DELOCALIZATION OF SCHRODINGER EIGENFUNCTIONS
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1. Some history

One can date the birth of quantum mechanics back to Pianck’s 1900 paper [93], when
he realized that the statistical model leading to the spectrum of the “black body” had to
be discrete, not continuous. To that e ect, he intraduced the “Planck constant” h, but
this was for him a mathematical artefact, withcut physical foundation. It was Einstein
who gave this notion a physical meaning, intioducing the idea of quantum of energy in the
exchange of energy between electromagneztic. field and matter (later called photon) [49].
The amount of energy that can be exchariged between light of frequency and matter is
discrete, “quantized”, it must be an integer multiple of h .

This idea was applied by Bohr in 1¢13 to the planetary model of the atom [28]. Trying to
explain the discrete emission/abscrption spectrum of the hydrogen, he used the Rutherford
model where the electror graviiates around the nucleus submitted to Coulomb attraction,
and postulated the quantization of the kinetic momentum : it must be an integer multiple
of h. This in turn impiied that the energy can only take a discrete set of values, that fitted
perfectly well with the experimental spectrum. However, setting up quantization rules for
larger atoms turned out to be an inextricable task.

In 1917, Einstein wrote a theoretical paper with an aim to extend the quantization rules
to systems with higher degrees of freedom [50]. He modified some rules given earlier by
Epstein and Sommerfeld, and he noted that his new rules only made sense if (using modern
vocabulary) the system is completely integrable : that is, if there exist some action/angle
canonical coordinates, such that the actions are invariants of motion (Einstein’s quantiza-
tion rule is that the values taken by the action variables have to be integer multiples of
h). At the end of Einstein’s paper, there is a sentence that looks incidental, but may be
considered to be the starting point of a whole field of research : “on the other hand, clas-
sical statistical mechanics is essentially only concerned with Type b) [i.e. non integrable
systems], for in this case the microcanonical average is the same as the time average”.
The equivalence of time average with the average over phase space is the property called
“ergodicity”. Einstein’s point is the following : if a classical dynamical system is ergodic,

the quantization rules do not apply, so how can we describe its spectrum ?
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Facing the failure to find quantization rules even for an atom as simple as the helium,
Heisenberg set up in 1925 entirely new rules of mechanics [64]. One should work only with
observable quantities such as the position or the momentum (but for instance, the trajec-
tory of an electron is not observable); and these “observables” are modelled by matrices
(operators), subject to certain commutation rules. The momentum observable p and the
position observable g must satisfy qp — pg = i&l, where & is the reduced Planck constant
h=2 . Time evolution is governed by the energy observable H; Heisenberg gives a recipe
to build the operator H starting from the classical expression of energy. Any other observ-
able A evolves according to the linear equation ir%! = [A;H], where [-;-] stands for the
commutator of two operators. The physical spectrum of the system (emitted or absorbed
energies) is given by the di erences E,, — E,,,, where (E,,) are the eigenvaiues of H.

At the same time, a concurrent theory emerged. In 1923, De Brealie had formulated the
idea of wave mechanics : in the same way as light, considered t2 he a wave, was discovered
to have a discrete behaviour embodied by the photons, one could do the reverse operation
with the particles composing matter, and consider them tc be waves as well. In 1926
Schrddinger proposed an evolution equation for a wave/particle of mass m evolving in a
force field coming from a potential V [99, 100] :

AN
where A is the Laplacian, and where = (; x) is a function of time t and of the position

x € R? of the particle, called the wave function.
The linear partial di erential eguaticir (1) can be solved by diagonalizing the di erential
operator H = —%A + V. Ascsuime, tor instance, we can find an orthonormal basis of the

Hilbert space L?(IR?) consisting of functions ,, satisfyingH ,, = E,, , with E,, € R. Then
the general solution of (2) is

(X) =y n(x)e /0

where the coe cients ¢, € C are given by the initial condition at t = 0. The physical
spectrum is again given by the di erences E,, — E,,.

Both tne !Heisenberg and the Schrddinger theories yielded exact results for the hydro-
gen atoms, but also for larger ones. In fact, they can be shown to be mathematically
equivalent. But, as Schrédinger wrote it [101], mathematical equivalence is not the same
as physical equivalence. The wave function is absent from Heisenberg’s theory. Soon
afterwards, Born gave a probabilistic interpretation of the function : | (x;t)|* represents
the probability, in a measurement, to find a particle at position x, at time t. This was in
complete disagreement with Schrédinger’s intuition, but this is the interpretation that has
been retained.

After 1925, Einstein’s question may be reformulated as follows : if a classical system is
ergodic, and if H is the energy operator governing the system from the point of view of
guantum mechanics, what are the patterns exhibited by the eigenvalues of the operator
H ? How is classical ergodicity transferred to the quantum system ?
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One may broaden the question by asking about the properties of the wave functions,
that is, the eigenfunctions of H (solutions of H = E , E € R), or more generally the
solutions (x;t) of the time-dependent solutions of (1). How are the probability densities
| |? localized in space ?

In the mid-fifties, Wigner introduced Random Matrix Theory to deal with the scattering
spectrum of heavy nuclei. Although there is no doubt about the validity of the Schrédinger
equation, it seems impossible to e ectively work with it, in view of the high number of
degrees of freedom of such systems. Wigner’s hypothesis was that the spectrum of heavy
nuclei resembles, statistically, that of certain ensembles of large random rnatrices (the
Gaussian Orthogonal Ensemble or the Gaussian Unitary Ensemble). This turns out to fit
the experimental data extraordinarily well (pictures may be found in Bohigas’ paper [27]).

