦χh where the map Ψh is symplectic. But then, for some meth-
ods such as the Störmer–Verlet method, long-time near-conservation of energy
can be proved by an argument that does not use symplecticity, but just the
time-symmetry Φ−h ◦ Φh = id of the method [ HLW03 ]. That proof is sim-
ilar in spirit to proving the conservation of the energy 1

2p
⊤M−1p + V (q) =

1
2 q̇

⊤Mq̇ + V (q) for the second-order differential equation Mq̈ +∇V (q) = 0 by
taking the inner product with q̇ and noting that there results a total differen-
tial: d

dt (
1
2 q̇

⊤Mq̇+V (q)) = 0. This kind of argument can be extended to proving
long-time near-conservation of energy and momentum for symmetric multir



backward error analysis and the perturbation theory of integrable systems, a
rich mathematical theory originally developed for problems of celestial mechan-
ics [ Poi92 , SM71 , AKN97 ].
A Hamiltonian system with the (real-analytic) Hamilton function H(p, q) is

called integrable if there exists a symplectic transformation (p, q) = ψ(a, θ) to
action-angle variables (a, θ), defined for actions a = (a1, . . . , ad) in some open
set of Rd and for angles θ on the d-dimensional torus Td = {(θ1, . . . , θd); θi ∈
R mod 2π}, such that the Hamiltonian in these variables depends only on the
actions:

H(p, q) = H(ψ(a, θ)) = K(a).

In the action-angle variables, the equations of motion are simply ȧ = 0, θ̇ = ω(a)
with the frequencies ω = (ω1, . . . , ωd)

T = ∇aK. For every a, the torus {(a, θ) :
θ ∈ Td} is thus invariant under the flow. We express the actions and angles in
terms of the original variables (p, q) via the inverse transform as

(a, θ) = (I(p, q),Θ(p, q))

and note that the components of I = (I1, . . . , Id) are first integrals (conserved
quantities) of the integrable system.
The effect of a small perturbation of an integrable system is well under

control in subsets of the phase space where the frequencies ω satisfy Siegel’s
diophantine condition :

|k · ω| ≥ γ|k|−ν for all k ∈ Zd, k ̸= 0,

for some positive constants γ and ν, with |k| =
∑

i |ki|. For ν > d − 1, almost



initial values and a Cantor set of step sizes this holds even perpetually, as the
existence of invariant tori of the numerical integrator close to the invariant tori
of the integrable system was shown by Shang [ Sha99 , Sha00 ].
The linear error growth persists when the symplectic integrator is applied to

a perturbed integrable system H(p, q) + εG(p, q) with a perturbation parameter
of size ε = O(hα) for some positive exponent α. Perturbed integrable systems
have KAM tori, i.e., deformations of the invariant tori of the integrable system
corresponding to diophantine frequencies ω, which are invariant under the flow
of the perturbed system. If the method is applied to such a perturbed integrable
system, then the numerical method has almost-invariant tori over exponentially
long times [ HL97 ]. For a Cantor set of non-resonant step sizes there are even
truly invariant tori on which the numerical one-step map reduces to rotation by
hω in suitable coordinates [ HLW02 , Sect. X.6.2].
In a very different line of research, one asks for integrable discretizations of

integrable systems; see the monumental treatise by Suris [ Sur03 ].

2.6 Hamiltonian systems on manifolds
In a more general setting, a Hamiltonian system is considered on a symplectic
manifold, which is a manifold M with a closed, non-degenerate alternating
two-form ω, called the symplectic form. Given a smooth Hamilton function
H : M → R, the corresponding Hamiltonian differential equation is to find
u : [0, T ] → M such that

ωu(t)(u̇(t), v) = dH(u(t))[v] for all v ∈ Tu(t)M,

where TuM denotes the tangent space at u of M, for a given initial value
u(0) = u0 ∈ M. On inserting v = u̇(t) it is seen that the total energy H(u(t)) is
constant in time. We write again u(t) = φt(u0) to indicate the dependence on
the initial value. The flow map φt is symplectic in the sense that the symplectic
form ω is preserved along the flow: for all t and u0 where φt(u0) exists,

ωφt(u0)(dφt(u0)[ξ],dφt(u0)[η]) = ωu0
(ξ, η) for all ξ, η ∈ Tu0

M; or φ∗
tω = ω.

Contrary to the canonical Hamiltonian systems considered before, no general
prescription is known how to construct a symplectic numerical integrator for a
general Hamiltonian system on a general symplectic manifold.
However, for the important class of Hamiltonian systems with holonomic

constraints, there exist symplectic extensions of the Störmer–Verlet method
[And83 , LR94 ] and of higher-order partitioned Runge–Kutta methods [ Jay96 ].
Here the symplectic manifold M is the submanifold of R2d given by constraints
g(q) = 0, which constrain only the positions, together with the implied con-
straints for the momenta, Dg(q)∇pH(p, q) = 0.
Apart from holonomic mechanical systems, there exist specially tailored sym-

plectic integrators for particular problem classes of non-canonical Hamiltonian
systems. These are often splitting methods, as for example, for rigid body
dynamics [ DLM97 , BCF01 ], for Gaussian wavepackets in quantum dynamics
[FL06 ], and for post-Newtonian equations in general relativity [ LWB10 ].

11



stiff
harmonic

soft
anharmonic

Figure 3.1: Chain of alternating stiff harmonic and soft anharmonic springs.

3 Hamiltonian systems with multiple time scales

3.1 Oscillatory Hamiltonian systems
The numerical experiment by Fermi, Pasta and Ulam in 1955, which showed
unexpected recurrent behaviour instead of relaxation to equipartition of energy
in a chain of weakly nonlinearly coupled particles, has spurred a wealth of re-
search in both mathematics and physics; see, e.g., [ Gal08 , BI05 , For92 , Wei97 ].
Even today, there are only few rigorous mathematical results for large particle
numbers in the FPU problem over long times [ BP06 , HL12 ], and rigorous the-
ory is lagging behind the insight obtained from carefully conducted numerical
experiments [ BCP13 ].
Here we consider a related class of oscillatory Hamiltonian systems for which

the long-time behaviour is by now quite well understood analytically both for
the continuous problem and its numerical discretizations, and which show inter-
esting behaviour on several time scales. The considered multiscale Hamiltonian
systems couple high-frequency harmonic oscillators with a Hamiltonian of slow
motion. An illustrative example of such a Hamiltonian is provided by a Fermi–
Pasta–Ulam type system of point masses interconnected by stiff harmonic and
soft anharmonic springs, as shown in Figure 3.1 ; see [ GGMV92 ] and [ HLW06 ,
Section I.5]. The general setting is as follows: For positions q = (q0, q1, . . . , qm)
and momenta p = (p0, p1, . . . , pm) with pj , qj ∈ Rdj , let the Hamilton function
be given by

H(p, q) = Hω(p, q) +Hslow(p, q),

where the oscillatory and slow-motion energies are given by

Hω(p, q) =

m∑
j=1

1

2

(
|pj |2 + ω2

j |qj |2
)
, Hslow(p, q) =

1

2
|p0|2 + U(q)

with high frequencies
ωj ≥ ε−1, 0 < ε≪ 1.

The coupling potential U is assumed smooth with derivatives bounded inde-
pendently of the small parameter ε. On eliminating the momenta pj = q̇j , the
Hamilton equations become the system of second-order differential equations

q̈j + ω2
j qj = −∇jU(q), j = 0, . . . ,m,

where ∇j denotes the gradient with respect to qj , and where we set ω0 = 0. We
are interested in the behaviour of the system for initial values with an oscillatory
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energy that is bounded independently of ε:

Hω(p(0), q(0)) ≤ Const.

This system shows different behaviour on different time scales:

(i) almost-harmonic motion of the fast variables (pj , qj) (j ̸= 0) on time scale
ε;

(ii) motion of the slow variables (p0, q0) on the time scale ε0;

(iii) energy exchange between the harmonic oscillators with the same frequency
on the time scale ε−1;



The relationship between the two techniques of proof, (H) and (F), is not
clear at present. The proofs look very different in the basic arguments, in the
geometric content and in the technical details, yet lead to very similar results
about the long-time behaviour of the continuous problem.

3.2 Modulated Fourier expansion
Modulated Fourier expansions in time have proven useful in the long-time anal-
ysis of differential equations where the nonlinearity appears as a perturbation
to a primarily linear problem (as laid out in the programme of [ FPU55 ] cited in
the introduction). This encompasses important classes of Hamiltonian ordinary
and partial differential equations. The approach can be successfully used for the
analysis of the continuous problems as well as for their numerical discretizations,
as is amply shown in the corresponding references in this and the next section.
In particular for the analysis of numerical methods, it offers the advantage that
it does not require nonlinear coordinate transforms. Instead, it embeds the orig-
inal system in a high-dimensional system of modulation equations that has a
Lagrangian / Hamiltonian structure with invariance properties. In addition to
the use of modulated Fourier expansions as an analytical technique, they have
been used also as a numerical approximation method in [ HLW02 , Chapter XIII]
and [ Coh04 , CDI09 , CDI10 , FS14 , BCZ14 , Zha17 ].
We now describe the basic steps how, for the problem of the previous subsec-

tion, a simple ansatz for the solution over a short time interval leads to long-time
near-conservation results for the oscillatory energies Ej =

1
2 (|pj |

2+ω2
j |qj |2). We

approximate the solution qj of the second-order differential equation of the pre-
vious section as a modulated Fourier expansion ,

qj(t) ≈
∑
k

zkj (t) e
i(k·ω)t for short times 0 ≤ t ≤ 1,

with modulation functions zkj , all derivatives of which are required to be bounded
independently of ε. The sum is taken over a finite set of multi-indices k =
(k1, . . . , km) ∈ Zm, and k · ω =

∑
kjωj . The slowly changing modulation func-

tions are multiplied with the highly oscillatory exponentials ei(k·ω)t =
∏m

j=1

(
eiωjt

)kj ,
which are products of solutions to the linear equations ẍj + ω2

jxj = 0. Such
products can be expected to be introduced into the solution qj by the nonlin-
earity.
Similar multiscale expansions have appeared on various occasions in the

literature. The distinguishing feature here is that such a short-time expansion
is used to derive long-time properties of the Hamiltonian system.

3.2.1 Modulation system and non-resonance condition

When we insert this ansatz into the differential equation and collect the coeffi-
cients to the same exponential ei(k·ω)t, we obtain the infinite system of modu-
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lation equations for z = (zkj )

(ω2
j − (k · ω)2) zkj + 2i(k · ω)żkj + z̈kj = − ∂ U

∂z−k
j

(z).

The left-hand side results from the linear part



under a continuous group action (a geometric property) yields the existence of
conserved quantities of the motion (a dynamic property). By Noether’s theorem,
the modulation equations thus conserve

Eℓ(y, ẏ) = −i
∑
j

∑
k

kℓωℓ y
−k
j ẏkj .

Since the modulation equations are solved only up to a defect O(εN ) in the
construction of the modulated Fourier expansion, the functions Eℓ are almost-
conserved quantities with O(εN+1) deviations over intervals of length O(1).
They turn out to be O(ε) close to the oscillatory energies Eℓ. By patching
together many short time intervals, the drift in the almost-invariants Eℓ is con-
trolled to remain bounded by CtεN+1 ≤ Cε over long times t ≤ ε−N , and hence
also the deviation in the oscillatory energies Eℓ is only O(ε) over such long times.
We thus obtain long-time near-conservation of the oscillatory energies Eℓ.

3.3 Long-time results for numerical integrators
Modulated Fourier expansions were first developed in [ HL00b ] and further in
[HLW02 , Chapter XIII] to understand the observed long-term near-conservation
of energy by some numerical methods for step sizes for which the smallness
condition hL ≪ 1 of the backward error analysis of Section 2.3 is not fulfilled.
For the numerical solution of the differential equation of Section 3.1 , we are
interested in using numerical integrators that allow large step sizes h such that
h/ε ≥ c0 > 0. In this situation, the one-step map of a numerical integrator is
no longer a near-identity map, as was the case in Section 2 .
For a class of time-symmetric trigonometric integrators , which are exact for

the uncoupled harmonic oscillator equations ẍj + ω2
jxj = 0 and reduce to the

Störmer–Verlet method for ωj = 0, the following results are proved for step sizes
h that satisfy a numerical non-resonance condition :

hωj is bounded away (by
√
h) from a multiple of π.

Under just this condition it is shown in [ CGHL15 ], using modulated Fourier
expansions, that the slow energy Hslow is nearly preserved along the numerical
solution for very long times t ≤ h−N for arbitrary N ≥ 1 provided the total
energy remains bounded along the numerical solution. If in addition,

sums of ±hωj with at most N + 1 terms are
bounded away from non-zero multiples of 2π,

then also the total and oscillatory energies H and Hω are nearly preserved
along the numerical solution for t ≤ h−N for the symplectic methods among the
considered symmetric trigonometric integrators. Modified total and oscillatory
energies are nearly preserved by the non-symplectic methods in this class. These
results yield the numerical version of property (vi) above. A numerical version
of property (v) was shown in [ CHL05 ]. The single-frequency case was previously
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studied in [ HL00b ]. For the Störmer–Verlet method , which can be interpreted as
a trigonometric integrator with modified frequencies, related long-time results
are given in [ HL00a , CGHL15 ].
The numerical version of the energy transfer of property (iii) was studied in

[HLW02 , Section XIII.4] and in [ CHL05 , MS14 ]. Getting the energy transfer
qualitatively correct by the numerical method turns out to put more restrictions
on the choice of methods than long-time energy conservation.
While we concentrated here on long-time results, it should be mentioned that

fixed-time convergence results of numerical methods for the multiscale problem
as h → 0 and ε → 0 with h/ε ≥ c0 > 0 also pose many challenges; see, e.g.,
[GASSS99 , HL99 , GH06 , BGG +17 ] for systems with constant high frequencies
and also [ LW14 , HL16 ] for systems with state-dependent high frequencies, where
near-preservation of adiabatic invariants is essential. We also refer to [ HLW06 ,
Chapters XIII and XIV] and to the review [ CJLL06 ].