Unexpectedly, the spectral statistics of Random Matrix Theory were discovered to also
fit extremely well with the spectra of certain Schrédinger operators with very few degrees of
freedom : the hydrogen atom in a strong magnetic field, as well as some 2-dimensional bil-
liards (in the latter case, the Schrddinger operator is just tie _aplacian in a bounded open
set of R2, with Dirichlet boundary condition). See Delande’s paper [43] for illustrations.
The common point of all these examples is that the iindertying classical dynamical system
is ergodic, or even chaotic, meaning a very strorig sensitivity to initial conditions. So, it
seems that the answer to Einstein’s question ccuid be that : if the classical dynamics is er-
godic, or su ciently chaotic, then the specti.:m of the corresponding Schrddinger operator
looks like that of a large random matrix. This is known as the Bohigas—Giannoni-Schmit
conjecture [26]. However, :

e there is to this day no mathematical proof of this fact; the question may be con-
sidered fully open, except or the heuristic arguments given by Sieber and Richter
[103], that seem impossibie to make mathematically rigourous;

e there are some ccunter-examples to this assertion, given by Luo and Sarnak [87];
and they come fraim very strongly chaotic classical dynamics, so the source of the
problem does nct iie there.

The counter-exampies are Laplacians on arithmetic hyperbolic surfaces (such as the mod-
ular surface and finite covers thereof); they are believed to be “non-generic” in some vague
sense, and thus one may conjecture that the assertions above hold for “generic” systems.
But even in such a weakened form, the question is fully open.

On the other hand, the question of localization of wave functions, although very di cult,
has known steady progress in the last decade. In this paper, we will

e report on recent progress on delocalization of wave functions for chaotic systems,
in the semiclassical limit (limit of small wavelengths), Section 2;

e discuss delocalization of eigenfunctions on large finite systems, such as large finite
graphs, or Riemann surfaces of high genus, Sections 3 and 4;

e find a link between spatial delocalization and spectral delocalization on infinite
systems, 8§3.4;

e note that delocalization of eigenvectors of large random matrices has also under-
gone intensive study lately. Although these eigenvectors have no direct physical
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interpretation, they are directly related to the Green function and were studied in
relation with the question of universality of the spectrum. The spectacular recent
progress on Wigner matrices and large random graphs will be mentioned in 84.1
— in a largely non exhaustive manner, as we will focus on results pertaining to
delocalization of eigenvectors.

2. High frequency delocalization

In this section, we let (M;g) be a compact smooth Riemannian manifold of dimension d,
and A be the Laplace-Beltrami operator on M. It is a self-adjoint operator on the Hilbert
space L*(M; Vol), where Vol is the Riemannian volume measure. We diagonalize A : it
is known that there is a non-decreasing sequence ( =0< ; < 5 <— 400, and an
orthonormal basis ( x)xen of L?(M; Vol), such that

A p=—k k

If M has a boundary, we impose a boundary condition, for instance the Dirichlet con-
dition (i.e. we ask that , vanishes on @M). The case when M is a billiard table, that
is, a bounded domain in R? with piecewise smooth boundary, already contains all the dif-
ficulties of the subject : actually, the presence of a boundary induces additional technical
di culties, and all the theorems given below have been proven for boundariless manifolds
first.

In this part of the paper, we are interested in notions of delocalization defined in the
high-frequency limit , — +o0o. This is the same as the small wavelength limit, and
it is also known as a semiclassical limit, meaning that classical dynamics emerges from
quantum mechanics in this limit.

Figure 1. Plot of | ,(x;y)|* for the stadium billiard with odd-odd
symmetry, for consecutive states starting from n = 319. Darker shades
correspond to large values of the eigenfunctions. Courtesy A. Béacker

2.1. The role of the geodesic flow . The eigenfunction equation A , = — , , may be
rewritten as —h’A = E (with , = EA~?) to make a connection with the Schrodinger
operators from (1) (so the external potential V 7Td
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mechanics should “converge to classical mechanics”. This was actually a requirement of
Schrédinger when he introduced his equation [100].

The Schrodinger operator —A2A corresponds to a particle moving on M in absence of
any external force. In classical mechanics, this corresponds to the motion along geodesics,
in other words, the motion with zero acceleration. When M is a billiard, the motion is in
straight line, with reflection on the boundary. We denote by T*M the cotangent bundle of
M; this is the classical phase space. An element (x; ) € T*M has a component x € M
(the “position” of the particle) and < TM (the “momentum”). For (x; ) € T*M, and
t € R, we denote by g’(x; ) € T*M the position and momentum of the particle, after it has
moved during time t along the geodesic starting at x with initial momentum . The family
(0%)ter : T*M — T*M is a flow of di eomorphisms, meaning that g*** = g* o g* and g° is
the identity. This dynamical system is called the geodesic flow. The motion along geodesics
has constant speed, and thus, the unit cotangent bundle S*M = {(x; ) € T*M; || |l. =1}
is preserved by g.

In the limit of small wavelengths, ( . — +o0), the Schrédinger equation

e _

et
moves the wavefronts along geodesics. What we mean is that, if we start with an initial
condition of the special form

1A

E(X



6 NALINI ANANTHARAMAN

—ageneral function is not of the form (2), but can be written as a linear superposition of
such functions (with ~ ;1/2 in the case of eigenfunctions). This may be seen using the
Fourier transform in local coordinates. It is extremely di cult to control how the di erent
terms will add up and interfere after applying e**2, for large t;

— the error term in (2) grows (usually exponentially) with t; so it is extremely delicate to

use the approximation (2) for large times.

2.2. LP-norms as measures of delocalization 7 One of the first questio. that comes
to mind at the sight of Figure 1 is : how large can the eigenfunctions e, how strongly
can they be peaked, and at what points ? In this section we denote by , any solution
of —A , =, normalized so that | .|z = 1. A general bound on the L*>-norm is the
following :

Theorem 1. (known as Hormander’s bound)
| klloe =0C 77
In a celebrated paper, C. Sogge gave a bound for ail L" norms, 2 < p < +o0 :
Theorem 2 (Sogge, [107]).

where

These bounds hold for any coivipact manifold M. Recall that d is the dimension of

M. Note the role of the critical value p. = 2(2‘1:1)). The upper bounds are achieved on

the sphere S : with zonal spherical harmonics for p > p. (these spherical harmonics are
strongly peaked at 2 poies), and with highest weight spherical harmonics for p < p. (these
spherical harmonics aie peaked in the vicinity of a circle). So, in all the LP-norms, the
sphere is a case where eigenfunctions are most strongly peaked. For p > p., several results
give a partial converse, showing that manifolds where the L?-bound is saturated must have
a “pole”, that i1s, a point where many geodesics loops go through :

If x € M, let £, C S;M be the set of directions that loop back to x, i.e.