4 Hamiltonian partial differential equations
There is a vast literature on the long-time behaviour of nonlinear wave equations,
nonlinear Schrödinger equations and other Hamiltonian partial differential equa-
tions; see, e.g., the monographs [ Kuk93 , Bou99 , Cra00 , Kuk00 , KP03 , GK14 ]
where infinite-dimensional versions of Hamiltonian perturbation theory are de-
veloped. Here we consider a few analytical results that have recently been
transfered also to numerical discretizations.

4.1 Long-time regularity preservation
We consider the nonlinear wave equation (or nonlinear Klein–Gordon equation)

∂2t u = ∂2xu− ρu+ g(u), u = u(x, t) ∈ R

with 2π-periodic boundary condition in one space dimension, a positive mass
parameter ρ and a smooth nonlinearity g = G′ with g(0) = g′(0) = 0. This
equation is a Hamiltonian partial differential equation ∂tv = −∇uH(u, v), ∂tu =
∇vH(u, v) (where v = ∂tu) with Hamilton function

H(u, v) =
1

2π

∫ π

−π

(
1

2

(
v2 + (∂xu)

2 + ρu2
)
−G(u)

)
dx

on the Sobolev space H1 of 2π-periodic functions.
Written in terms of the Fourier coefficients uj of u(x, t) =

∑
j∈Z uj(t)e

ijx,
the nonlinear wave equation takes the form of the oscillatory second-order dif-
ferential equation of Section 3.1 , but the system is now infinite-dimensional:

üj + ω2
juj = Fjg(u), j ∈ Z,

where Fj gives the jth Fourier coefficient and ωj =
√
j2 + ρ are the frequencies.
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The following result is proved, using infinite-dimensional Hamiltonian per-
turbation theory (Birkhoff normal forms), by Bambusi [ Bam03 ], for arbitrary
N ≥ 1: Under a non-resonance condition on the frequencies ωj , which is satis-
fied for almost all values of the parameter ρ, and for initial data (u0, v0) that
are ε-small in a Sobolev space Hs+1 ×Hs with sufficiently large s = s(N), the
harmonic energies Ej = 1

2 (|u̇j |
2 + ω2

j |uj |2) are nearly preserved over the time
scale t ≤ ε−N , and so is the Hs+1 ×Hs norm of the solution (u(t), v(t)).
An alternative proof using modulated Fourier expansions was given in [ CHL08b ]

with the view towards transfering the result to numerical discretizations with
trigonometric integrators as done in [ CHL08a ], for which in addition also a
numerical non-resonance condition is required.
Related long-time near-conservation results are proved for other classes of

Hamiltonian differential equations, in particular for nonlinear Schrödinger equa-
tions with a resonance-removing convolution potential, in [ Bou96 , BG06 , Gré07 ]
using Birkhoff normal forms and in [ GL10a ] using modulated Fourier expansions.
These results are transfered to numerical discretization by Fourier collocation
in space and splitting methods in time in [ FGP10a , FGP10b , GL10b



The above hurdles are overcome in [ CHL08a ] for the nonlinearly perturbed
wave equation of the previous subsection discretized by Fourier collocation in
space and symplectic trigonometric integrators in time. Here, high regularity
of the numerical solution and near-conservation of energy are proved simultane-
ously using modulated Fourier expansions. In [ GL10b ], this technique and the
energy conservation results are taken further to a class of nonlinear Schrödinger
equations with a resonance-removing convolution potential (in arbitrary space
dimension) discretized by Fourier collocation in space and a splitting method in
time.
Long-time near-conservation of energy for symplectic splitting methods ap-

plied to the nonlinear Schrödinger equation in one space dimension (without
a resonance-removing convolution potential) is shown in [ FG11 , Fao12 ] with
a backward error analysis adapted to partial differential equations and, under
weaker step size restrictions, in [ Gau16 ] with modulated Fourier expansions. In



on Birkhoff normal forms and the other one on modulated Fourier expansions.
The latter technique is used in [ FGL14 ] to transfer the result to numerical
discretization using Fourier collocation in space and a splitting method for time
discretization. The long-time orbital stability under smooth perturbations is in
contrast to the instability under rough perturbations shown in [ Han14 ].

5 Dynamical low-rank approximation
Low-rank approximation of too large matrices and tensors is a fundamental
approach to data compression and model reduction in a wide range of application
areas. Given a matrix A ∈ Rm×n, the best rank- r approximation to A with
respect to the distance given by the Frobenius norm (that is, the Euclidean
norm of the vector of entries of a matrix) is known to be obtained by a truncated
singular value decomposition: A ≈

∑r
i=1 σiuiv

⊤
i , where σ1, . . . , σr are the r

largest singular values of A, and ui ∈ Rm and vi ∈ Rn are the corresponding
left and right singular vectors, which form an orthonormal basis of the range
and corange, respectively, of the best approximation. Hence, only r vectors of
both length m and n need to be stored. If r ≪ min(m,n), then the requirements
for storing and handling the data are significantly reduced.
When A(t) ∈ Rm×n, 0 ≤ t ≤ T , is a time-dependent family of large ma-

trices, computing the best rank- r approximation would require singular value
decompositions of A(t) for every time instance t of interest, which is often not
computationally feasible. Moreover, when A(t) is not given explicitly but is the
unknown solution to a matrix differential equation Ȧ(t) = F (t, A(t)), then com-
puting the best rank- r approximation would require to first solve the differential
equation on Rm×n, which may not be feasible for large m and n, and then to
compute the singular value decompositions at all times of interest, which may
again not be feasible.