L,={veSM;3t>0;9'(x;v) € SIM}:
We denote by , the Lebesgue measure on the sphere S:M.

Theorem 3 (Sogge-Zelditch [108, 109, 110]). o Assume there exists a subsequence ,, —
+00 and C > 0 such that || », [l > C B3 Then there exists X such that

e [f M s real analytic, the existence of such subsequence , s equivalent to the
existence of X such that L, = S;M, and the first return map , : S;M — SXM
possesses an absolutely continuous invariant probability measure. (Moreover, in
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that case, there exists ty > 0 such that g'°(X;Vv) € SiM for all v € StM, that is,
there is a common return time).

o [f M s real analytic and dimM = 2, the existence of such subsequence », s
equivalent to the existence of X € M and ty > 0 such that g'°(X;Vv) = (X;V) for all
veSM.

What about our original question ? is it true that, if the geodesic flow is chaotic, eigen-
functions will be much less peaked ? To be more specific, we shall mostly be interested in
manifolds with negative sectional curvatures. It is then known that the gecagsic flow has
the Anosov property, which is a very strong and very well understood form of chaos : the
geodesic flow is not only ergodic, it has strong mixing properties, is measurably isomorphic
to a Bernoulli system, exhibits exponential sensitivity to initial condiiions,... On a nega-
tively curved manifold, there are only countably many closed geodssic, and what’s more,
through a point x there pass at most countably many geodesic inops. Thus, Theorem 3
implies that || |z~ =0 ”<§C>) (the big O if Theorem 1 hbecomes a little 0).

One can in fact go further :

Theorem 4. (i) (Bérard 1977 [17]) If d = 2 and M has no conjugate points, or if d > 2
and M has non-positive sectional curvature, for p = 400,

/ ©(p)
N
=01 :
” >\||Lp \\/@)
(i’) (Bonthonneau [30]) Statement (i) actually holds if M has no conjugate points, for
alld > 2.

(i) (Hassell-Tacy [63]) (i) #oids for all p > pe.
(7ii) (Blair-Sogge [24, 22]) ij ™M has non-positive sectional curvature, for p < p., there

exists (p;d) >0 such that
p =0 ———
I allz ((log )a(p,d))

(iv) (Blair-Sogge [23]) Statement (iii) still holds for p = p..

(iii) and (iv) were previously proven by Hezari and Riviere [67] for negatively curved
manifolds and for a density 1 sequence of eigenfunctions.

Although this logarithmic improvement constitutes a great progress, it is far from reach-
ing our goal of saying that eigenfunctions are “spread around” if the geodesic flow is chaotic.
In fact, after all it is only assumed that the curvature is non-positive, so the results hold
already for flat tori (where the geodesic flow is completely integrable), and has not much
to do with the long-term chaotic behaviour of the geodesic flow.

2.3. The Shnirelman theorem and the Quantum Unique ergodicity conjecture .

As another indicator of delocalization, we can study the probability measure | (x)|?d Vol(x).

Ideally, the aim is to show that it is close to the uniform measure (say, asymptotically as
» — +00); or, maybe less ambitiously we could ask whether the measure | ;(x)|*d Vol(x)
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can be large on “small” sets (sets of small dimension for instance). The Quantum Ergod-
icity theorem gives a first and almost complete answer in case the geodesic flow is ergodic,
with respect to the Liouville measure.

Recall, this means that for any L!-function a : S*M — R, for Lebesgue almost-
every (Xo; o) € S*M, the time average %fOTao g'(Xo; o)dt converges as T — +oo to
the phase-space average [.,, adL where L is the normalized Liouville measure on S*M
(i.e. the Lebesgue measure, the uniform measure), arising naturally from the symplectic
structure on T*M.

Quantum Ergodicity Theorem (Shnirelman theorem).

Theorem 5 (Shnirelman, Zelditch, Colin de Verdiére [106, 40, 116]). Let (M;Q) be a
compact Riemannian manifold, with the metric normalized sc¢ thai Vol(M) = 1. Call A
the Laplace-Beltrami operator on M. Assume that the geodesic fiow of M is ergodic with
respect to the Liouville measure. Let ( p)ren be an orthorormal basis of L>(M;g) made of
eigenfunctions of the Laplacian

Apr=— 1w kS k1 — F00!
Let a be a continuous function on M. Then

©®) ﬁ 3

E AR <A

2

— 0
A—+o00

( ma wreon —/Ma(x)d\/bl(x)

where the normalizing factor is N( ) = {k; < }|:
Note that ( ;& &)z = [5,a(X)| k(X)[*d Vol(x):

Remark 6. The Cesaro it (3) implies that there exists a subset S C N of density 1
such that

@) ( ma k) i nes Ma(x)d Vol(x):

In addition, using the fact that the space of continuous functions is separable, one can
actually find S C N of density 1 such that (4) holds for all a € C°(M). In other words,
the sequence of measures (| (X)|?d Vol(X))nes converges weakly to the uniform measure
d Vol(x).