5.1 Dynamical low-rank approximation of matrices
An alternative — and often computationally feasible — approach can be traced
back to Dirac [ Dir30 ] in a particular context of quantum dynamics (see also
the next section). Its abstract version can be viewed as a nonlinear Galerkin
method on the tangent bundle of an approximation manifold M and reads
as follows: Consider a differential equation Ȧ(t) = F (t, A(t)) in a (finite- or
infinite-dimensional) Hilbert space H, and let M be a submanifold of H. An
approximation Y (t) ∈ M to a solution A(t) (for 0 ≤ t ≤ T ) is determined by
choosing the time derivative Ẏ (t) as the orthogonal projection of the vector field
F (t, Y (t)) to the tangent space TY (t)M at Y (t) ∈ M:

Ẏ (t) = PY (t)F (t, Y (t)), (5.1)

where PY denotes the orthogonal projection onto the tangent space at Y ∈ M.
Equation ( 5.1 ) is a differential equation on the approximation manifold M,
which is complemented with an initial approximation Y (0) ∈ M to A(0) ∈ H.
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When M is a flat space, then this is the standard Galerkin method, which is a
basic approximation method for the spatial discretization of partial differential
equations. When M is not flat, then the tangent space projection PY depends
on Y , and ( 5.1 ) is a nonlinear differential equation even if F is linear.
For the dynamical low-rank approximation of time-dependent matrices, ( 5.1 )

is used with M chosen as the manifold of rank- r matrices in the space H = Rm×n

equipped with the Frobenius inner product (the Euclidean inner product of the
matrix entries). This approach was first proposed and studied in [ KL07a ]. The
rank- r matrices are represented in (non-unique) factorized form as

Y = USV ⊤,

where U ∈ Rm×r and V ∈ Rn×r have orthonormal columns and S ∈ Rr×r is an
invertible matrix. The intermediate small matrix S is not assumed diagonal,
but it has the same non-zero singular values as Y ∈ M. Differential equations
for the factors U, S, V can be derived from ( 5.1 ) (uniquely under the gauge con-
ditions U⊤U̇ = 0 and V ⊤V̇ = 0). They contain the inverse of S as a factor on
the right-hand side. It is a typical situation that S has small singular values, be-
cause in order to obtain accurate approximability, the discarded singular values
need to be small, and then the smallest retained singular values are usually not
much larger. Small singular values complicate the analysis of the approximation
properties of the dynamical low-rank approximation ( 5.1 ), for a geometric rea-
son: the curvature of the rank- r manifold M at Y ∈ M (measured as the local
Lipschitz constant of the projection map Y 7→ PY ) is proportional to the inverse
of the smallest singular value of Y . It seems obvious that high curvature of the
approximation manifold can impair the approximation properties of ( 5.1 ), and
for a general manifold this is indeed the case. Nevertheless, for the manifold M
of rank- r matrices there are numerical and theoretical results in [ KL07a ] that
show good approximation properties also in the presence of arbitrarily small
singular values.

5.2 Projector-splitting integrator
The numerical solution of the differential equations for U, S, V encounters dif-
ficulties with standard time integration methods (such as explicit or implicit
Runge–Kutta methods) when S has small singular values, since the inverse of S
appears as a factor on the right-hand side of the system of differential equations.
A numerical integration method for these differential equations with remark-

able properties is given in [ LO14 ]. It is based on splitting the tangent space
projection, which at Y = USV ⊤ is an alternating sum of three subprojections:

PY Z = ZV V ⊤ − UU⊤ZV V ⊤ + UU⊤Z.

Starting from a factorization Yn = UnSnV
⊤
n at time tn, the corresponding

splitting integrator updates the factorization of the rank- r approximation to
Yn+1 = Un+1Sn+1V

⊤
n+1 at time tn+1. It alternates between solving (approxi-

mately if need be) matrix differential equations of dimensions m × r (for US),
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r× r (for S), n× r (for V S⊤) and doing orthogonal decompositions of matrices
of these dimensions. The inverse of S does not show up in these computations.

The projector-splitting integrator has a surprising exactness property: if the
given matrix A(t) is already of rank r for all t, then the integrator reproduces
A(t) exactly [ LO14 ]. More importantly, the projector-splitting integrator is ro-
bust to the presence of small singular values: it admits convergent error bounds
that are independent of the singular values [ KLW16 ]. The proof uses the above
exactness property and a geometric peculiarity: in each substep of the algo-
rithm, the approximation moves along a flat subspace of the manifold M of
rank- r matrices. In this way, the high curvature due to small singular values
does no harm.

5.3 Dynamical low-rank approximation of tensors
The dynamical low-rank approximation and the projector-splitting integrator
have been extended from matrices to tensors A(t) ∈ Rn1×···×nd such that the
favourable approximation and robustness properties are retained; see [ KL10 ,
LRSV13 , AJ14 , LOV15 , LVW17 ]. The dynamical low-rank approximation can
be done in various tensor formats that allow for a notion of rank, such as Tucker
tensors, tensor trains, hierarchical tensors, and general tensor tree networks; see
[Hac12 , UV13 ] for these concepts and for some of their geometric properties.

6 Quantum dynamics

6.1 The time-dependent variational approximation princi-
ple

The time-dependent Schrödinger equation for the N -particle wavefunction ψ =
ψ(x1, . . . , xN , t),

i∂tψ = Hψ,

posed as an evolution equation on the complex Hilbert space H = L2((R3)N ,C)
with a self-adjoint Hamiltonian operator H, is not accessible to direct numerical
treatment in the case of several, let alone many particles. “One must therefore
resort to approximate methods”, as Dirac [ Dir30 ] noted already in the early
days of quantum mechanics. For a particular approximation scheme, which
is nowadays known as the time-dependent Hartree–Fock method, he used the
tangent space projection ( 5.1 ) for the Schrödinger equation. Only later was
this recognized as a general approximation approach, which is now known as
the (Dirac–Frenkel) time-dependent variational principle in the physical and
chemical literature: Given a submanifold M of H, an approximation u(t) ∈ M
to the wavefunction ψ(·, t) ∈ H is determined by the condition that

u̇ is chosen as that w ∈ TuM for which ∥iw −Hu∥ is minimal.
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This is precisely ( 5.1 ) in the context of the Schrödinger equation: u̇ = Pu
1
iHu.

If we assume that the approximation manifold M is such that for all u ∈ M,

TuM is a complex vector space ,

(so that with v ∈ TuM, also iv ∈ TuM), then the orthogonal projection Pu turns
out to be also a symplectic projection with respect to the canonical symplectic
two-form on H given by ω(ξ, η) = 2 Im⟨ξ, η⟩ for ξ, η ∈ H, and M is a symplectic
manifold. With the Hamilton function H(u) = ⟨u,Hu⟩, the differential equation
for u can then be rewritten as

ω(u̇, v) = dH(u)[v] for all v ∈ TuM,

which is a Hamiltonian system on the symplectic manifold M; cf. Section 2.6 .
The total energy H(u) is therefore conserved along solutions, and the flow is
symplectic on M. The norm is conserved if M contains rays, i.e., with u ∈ M
also αu ∈ M for all α > 0. We refer to the books [ KS81 , Lub08 ] for geometric,
dynamic and approximation aspects of the time-dependent variational approx-
imation principle.

6.2 Tensor and tensor network approximations
In an approach that builds on the time-honoured idea of separation of variables,
the multi-configuration time-dependent Hartree method (MCTDH) [ MMC90 ,
MGW09 ] uses the time-dependent variational principle to determine an ap-
proximation to the multivariate wavefunction that is a linear combination of
products of univariate functions:

u(x1, . . . , xN , t) =

r1∑
i1=1

· · ·
rN∑

iN=1

ci1,...,iN (t)φ
(1)
i1

(x1, t) . . . φ
(N)
iN

(xN , t).