Actually, the full statement of the theorem says that there exists a subset S C N of
density 1 such that

5 A — 9(A)dL

( ) < k k> n—r+00,n€S Jgx s ( )

for every pseudodifferential operator A of order 0 on M. On the right-hand side, °(A) is
the principal symbol of A, that is a function on the unit cotangent bundle S*M. Equation
4 corresponds to the case where A is the operator of multiplication by the function a.
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The theorem has subsequently been extended to manifolds with boundary [57, 119]. It
applies, in particular, to the stadium billiard in Figure 1, where the billiard flow has been
proven by Bunimovich to be ergodic. The observation of large samples of eigenfunctions
reveals that, indeed, most eigenfunctions are uniformly distributed over the stadium, but
some of them look very localized inside the rectangle, and some of them also exhibit some
mild enhancement in the neighbourhood of unstable periodic orbits, a phenomenon called
“scarring” by physicists (Heller,[66]).

The theorem was also extended to general Schrodinger operators (or even pseudodi eren-
tial operators) in the limit 7 — 0 [65]; more recently, to systems of di erential operators
acting on sections of vector bundles — such as Dirac operators, Dolbeau': Laplacians,...
[29, 71, 72]. The case of metrics with jump-like discontinuities has been elucidated [70],
as well as the case of pseudo-riemannian Laplacians on 3-dimenstonal contact manifolds
(for instance, the Laplacian on the Heisenberg group or its quctients) [42]. “Small scale
guantum ergodicity”, that is, the possibility to use in (3) a iest function a whose support
shrinks as , — 400, has been explored in [67, 60] on negatively curved manifolds, and
on flat tori in [61, 83].

Quantum Unique Ergodicity conjecture. Orne may wonder whether the full se-
quence converges in (5), without having to exiract the subsequence S. Figure 1 (or larger
samples of eigenfunctions) suggests that this is fiot the case for the billiard stadium, where
we see a sparse sequence of eigenfunctioris that are not at all equidistributed.

This was proven by Hassell in 2008 [62] {(ior “almost all” stadium billiards, meaning, for
Lebesgue-almost-all lengths of the stacium).

On the other hand, Rudnick arid Sarnak’s Quantum Unique Ergodicity (QUE) conjec-
ture [95] predicts that if M is & compact boundaryless manifold with negative sectional
curvatures, then one has convergence of the full sequence in (5), in other words the whole
sequence of eigenfuncticins becomes equidistributed as —— +oo. The conjecture has
been proved by Lindenstrauss in the setting of “Arithmetic Quantum Unique Ergodic-
ity”, where M is an “arithmetic” hyperbolic surface, and where the , are assumed to be
eigenfunctions, ot oily of the Laplacian, but also of the Hecke operators [84, 34, 39].

Arithmetic Quantum Unique Ergodicity will not be discussed with enough detail in this
text, but the results have been presented at previous ICM’s; we refer to [98, 48, 85, 111]
for a more adequate overview.

For general negatively curved manifolds, the conjecture is open, but in the last 20 years
significant progress has been made :

2.4. Entropy and support of semiclassical measures. In this section, M is assumed
to have negative sectional curvature, and dimension d.

Let us come back to the diagonal matrix elements ( ;A ) appearing in (5), where A
is a pseudodi erential operator of order 0. By a general compactness argument, one may
always extract subsequences so that ( ;A ,,) converge for all A. The limit is of the form
fS*M °(A)d , where is a probability measure on S*M. A measure obtained this way

” (13

is obtained, according to sources, “microlocal defect measure”, “semiclassical measure”,
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or “microlocal lift” associated with the sequence ,,. The Quantum Unique Ergodicity
conjecture described above is equivalent to proving that has to be the Liouville measure,
for every subsequence ( ,,). But without aiming that far, we can try to characterize
specific properties of the measure . A priori, we only know that has to be invariant
under the geodesic flow : that is, g; = for all t € R. This is a consequence of the
eigenfunction property and of the classical/quantum correspondence as — —+oo, as seen
in 82.1.

Theorem 7. [3] Assume M is a compact Riemannian manifold with negative sectional
curvature. Assume ( n, ;A n,) converges to [o., °(A)d  for all A. Then  has positive
entropy.

This is the Kolmogorov-Sinai entropy of dynamical systems. We 2o not give its definition
here, but state a few facts to help understand the implicatior:s ¢i the theorem. To each
invariant probability measure  of a dynamical system (here ttie geodesic flow), one can
associate a non-negative number hgs( ), having the follow/ing properties :

e if is carried by a periodic trajectory, then hcs( ) = 0;

e —hgs()isa ne:hgs( 1+(1— ) 2= hnrs( 1)+ (1— )hgs( 2), forany
invariant measures 1; o, for € [0;1];

e (Pesin-Margulis-Ruelle inequality) if the aynamical system is su ciently smooth,

/

r

© sl ) < | Zj())d()

)

/—N\

where the numbers j( } are the positive Lyapunov exponents of a point  — defined
-almost everywhere, by the Oseledets theorem — that give the rate of exponential
instability of the trajectory of

e in the case of the gecdesic flow on a negatively curved manifold, there is equality
in (6) if and ciily 1f  is the Liouville measure L (Ledrappier-Young [81, 82]);

e in the case of the geodesic flow on a negatively curved manifold, of constant cur-
vature —i andg dimension d (so that S*M has dimension 2d — 1), there are d — 1
positive Lyapunov exponents, they do not depend on and have the value 1. Thus,
(€) can be written as

(7 hrs( ) <d -1,
with equality if and only if is the Liouville measure L.
Let us give two more transparent corollaries to Theorem 7 :
Corollary 1. Let I' C S*M be the union of all points lying on a periodic trajectory on

the geodesic flow (recall, if M has negative curvature, there are countably many periodic
geodesics). Let  be as in Theorem 7. Then (I') <1.

Otherwise, would have zero entropy. In the physics literature, an eigenfunction that is
enhanced near an unstable periodic classical trajectory is said to have a scar (Heller, [66]).
In the mathematics literature, a sequence of eigenfunctions is said to be strongly scarred
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if the corresponding semiclassical meaure is supported on some periodic trajectory. Our
theorem thus shows that this is not possible on a negatively curved manifold (however, it
does not rule out a partial scar, that is to say that (I") > 0).

From the definition of entropy, one can also prove :

Corollary 2. The support of  has Hausdorff dimension > 1.

Note that the fact that the dimension is > 1 is trivial since is invariant under the
geodesic flow.

With Nonnenmacher, we later obtained a more quantitative version if the curvature is
constant.

Theorem 8 (Anantharaman-Nonnenmacher [7]). Assume M is a compact Riemannian

manifold of dimension d, with constant sectional curvature —1. Then  has entropy greater

d—1
than 5 -

By the aforementioned properties of entropy, the QUE conjecture in constant negative
curvature is equivalent to proving that has entropy d — 1, so we fall short of a factor
1=2. There are toy models of quantum chaos where it is known that the lower bound 4t
is sharp, i.e. there are sequences of eigenfunctions that are not equistributed and have
exactly half the maximal entropy : see the quantum cat map and the quantum baker’s
map [55, 6].

Corollary 3. The support of  has Hausdorff dimension > d.

As a comparison, the dimension of the full phase space T*M is 2d, and of the energy
layer S*M is 2d — 1.

Corollary 4. Let I' C S*™M be the union of all points lying on a closed trajectory on the
geodesic flow. Let — be as in Theorem 7, with M of constant negative curvature. Then
(') < 1=2.

Indeed, let us decompost as = 1+ (1 — ) o, where  is carried by I', so that
hrs( 1) =0 S0 ngs( ) = (1— )hgs( 2). The result says that this has to be > 4-1;
but the entropy of 5 is smaller than the maximal entropy d — 1, so necessarily < 1=2.
For the toy model of the quantum cat map, Corollary 4 had been proven by Faure and
Nonnenmacher in [54] without using entropy.

In variable curvature, the generalization of Theorem 8 should be that the entropy of

is greater than %fS*M Z?;i jd , Where j are the Lyapunov exponents. However
our method in [7] gives a slightly less good bound; the predicted lower bound in variable
curvature has only been obtained for d = 2, by G. Riviére [94]. Again, by the Ledrappier-
Young theorem [81], proving QUE is equivalent to getting rid of the factor 1=2 in Riviere’s
result.

Theorem 9 (Dyatlov-Jin [47]).  has full support, that is, (2) > 0 for any non-empty
open set 2 C S*M.
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Note that Theorems 7 and 9 are somehow independent. There are measures with positive
entropy and not full support (for instance, measures supported by geodesics avoiding an
open set 2 may have a large entropy). And there are measures having full support but zero
entropy (for instance, a measure putting positive weight on each periodic geodesic). Both
results leave open the question whether can be a convex combination of the Liouville
measure and a measure carried on a closed geodesic. Such limit measures appeared in the
aforementioned toy models of quantum chaos [55].

2.5. Some questions on non-compact manifolds. We have chosen to limit the scope
of this text to compact manifolds (and thus, “delocalization” is understood in the limit of
small wavelength, but does not deal with what happens at infinity). There are of course
many interesting questions related to delocalization phenomena on non-compact manifolds,
that we briefly review in this paragraph.

In keeping with the rest of this paper, let us consider the Laplacian on a non-compact
riemannian manifold M (most questions also make sense for general Schrodinger operators).

2.5.1. Absolutely continuous spectrum . In the context of infinite systems, the word “de-
localization” is often used to mean that the Laplacian has no pure-point spectrum (this
means that eigenfunctions are not square-integrable), or even stronger, purely absolutely
continuous spectrum, in some region of the spectrum.

As we will see in §4.3, one can sometimes prove that this implies a form of “quantum
ergodicity” for eigenfunctions on large compact manifolds approximating M (see Theorem
22 for a precise statement). For the moment, this theorem is restricted to the case where
M is the hyperbolic disc, where the spectrum of the Laplacian is explicit and can be seen
(by direct computation) to be purely absolutely continuous. In general, it turns out to be
very di cult to find examples of M having purely absolutely continuous in some interval of
the L2-spectrum, outside of the world of locally symmetric spaces. For instance, starting
from X a compact riemannian manifold with variable negative sectional curvature, and
taking M = X to be its universal cover, it seems that nothing is known about the nature
of the spectrum of the Laplacian on M, although one would be naturally inclined to guess
that is has absolutely continuous spectrum.

2.5.2. Large frequency delocalization on non-compact manifolds. If , is a solution of
—A , = yon M (with € R) one could ask the question of the behaviour of the
measures | »(x)|2d Vol(x), in the limit — +oo, even if M is non-compact. More pre-
cisely, it seems
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quantum (unique) ergodicity for the Eisenstein series has been studied in [46, 59, 68] but
the phenomena are quite di erent, as it is not the Liouville measure that appears at the
semiclassical limit, but a family of measures indexed by the boundary at infinity.

Back to the case of finite volume hyperbolic surface, an example of special interest in
number theory is the modular surface and its congruence covers. In this case, M has an
infinite sequence of discrete eigenvalues embedded in the continuous spectrum (see the
survey papers [96, 98] for more details and references). “Arithmetic quantum ergodicity”
is the study of the joint L2-eigenfunctions of the Laplacian and of the so-called “Hecke
operators”. In this context, Arithmetic Quantum Unique ergodicity, that is, the conver-
gence of the full sequence of probability measures | (x)|*d Vol(x) tc a multiple of the
uniform measure, was proven by Lindenstrauss [84]. Since the modular surface is not com-
pact, there can be escape of mass to infinity, and thus it is not ciear that the limit of the
measures | (X)|?d Vol(x) is still a probability measure. Escare ot rnass was ruled out by
Soundararajan [112].

Having discrete spectrum embedded in the continuous spectrum is non-generic. For
general hyperbolic surfaces, the discrete spectrum is tusnea into the “resonance spectrum”;
resonances are poles of the analytic continuation o the resolvent restricted to C2°(M)
[102, 32]. Generically, resonances are not real. Naiurally attached to resonances, there
are non-L2-eigenstates called “resonant states”. The question of quantum ergodicity for
resonant states is to this date fully open, and seems extremely di  cult.