The time-dependent variational principle yields a coupled system of ordinary
differential equations for the coefficient tensor

(
ci1,...,iN (t)

)
of full multilinear

rank and low-dimensional nonlinear Schrödinger equations for the single-particle
functions φ

(n)
in

(xn, t), which are assumed orthonormal for each n = 1, . . . , N .
Well-posedness and regularity for this nonlinear system of evolution equations
is studied in [ KL07b ], and an asymptotic error analysis of the MCTDH approx-
imation for growing ranks rn is given in [ CL10 ].
The projector-splitting integrator of Section 5.2 is extended to MCTDH

in [ Lub15 ]. The nonlinear MCTDH equations are thus split into a chain of
linear single-particle differential equations, alternating with orthogonal matrix
decompositions. The integrator conserves the L2 norm and the total energy and,
as is proved in [ LVW17 ], it is robust to the presence of small singular values in
matricizations of the coefficient tensor.
In the last decade, tensor network approximations, and in particular matrix

product states, have increasingly come into use for the description of strongly
interacting quantum many-body systems; see, e.g., [ VMC08 , CV09 , SPM +15 ].
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Matrix product states (known as tensor trains in the mathematical literature
[Ose11 ]) approximate the wavefunction by

u(x1, . . . , xN , t) = G1(x1, t) · . . . ·GN (xN , t)

with matrices Gn(xn, t) of compatible (low) dimensions. This approach can be
viewed as a non-commutative separation of variables. Its memory requirements
grow only linearly with the number of particles N , which makes the approach
computationally attractive for many-body systems. The approximability of the
wavefunction or derived quantities by this approach is a different issue, with
some excellent computational results but hardly any rigorous mathematical the-
ory so far.
For the numerical integration of the equations of motion that result from

the time-dependent variational approximation principle, the projector-splitting
integrator has recently been extended to matrix product states in [ LOV15 ,
HLO +16 ], with favourable properties like the MCTDH integrator. The impor-
tant robustness to the presence of small singular values is proved in [ KLW16 ],
again using the property that the integrator moves along flat subspaces within
the tensor manifold.

Acknowledgement
We thank Balázs Kovács, Frank Loose, Hanna Walach, and Gerhard Wanner
for helpful comments.

References
[AEEVE12] A. Abdulle, W. E, B. Engquist, and E. Vanden-Eijnden. The het-

erogeneous multiscale method. Acta Numerica , 21:1–87, 2012.

[AJ14] A. Arnold and T. Jahnke. On the approximation of high-
dimensional differential equations in the hierarchical Tucker for-
mat. BIT Numer. Math. , 54(2):305–341, 2014.

[AKN97] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt. Mathematical
Aspects of Classical and Celestial Mechanics . Springer, Berlin,
1997.

[AM04] U. M. Ascher and R. I. McLachlan. Multisymplectic box schemes
and the Korteweg-de Vries equation. Appl. Numer. Math. , 48(3-
4):255–269, 2004. Workshop on Innovative Time Integrators for
PDEs.

[And83] H. C. Andersen. Rattle: a “velocity” version of the shake algorithm
for molecular dynamics calculations. J. Comput. Phys. , 52:24–34,
1983.

24



[Bam03] D. Bambusi. Birkhoff normal form for some nonlinear PDEs.
Comm. Math. Phys. , 234:253–285, 2003.

[BC16] S. Blanes and F. Casas. A Concise Introduction to Geometric
Numerical Integration . Monographs and Research Notes in Math-
ematics. CRC Press, Boca Raton, FL, 2016.

[BCF01] G. Benettin, A. M. Cherubini, and F. Fassò. A changing-chart sym-
plectic algorithm for rigid bodies and other Hamiltonian systems
on manifolds. SIAM J. Sci. Comput. , 23:1189–1203, 2001.

[BCP13] G. Benettin, H. Christodoulidi, and A. Ponno. The Fermi–Pasta–
Ulam problem and its underlying integrable dynamics. J. Stat.
Phys. , 152(2):195–212, 2013.

[BCZ14] W. Bao, Y. Cai, and X. Zhao. A uniformly accurate multiscale time
integrator pseudospectral method for the klein–gordon equation in
the nonrelativistic limit regime. SIAM J. Numer. Anal. , 52:2488–
2511, 2014.

[BFG13] D. Bambusi, E. Faou, and B. Grébert. Existence and stability
of ground states for fully discrete approximations of the nonlinear
Schrödinger equation. Numer. Math. , 123(3):461–492, 2013.

[BG94] G. Benettin and A. Giorgilli. On the Hamiltonian interpolation
of near to the identity symplectic mappings with application to
symplectic integration algorithms. J. Statist. Phys. , 74:1117–1143,
1994.

[BG06] D. Bambusi and B. Grébert. Birkhoff normal form for partial dif-
ferential equations with tame modulus. Duke Math. J. , 135(3):507–
567, 2006.

[BGG87] G. Benettin, L. Galgani, and A. Giorgilli. Realization of holonomic
constraints and freezing of high frequency degrees of freedom in the
light of classical perturbation theory. Part I. Comm. Math. Phys. ,
113:87–103, 1987.

[BGG89] G. Benettin, L. Galgani, and A. Giorgilli. Realization of holonomic
constraints and freezing of high frequency degrees of freedom in the
light of classical perturbation theory. Part II. Comm. Math. Phys. ,
121:557–601, 1989.

[BGG +17] S. Buchholz, L. Gauckler, V. Grimm, M. Hochbruck, and
T. Jahnke. Closing the gap between trigonometric integrators and
splitting methods for highly oscillatory differential equations. IMA
J. Numer. Anal. , page drx007, 2017.

25



[BGPP13] D. Bambusi, A. Giorgilli, S. Paleari, and T. Penati. Normal form
and energy conservation of high frequency subsystems without non-
resonance conditions. Istituto Lombardo (Rend. Scienze) , 147:1–17,
2013.

[BI05] G.P. Berman and F.M. Izrailev. The Fermi–Pasta–Ulam problem:
fifty years of progress. Chaos: An Interdisciplinary Journal of
Nonlinear Science , 15:015104, 2005.

[BL07] S.D. Bond and B.J. Leimkuhler. Molecular dynamics and the accu-
racy of numerically computed averages. Acta Numerica , 16:1–65,
2007.

[Bou96] J. Bourgain. Construction of approximative and almost periodic so-
lutions of perturbed linear Schrödinger and wave equations. Geom.
Funct. Anal. , 6:201–230, 1996.

[Bou99] J. Bourgain. Global solutions of nonlinear Schrödinger equations ,
volume 46 of American Mathematical Society Colloquium Publica-
tions . American Mathematical Society, Providence, RI, 1999.

[BP06] D. Bambusi and A. Ponno. On metastability in FPU.



[CHL08a] D. Cohen, E. Hairer, and C. Lubich. Conservation of energy, mo-
mentum and actions in numerical discretizations of nonlinear wave
equations. Numer. Math. , 110:113–143, 2008.

[CHL08b] D. Cohen, E. Hairer, and C. Lubich. Long-time analysis of nonlin-
early perturbed wave equations via modulated Fourier expansions.
Arch. Ration. Mech. Anal. , 187:341–368, 2008.

[Chu08] M. T. Chu. Linear algebra algorithms as dynamical systems. Acta
Numerica , 17:1–86, 2008.

[CJLL06] D. Cohen, T. Jahnke, K. Lorenz, and C. Lubich. Numerical inte-
grators for highly oscillatory Hamiltonian systems: a review. In
Analysis, modeling and simulation of multiscale problems , pages
553–576. Springer, Berlin, 2006.

[CL10] D. Conte and C. Lubich. An error analysis of the multi-
configuration time-dependent Hartree method of quantum dynam-
ics. ESAIM: Mathematical Modelling and Numerical Analysis ,
44(4):759–780, 2010.

[CMKO11] S. H. Christiansen, H. Z. Munthe-Kaas, and B. Owren. Topics
in structure-preserving discretization. Acta Numerica , 20:1–119,
2011.

[Coh04] D. Cohen. Analysis and numerical treatment of highly oscillatory
differential equations . PhD thesis, Univ. Genève, 2004.

[Cra00] W. Craig. Problèmes de petits diviseurs dans les équations aux
dérivées partielles , volume 9 of Panoramas et Synthèses . Société
Mathématique de France, Paris, 2000.

[CSS92] M. P. Calvo and J. M. Sanz-Serna. Variable steps for symplectic
integrators. In Numerical Analysis 1991 , Res. Notes Math. Ser.
260, pages 34–48, Dundee, 1992. Pitman.

[CV09] J. I. Cirac and F. Verstraete. Renormalization and tensor product
states in spin chains and lattices. J. Physics A: Mathematical and
Theoretical , 42(50):504004, 2009.

[DDE05] K. Deckelnick, G. Dziuk, and C. M. Elliott. Computation of geo-
metric partial differential equations and mean curvature flow. Acta
Numerica , 14:139–232, 2005.

[DE13] G. Dziuk and C. M. Elliott. Finite element methods for surface
PDEs. Acta Numerica , 22:289–396, 2013.

[Dir30] P. A. M. Dirac. Note on exchange phenomena in the Thomas atom.
Math. Proc. Cambridge Phil. Soc. , 26(3):376–385, 1930.

27



[DLM97] A. Dullweber, B. Leimkuhler, and R. McLachlan. Symplectic split-
ting methods for rigid body molecular dynamics. J. Chem. Phys.
107 No. , 15:5840–5851, 1997.

[dV56] R. de Vogelaere. Methods of integration which preserve the contact
transformation property of the Hamiltonian equations. Technical
report, Dept. Math. Univ. of Notre Dame, Notre Dame, Ind., 1956.

[Fao12] E. Faou. Geometric Numerical Integration and Schrödinger Equa-
tions . Zurich Lectures in Advanced Mathematics. European Math-
ematical Society (EMS), Zürich, 2012.

[Fen85] K. Feng. On difference schemes and symplectic geometry. In Pro-
ceedings of the 5-th Intern. Symposium on differential geometry &
differential equations 1984 , pages 42–58, Beijing, August 1985.

[Fen86] K. Feng. Difference schemes for Hamiltonian formalism and sym-
plectic geometry. J. Comp. Math. , 4:279–289, 1986.

[FG11] E. Faou and B. Grébert. Hamiltonian interpolation of split-
ting approximations for nonlinear PDEs. Found. Comput. Math. ,
11(4):381–415, 2011.

[FGL13] E. Faou, L. Gauckler, and C. Lubich. Sobolev stability of plane
wave solutions to the cubic nonlinear Schrödinger equation on a
torus. Comm. Partial Differential Equations , pages 1123–1140,
2013.

[FGL14] E. Faou, L. Gauckler, and C. Lubich. Plane wave stability of the
split-step Fourier method for the nonlinear Schrödinger equation.
Forum of Mathematics, Sigma , 2:e5, 2014.

[FGP10a] E. Faou, B. Grébert, and E. Paturel. Birkhoff normal form for
splitting methods applied to semilinear Hamiltonian PDEs. part I.
Finite-dimensional discretization. Numer. Math. , 114(3):429–458,
2010.

[FGP10b] E. Faou, B. Grébert, and E. Paturel. Birkhoff normal form for
splitting methods applied to semilinear Hamiltonian PDEs. part
II. Abstract splitting. Numer. Math. , 114(3):459–490, 2010.

[FL06] E. Faou and C. Lubich. A Poisson integrator for Gaussian
wavepacket dynamics. Computing and Visualization in Science ,
9(2):45–55, 2006.

[For92] J. Ford. The Fermi–Pasta–Ulam problem: paradox turns discovery.
Physics Reports , 213:271–310, 1992.

28



[FPU55] E. Fermi, J. Pasta, and S. Ulam. Studies of non linear problems.
Technical Report LA-1940, Los Alamos, 1955. Later published in
E. Fermi: Collected Papers, Chicago, 1965 and reprinted in G.
Gallavotti (ed.), The Fermi–Pasta–Ulam Problem. A Status Re-
port. Springer Lect. Notes Phys. 728, 2008.

[FQ10] K. Feng and M.-Z. Qin. Symplectic Geometric Algorithms for
Hamiltonian Systems . Zhejiang Science and Technology Publishing
House, Hangzhou, 2010. Translated and revised from the Chinese
original. With a foreword by Feng Duan.

[FS14] E. Faou and K. Schratz. Asymptotic preserving schemes for the
klein–gordon equation in the non-relativistic limit regime. Numer.
Math. , 126(3):441–469, 2014.

[Gal08] G. Gallavotti, editor. The Fermi–Pasta–Ulam problem , volume 728
of Lecture Notes in Physics . Springer, Berlin, 2008. A status report.



[GL10a] L. Gauckler and C. Lubich. Nonlinear Schrödinger equations and
their spectral semi-discretizations over long times. Found. Comput.
Math. , 10:141–169, 2010.

[GL10b] L. Gauckler and C. Lubich. Splitting integrators for nonlinear
Schrödinger equations over long times. Found. Comput. Math. ,
10:275–302, 2010.

[Gré07] B. Grébert. Birkhoff normal form and Hamiltonian PDEs. In
Partial differential equations and applications , volume 15 of Sémin.
Congr. , pages 1–46. Soc. Math. France, Paris, 2007.

[GW17] L. Gauckler and D. Weiss. Metastable energy strata in numeri-
cal discretizations of weakly nonlinear wave equations. Discrete
Contin. Dyn. Syst. , 37(7):3721–3747, 2017.

[Hac12] W. Hackbusch. Tensor spaces and numerical tensor calculus .
Springer Science & Business Media, 2012.