3. Large scale delocalization

In the mathematical physics iiterature, it is believed that the spectrum of the Laplacian,
as well as its eigenfunctions, shauld exhibit universal features that depend only on qual-
itative geometric properties of the space. Localization/delocalization of eigenfunctions is
believed to bear close ralation with the nature of spectral statistics : localization is sup-
posedly associated with Poissonian spectral statistics, whereas delocalization should be
associated with Rariacm Matrix statistics (GOE/GUE). In the field of quantum chaos,
the former noticri is often associated with integrable dynamics and the latter with chaotic
dynamics [21, 26]. However, specific examples show that the relation is not so straight-
forward [87, 9&, 97, 88]. Understanding how far one can push these ideas is one amongst
many reasons for studying models of large graphs as toy models [73, 77, 78, 104, 105].

It seems that “quantum graphs” have been studied before discrete graphs in the context
of quantum chaos. By “quantum graphs”, we mean 1-dimensional CW-complexes with
A= % on the edges and suitable matching conditions on the vertices; the most natural
ones being the “Kirchho ” matching condition where it is asked that the functions are
continuous at the vertices, and that the sum of their derivatives at a vertex vanish. On a
fixed quantum graph, it is known that the analogue of Shnirelman’s theorem never holds
in the large frequency limit — +oo [41]. See also [19, 74, 58, 18] for other results
pertaining to eigenvalue or eigenfunction statistics on compact quantum graphs.

In what follows, instead of the high-frequency limit, we consider the limit where the size
of the graph goes to infinity (“large scale limit”). We focus on discrete graphs and the
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eigenfunctions of their adjacency operators — although similar questions for large quantum
graphs should also be explored in the future. We mostly focus on discrete reqular graphs,
but in §3.4 also report on recent progress concerning non-regular graphs.

3.1. Overview of the problem. Consider a very large graph G = (V;E). Are the
eigenfunctions of its adjacency matrix localized, or delocalized ? These words are used in a
variety of contexts, with several di erent meanings.

For discrete Schrodinger operators on infinite graphs (e.g. for the celebrated Ander-
son model describing the metal-insulator transition), localization can be understood in a
spectral, spatial or dynamical sense. Given an interval I C R, one can consider

e spectral localization : pure point spectrum in I,

e cxponential localization : the corresponding eigenfunctions decay exponentially,

e dynamical localization : an initial state with energy it 1 which is localized in a
bounded domain essentially stays in this domain as tiime goes on.

On the opposite, delocalization may be understood at d! erent levels :

e spectral delocalization : purely absolutely coniinucus spectrum in I,
e ballistic transport : wave packets with energies in | spread on the lattice at a specific
(ideally, linear) rate as time goes on.

Here we want to discuss notions of spatial delocaiization. Since the wavefunctions corre-
sponding to absolutely continuous spectrumi are not square-summable, a natural interpre-
tation of spatial delocalization is to consider a sequence of growing “boxes” or finite graphs
(Gy) approximating the infinite system in some sense, and ask if the eigenfunctions on
(Gy) become delocalized as N — oo. Can they concentrate on small regions, or, on the
opposite, are they uniformly distributed over (Gy) ? Large, finite graphs are also a subject
of interest on their own. Actually, an infinite system is often an idealized version of a large
finite one.

Recently, the question i delocalization of eigenfunctions of large matrices or large graphs
has been a subject of intense activity. Let us mention several ways of testing delocalization
that have been used. Let My be a large symmetric matrix of size N x N, and let ( ;). be
an orthonormal hasis of eigenfunctions. The eigenfunction ; defines a probability measure
SV | (%)) .. The goal is to compare this probability measure with the uniform measure,
which puts mass 1=N on each point.

“° norms : Can we have a pointwise upper bound on | ;(x)|, in other words, is

| jlle small, and how small compared with 1=v/N ?

e “» norms: Can we compare || ||, with NY/?=1/2 2 In [1], a state  is called
non-ergodic (and multi-fractal) if || ;||, behaves like N/® with f(p) # 1=p — 1=2.

e Scarring :  Can we have full concentration (3°,.,| ;(X)|* > 1 — ) or partial
concentration (3°, ., | ;(X)|* > ) with A a set of “small” cardinality ? We borrow
the term “scarring” from the term used in the theory of quantum chaos [66].

e Quantum ergodicity : Given a function a : {1;:::;N} — C, can we compare

S>o.ax)| ;(x)[> with > a(x) ? This criterion is borrowed again from quantum

chaos, it is inspired from the Shnirelman theorem 5. It was applied to discrete
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regular graphs in [5, 4]. Quantum ergodicity means that the two averages are close
for most j. If they are close for all j, one speaks of quantum unique ergodicity.

As was demonstrated in a recent series of papers by Yau, Erdos, Schlein, Knowles, Bour-
gade, Bauerschmidt, Yin, Huang... adding some randomness may allow to settle the prob-
lem completely, proving almost sure optimal “>°-bounds and quantum unique ergodicity
for various models of random matrices and random graphs, such as Wigner matrices,
sparse Erdds-Rényi graphs, random regular graphs of slowly increasing or bounded degrees
[52, 53, 33, 51, 15, 13, 14] : see 84.1. The completely di erent point of view adopted in
[38, 5] is to consider deterministic graphs and to prove delocalization as resuliing directly
from the geometry of the graphs.

3.2. Entropy. The paper [38] by Brooks and Lindenstrauss has picnieered the study of
the spatial distribution of eigenfunctions of the Laplacian on iarge deterministic (q + 1)-
regular graphs (that is, such that each vertex has the same numbei' of neighbours, denoted
by q + 1).

Consider a sequence of (q+ 1)-regular connected graghs (Gy)nven = (Va; En). Consider
the adjacency operator defined on functions on VN hy

(8) AnE(x) = > Tiy)

where X ~y means x and y are related by an ;;;e. The discrete Laplacian is
) AnF(x) =D, (Fy) = F(x)):

For regular graphs these two operate:rs arzwsssentially the same :

(10) Ay — (@ + 1)1 = Ay

Theorem 10 (Brooks-Lindenstrauss [38]). Let (Gy) be a sequence of (q+1)-reqular graphs
(with q fized), Gy = (Vn; En) withVy = {1;:::;N}. Assume that* there exists¢ > 0; >0
such that, for any ¥ < ¢IinN, for any pair of Uertzces X;y € Vy,

(1) [{paths of length K in Gy from X to y}| < qk(%):
Fiz >0, Then, if is an eigenfunction of the discrete Laplacian on Gy and if A C Vy

1s a set such that
SR> D | P

TEA zeVN
then |A] > N® — where >0 is given as an explicit function of ; and C.

This theorem is reminiscent of Theorems 7 and 8 about the entropy of eigenfunctions in
the large frequency limit. It is stronger than saying that the entropy

H = E 2] 2
N log N ‘ n >’
) ¢

S w»
I e o f’?ow}p ,,,‘,&i i‘i 7}' Ty J’i' *>clnN ']" ,':vif: 0 w W
vq*ﬁ"o"v' i ol = ok }‘b ‘i"V()"“r'is\ig‘“'%
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is bounded from below by a positive constant.

A careful reading also reveals that the proof shows some logarithmic upper bound on
the L>-norm of eigenfunctions : || || = O((logN)~/%). Very recently, Brooks and Le
Masson have announced an improvement of the power 1=4 under a stronger assumption
than (11) [36].

3.3. QE on regular graphs. In [5], a general statement of “quantum ergodicity” was
obtained for the first time in the large scale limit, namely for the discrete L.aplacian on
large regular graphs. We consider a sequence Gy = (Vy; Ey) of (q + 1)-regular graphs,
and now assume the following :

(EXP) The sequence of graphs is a family of expanders. More precisely, there exists

> () such that the spectrum of (q+1)~' Ay on “3(Vy) is contained in {1}U[-1+ ;1— |
for all N.

Note that 1 is always an eigenvalue, corresponding to censtant functions. Our assump-
tion implies in particular that each Gy is connected ana non-bipartite. It is well-known
that a uniform spectral gap for Ay is equivalent to a heeger constant bounded away from
0, which means that the graph is very connected (see fcr instance [44], §3).

(BST) For all R,
{X € Vn; () <R} 0
N N—o0
where (X) is the “injectivity radius” of x, that is to say, the largest integer r such that
the ball B(x;r) is a tree.

(BST) can be rephrased by saying that our sequence of graphs converges, in the sense
of Benjamini-Schramm [16], tc the (q + 1)-regular tree. In particular, this condition is
satisfied if the girth gces to infinity. In what follows we denote by X the (q + 1)-regular
tree. Condition (BS'T) implies the convergence of the spectral measure, according to the

any interval 1 C R,
Lo
NHJ, i € IHN:OO Im( )d
where m( ) is a probability density corresponding to the spectral measure of a Dirac mass

» for the operator A on “*(X). This measure can be characterized by its moments,

(12) / fm( )d = (oA} e

where Ay is the adjacency operator on X; this is also the number of paths X, starting at o
and returning to o after k steps. We won’t need the explicit expression of m here, but let
us mention that it is smooth and positive on (—2,/0;2,/q) and vanishes elsewhere. This

implies that most of the eigenvalues ;N) are in (—2,/9;2,/4), an interval strictly smaller
than [—(q + 1);q + 1].
The main result of [5, 4] is stated below as Theorem 11.
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Theorem 11 ([5] Anantharaman-Le Masson). Let (Gy) = (Vn;En) be a sequence of
(q 4 1)-regular graphs with |Vy| = N. Assume that (Gy) satisfies (BST) and (EXP).

Let ( gN); i E\J,V)) be an orthonormal basis of eigenfunctions of Ax in “*(Vy).
Let aN Vn — C be a sequence of functions such that supy sup,ecy, [an(X)| < 1. Define

<aN> N ZmEVN aN(X)
Then

N Z‘ Mian e — ()

Equivalently, for any > 0,

1 N N .
(13) S e g Miay Mean - @] >} — o
Note that ( gN);aN §N)>42(VN) is the scalar product betweeit ;N" and ay g.N), its explicit

expression is .y an(X)| §N)(x)\2. The interpretation of Theorem 11 is that we are

trying to measure the distance between the two probability measures on Vy,

() 2 1 ;
1P . and N > (uniform measure)
zeVN
in a rather weak sense (just by testing the funciion ay against both). What (13) tells us
is that for large N and for most indices §, this distance is small.

3.4. Non-regular graphs : frcm spectral to spatial delocalization. The results
described up to now only deal with reqular graphs. The proofs always use, in some way
or the other, the explicit Fouiter analysis infinite regular trees. The aim of the paper [9]
was to extend the quantum ergodicity theorem to eigenfunctions of discrete Schrodinger
operators on quite genera! large graphs. A particularly interesting point of the result
below is that it gives a direct relation between spectral delocalization of infinite systems
and spatial delocaiizaticn of large finite system. The result may be summarized as follows
(with proper additicrial assumptions to be described later) :

“If a large finite system is close (in the Benjamini-Schramm topology) to an infinite sys-
tem having purely absolutely continuous spectrum in an interval 1, then the eigenfunctions
(with eigenvalues lying in 1) of the finite system satisfy quantum ergodicity.”

We consider a sequence of connected graphs without self-loops and multiple edges
(Gn)nen- We assume each vertex has at least 3 and at most d neighbours.