[Hai94] E. Hairer. Backward analysis of numerical integrators and sym-
plectic methods. Annals of Numerical Mathematics , 1:107–132,
1994.

[Han14] Z. Hani. Long-time instability and unbounded Sobolev orbits
for some periodic nonlinear Schrödinger equations. Arch. Ration.
Mech. Anal. , 211(3):929–964, 2014.

[HL97] E. Hairer and C. Lubich. The life-span of backward error anal-
ysis for numerical integrators. Numer. Math. , 76:441–462, 1997.
Erratum: http://www.unige.ch/math/folks/hairer/.

[HL99] M. Hochbruck and C. Lubich. A Gautschi-type method for oscil-
latory second-order differential equations. Numer. Math. , 83:403–
426, 1999.

[HL00a] E. Hairer and C. Lubich. Energy conservation by Störmer-type
numerical integrators. In D. F. Griffiths G. A. Watson, editor,
Numerical Analysis 1999 , pages 169–190. CRC Press LLC, 2000.

[HL00b] E. Hairer and C. Lubich. Long-time energy conservation of numeri-
cal methods for oscillatory differential equations. SIAM J. Numer.
Anal. , 38:414–441, 2000.

[HL04] E. Hairer and C. Lubich. Symmetric multistep methods over long
times. Numer. Math. , 97:699–723, 2004.

[HL12] E. Hairer and C. Lubich. On the energy distribution in Fermi–
Pasta–Ulam lattices. Arch. Ration. Mech. Anal. , 205(3):993–1029,
2012.

30



[HL16] E. Hairer and C. Lubich. Long-term analysis of the Störmer–Verlet
method for Hamiltonian systems with a solution-dependent high
frequency. Numer. Math. , 34:119–138, 2016.

[HL17] E. Hairer and C. Lubich. Symmetric multistep methods for
charged-particle dynamics. SMAI J. Comput. Math., to appear ,
2017.

[HLO +16] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, and F. Ver-
straete. Unifying time evolution and optimization with matrix
product states. Physical Review B , 94(16):165116, 2016.

[HLW02] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical In-
tegration. Structure-Preserving Algorithms for Ordinary Differen-
tial Equations . Springer Series in Computational Mathematics 31.
Springer-Verlag, Berlin, 2002.

[HLW03] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical inte-
gration illustrated by the Störmer–Verlet method. Acta Numerica ,
12:399–450, 2003.

[HLW06] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical In-
tegration. Structure-Preserving Algorithms for Ordinary Differen-
tial Equations . Springer Series in Computational Mathematics 31.
Springer-Verlag, Berlin, 2nd edition, 2006.

[HO10] M. Hochbruck and A. Ostermann. Exponential integrators. Acta
Numerica , 19:209–286, 2010.

[IMKNZ00] A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna. Lie-
group methods. Acta Numerica , pages 215–365, 2000.

[Jay96] L. Jay. Symplectic partitioned Runge–Kutta methods for con-
strained Hamiltonian systems. SIAM J. Numer. Anal. , 33:368–387,
1996.

[KL07a] O. Koch and C. Lubich. Dynamical low-rank approximation. SIAM
J. Matrix Anal. Appl. , 29(2):434–454, 2007.

[KL07b] O. Koch and C. Lubich. Regularity of the multi-configuration
time-dependent Hartree approximation in quantum molecular dy-
namics. ESAIM: Mathematical Modelling and Numerical Analysis ,
41(2):315–331, 2007.

[KL10] O. Koch and C. Lubich. Dynamical tensor approximation. SIAM
J. Matrix Anal. Appl. , 31(5):2360–2375, 2010.

[KLW16] E. Kieri, C. Lubich, and H. Walach. Discretized dynamical low-
rank approximation in the presence of small singular values. SIAM
J. Numer. Anal. , 54(2):1020–1038, 2016.

31



[KP03] T. Kappeler and J. Pöschel. KdV & KAM , volume 45 of Ergeb-
nisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of
Modern Surveys in Mathematics . Springer-Verlag, Berlin, 2003.

[KS81] P. Kramer and M. Saraceno. Geometry of the time-dependent vari-
ational principle in quantum mechanics , volume 140 of Lecture
Notes in Physics . Springer, Berlin, 1981.

[Kuk93] S. B. Kuksin. Nearly integrable infinite-dimensional Hamiltonian
systems , volume 1556 of Lecture Notes in Mathematics . Springer-
Verlag, Berlin, 1993.

[Kuk00] S. B. Kuksin. Analysis of Hamiltonian PDEs , volume 19 of Ox-
ford Lecture Series in Mathematics and its Applications . Oxford
University Press, Oxford, 2000.

[Las88] F. M. Lasagni. Canonical Runge–Kutta methods. ZAMP , 39:952–
953, 1988.

[Las13] J. Laskar. Is the solar system stable? In Chaos , volume 66 of Prog.
Math. Phys. , pages 239–270. Birkhäuser/Springer, Basel, 2013.

[LO14] C. Lubich and I. V. Oseledets. A projector-splitting integrator for
dynamical low-rank approximation. BIT Numer. Math. , 54(1):171–
188, 2014.

[LOV15] C. Lubich, I. V. Oseledets, and B. Vandereycken. Time integration
of tensor trains. SIAM J. Numer. Anal. , 53(2):917–941, 2015.

[LR94] B. Leimkuhler and S. Reich. Symplectic integration of constrained
Hamiltonian systems. Math. Comp. , 63:589–605, 1994.

[LR04] B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics .
Cambridge Monographs on Applied and Computational Mathe-
matics 14. Cambridge University Press, Cambridge, 2004.

[LRSV13] C. Lubich, T. Rohwedder, R. Schneider, and B. Vandereycken. Dy-
namical approximation by hierarchical Tucker and tensor-train ten-
sors. SIAM J. Matrix Anal. Appl. , 34(2):470–494, 2013.

[Lub08] C. Lubich. From Quantum to Classical Molecular Dynamics:
Reduced Models and Numerical Analysis . Zurich Lectures in
Advanced Mathematics. European Mathematical Society (EMS),
Zürich, 2008.

[Lub15] C. Lubich. Time integration in the multiconfiguration time-
dependent Hartree method of molecular quantum dynamics. Ap-
plied Mathematics Research eXpress , 2015(2):311–328, 2015.

32



[LVW17] C. Lubich, B. Vandereycken, and H. Walach. Time integration
of rank-constrained Tucker tensors. Preprint, arXiv:1709.02594 ,
2017.

[LW14] C. Lubich and D. Weiss. Numerical integrators for motion under
a strong constraining force. Multiscale Modeling & Simulation ,
12(4):1592–1606, 2014.

[LWB10] C. Lubich, B. Walther, and B. Brügmann. Symplectic integration
of post-Newtonian equations of motion with spin. Physical Review
D , 81(10):104025, 2010.

[MGW09] H.-D. Meyer, F. Gatti, and G. A. Worth. Multidimensional quan-
tum dynamics . John Wiley & Sons, 2009.

[MMC90] H.-D. Meyer, U. Manthe, and L. S. Cederbaum. The multi-
configurational time-dependent Hartree approach. Chem. Phys.
Letters , 165(1):73–78, 1990.

[Mos68] J. Moser. Lectures on Hamiltonian systems. Mem. Am. Math. Soc. ,
81:1–60, 1968.

[Mos78] J. Moser. Is the solar system stable? Mathematical Intelligencer ,
1:65–71, 1978.

[MPS98] J. E. Marsden, G. W. Patrick, and S. Shkoller. Multisymplectic
geometry, variational integrators, and nonlinear PDEs. Comm.
Math. Phys. , 199(2):351–395, 1998.

[MQ02] R. I. McLachlan and G. R. W. Quispel. Splitting methods. Acta
Numerica , 11:341–434, 2002.

[MS14] R. I. McLachlan and A. Stern. Modified trigonometric integrators.
SIAM J. Numer. Anal. , 52:1378–1397, 2014.

[MW01] J. E. Marsden and M. West. Discrete mechanics and variational
integrators. Acta Numerica , 10:1–158, 2001.

[Nei84] A. I. Neishtadt. The separation of motions in systems with rapidly
rotating phase. Journal of Applied Mathematics and Mechanics ,
48(2):133–139, 1984.

[Ose11] I. V. Oseledets. Tensor-train decomposition. SIAM J. Sci. Com-
put. , 33(5):2295–2317, 2011.

[Poi92] H. Poincaré. Les Méthodes Nouvelles de la Mécanique Céleste Tome
I . Gauthier-Villars, Paris, 1892.

[Rei99] S. Reich. Backward error analysis for numerical integrators. SIAM
J. Numer. Anal. , 36:1549–1570, 1999.

33



[Rut83] R. D. Ruth. A canonical integration technique. IEEE Trans. Nu-
clear Science , NS-30:2669–2671, 1983.

[Sha99] Z. Shang. KAM theorem of symplectic algorithms for Hamiltonian
systems. Numer. Math. , 83:477–496, 1999.

[Sha00] Z. Shang. Resonant and Diophantine step sizes in computing invari-
ant tori of Hamiltonian systems. Nonlinearity , 13:299–308, 2000.

[SM71] C. L. Siegel and J. K. Moser. Vorlesungen über Himmelsmechanik ,
volume 85 of Grundlehren d. math. Wiss. . Springer-Verlag,
1971. First German edition: C. L. Siegel, Vorlesungen über Him-
melsmechanik , Grundlehren vol. 85, Springer-Verlag, 1956.

[SPM +15] S. Szalay, M. Pfeffer, V. Murg, G. Barcza, F. Verstraete, R. Schnei-
der, and Ö. Legeza. Tensor product methods and entanglement
optimization for ab initio quantum chemistry. Int. J. Quantum
Chem. , 115(19):1342–1391, 2015.

[SS88] J. M. Sanz-Serna. Runge-Kutta schemes for Hamiltonian systems.
BIT , 28:877–883, 1988.

[SS92] J. M. Sanz-Serna. Symplectic integrators for Hamiltonian prob-
lems: an overview. Acta Numerica , 1:243–286, 1992.

[SSC94] J. M. Sanz-Serna and M. P. Calvo. Numerical Hamiltonian prob-
lems , volume 7 of Applied Mathematics and Mathematical Compu-
tation . Chapman & Hall, London, 1994.

[Sur88] Y. B. Suris. On the conservation of the symplectic structure in
the numerical solution of Hamiltonian systems. In S. S. Filip-
pov, editor, Numerical Solution of Ordinary Differential Equations ,
pages 148–160. Keldysh Institute of Applied Mathematics USSR
Academy of Sciences, Moscow, 1988. in Russian.

[Sur90] Y. B. Suris. Hamiltonian methods of Runge–Kutta type and their
variational interpretation. in Russian Math. Model. , 2:78–87, 1990.

[Sur03] Y. B. Suris. The Problem of Integrable Discretization: Hamilto-
nian Approach , volume 219 of Progress in Mathematics . Birkhäuser
Verlag, Basel, 2003.

[UV13] A. Uschmajew and B. Vandereycken. The geometry of algorithms
using hierarchical tensors. Linear Algebra Appl. , 439(1):133–166,
2013.

[Ver67] L. Verlet. Computer “experiments” on classical fluids. I. Thermo-
dynamical properties of Lennard-Jones molecules. Physical Review ,
159:98–103, 1967.

34



[VMC08] F. Verstraete, V. Murg, and J. I. Cirac. Matrix product states,
projected entangled pair states, and variational renormalization
group methods for quantum spin systems. Advances in Physics ,
57(2):143–224, 2008.

[Wan10] G. Wanner. Kepler, Newton and numerical analysis. Acta Numer-
ica , 19:561–598, 2010.

[Wei85] M. I. Weinstein. Modulational stability of ground states of nonlin-
ear Schrödinger equations. SIAM J. Math. Anal. , 16(3):472–491,
1985.

[Wei97] T.P. Weissert. The Genesis of Simulation in Dynamics: Pursuing
the Fermi–Pasta–Ulam Problem . Springer-Verlag, New York, 1997.

[WH91] J. Wisdom and M. Holman. Symplectic maps for the n-body prob-
lem. Astron. J. , 102:1528–1538, 1991.

[Wil60] J. H. Wilkinson. Error analysis of floating-point computation. Nu-
mer. Math. , 2:319–340, 1960.

[WYW13] X. Wu, X. You, and B. Wang. Structure-Preserving Algorithms for
Oscillatory Differential Equations . Springer Science & Business
Media, 2013.

[Zha17] X. Zhao. Uniformly accurate multiscale time integrators for second
order oscillatory differential equations with large initial data. BIT
Numer. Math. , 57:649–683, 2017.

35


	Introduction
	Hamiltonian systems of ordinary differential equations
	Hamiltonian systems
	Symplecticity of the flow and symplectic integrators
	Backward error analysis
	Long-time near-conservation of energy
	Integrable and near-integrable Hamiltonian systems
	Hamiltonian systems on manifolds

	Hamiltonian systems with multiple time scales
	Oscillatory Hamiltonian systems
	Modulated Fourier expansion
	Modulation system and non-resonance condition
	Lagrangian structure and invariants of the modulation system.

	Long-time results for numerical integrators

	Hamiltonian partial differential equations
	Long-time regularity preservation
	Long-time near-conservation of energy for numerical discretizations
	Orbital stability results for nonlinear Schrödinger equations and their numerical discretizations

	Dynamical low-rank approximation
	Dynamical low-rank approximation of matrices
	Projector-splitting integrator
	Dynamical low-rank approximation of tensors

	Quantum dynamics
	The time-dependent variational approximation principle
	Tensor and tensor network approximations