We denote by Vy and Ej the vertices and edges of Gy, respectively. We assume |Vy| =
N and work in the limit N — co. Define the adjacency operator Ay : C'"¥ — C'~ by

(AxF)(v) =) f(w
where v ~ w means v and w are nearest neighbours. The central object of our study are
the eigenfunctions of A, and their behaviour (localized/delocalized) as N — +oc.
We shall assume the following conditions on our sequence of graphs:
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(EXP) The sequence (Gy) forms an expander family.
More precisely, for a non-regular graph, let us define the Laplacian (generator of the
simple random walk) Py : C"~ — C"~ by

1
14 PyF)(X) = —— fy);
where dy(X) stands for the number of neighbours of x. (EXP) means that the Laplacian
Py has a uniform spectral gap, that is, the eigenvalue 1 of Py is simple, and the spectrum
of Py is contained in [-1+ ;1 — ]JU{1l}, where >0 is independent of N.

Note that 1 is always an eigenvalue, corresponding to constant furictions. Our assump-
tion implies in particular that each Gy is connected and non-bipartite. It is well-known
that a uniform spectral gap for Py is equivalent to a Cheeger consiant bounded away from
0 (see for instance [44], 83).

Our second assumption is that (Gy) has few short loops:

(BST) For all r >0,

X EVy: X v
lim H € VN GN(__)_(_'L‘ =0;
N—oo N

where ¢, (X) is the injectivity radius at X, i.e. the largest such that the ball Bg, (X; )
is a tree.

The general theory of Benjamini-Schramm convergence (or local weak convergence [16]),
allows us to assign a limit object to the sequence (Gy), which is a probability distribution
on the set of rooted graphs (modulc isomorphism). More precisely, up to passing to a
subsequence, assumption (BST) above is equivalent to the following assumption.

(BSCT) (Gy) converges in the local weak sense to a random of rooted tree [T;0].

Let us denote P the Yaw of {[7;0]}; thus P is a probability measure on the space of
rooted trees.

Call ( g.N));V:i the eigenvalues of Ay on “*(Vy). Assumption (BSCT) implies the con-
vergence of the emipirical law of eigenvalues : for any continuous : R — R, we have

(19) A2 () = B (A = [ o

N—+o0

where A7 is the adjacency matrix of 7, it is a self-adjoint operator on “?(7). Here EE is
the expectation with respect to P. The measure m is called the integrated density of states
in the theory of random Schrédinger operators.

The forthcoming assumption is rather technical to state; it says - in a strengthened
manner - that there is an interval | in which the spectrum of A+ is absolutely continuous
(for P-almost every [T;0]). Let [T;0] be a rooted tree (chosen randomly according to the
law P). Given x;y € 7, and € C\ R, we introduce the Green function

G(%Y) = ( o (Ar— )" Yem:
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Given v;w € T with v ~ w, we denote by 7*) the tree obtained by removing from the
tree 7 the branch emanating from v that passes through w. We denote by A~ the
corresponding adjacency matrix, and by G®")(.;.. ) the corresponding Green function.
We then put J(v) := —G@)(v;v; ).

(Green) There is a non-empty open set I, such that for all s > 0 we have

sup (Z | Im (;\-l—mo )| )

Ael,mp€e(0,1) Yiy~o

To understand the implications of (Green), define the (rooted) spectral measure of
[T 0] by

(16) o(d) = oi 1;(AT) ) for Borel J C R

It can be shown that Assumption (Green) implies that sup, ;. -, E(]G7(0;0)[*) < co. As
shown by Klein in [76], this implies that for P-a.e. [T;o0], the spectral measure , is abso-
lutely continuous in I, with density 1 Im G**(0;0). Hence, (Green) implies that P-a.e.
operator A has purely absolutely continuous spectriim in I. This is a natural assump-
tion since we wish to interprete Theorem 12 as a deiocalization property of eigenfunctions.
Negative moments such as (Green), with s <</, were used in the work by Aizenman and
Warzel [2] to show ballistic transport for the Ariderson model on the regular tree, that is,
a form of delocalization for the time-dependeint Schrodinger equation.

Let us state the main abstract rest't.

Let I be the open set of Assurpticit (Green), and let us fix an interval I, (or finite

union of intervals) such that I, ¢ 1. We write Gy as a quotient FN\GN where GN is a

tree (the universal cover of Gy ). For X;y vertices of Gy, and € C\ R, we introduce the
Green function of the adjacency matrix Ay of Gy

(17) GN(%Y) = (o (Av = )7 Degy

Theorem 12 (Anantharaman-Sabri [8]). Assume that (Gy;Wy) satisfies (BSCT),
(EXP) and {Green).

Call ( 7}”)] | the eigenvalues of Ay on “*(Vy), and let ( ;N))ﬁv:l be a corresponding
orthonormai eigenbasis.

For each N, let a = ay be a function on Vy with supy sup,cy, [ay(X)| < 1.
Then

. N (N) B N —0-
i i 3 | ax 5 a0 Yo, 00] =0

)\(N> I zeVN eV

N on Vy, indezed by a parameter € C\ R,

for some family of probability measures )

defined as follows :

Im g3 (
m

N _ )?7 .
R S YRk
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Here, X € é\; is a lift of X € Vy.

Equivalently, for any > 0, we have

1 { el 3okl =0 a0 i, ()] > }

1)
zeVn z€VN
Theorem 12 is not relevant unless we can compare the probability measures N with the
uniform measure. A good test is to choose ay = 1,,, the characteristic funct |on of a set
Ay C Vy of size &~ N for some € (0;1). In the special case where (G“) is regular, the
universal cover Gy does not depend on N (it is the (q+1)-regular tree); the Green function
g (X;y) coincides with the limiting Green function G7(X;y) on the req'l lar tree. Moreover,

G'(X;X) = G7(0;0) for all X € Gy. It follows that ¥ is the unifcitn probability measure

on Vy (for every ). So (18) implies that |15, ™|> ~ for most (. This shows
that most g.N) are uniformly distributed, in the sense that F we consider any Ay C Vy
containing half the vertices, we find half the mass of | ff‘r)!“‘

0:

—
N—+00,1040

For general models, we cannot assert that QV(AN‘) = if |[Ax| = N. Still, we prove
that there exists ¢, > 0 such that for any Ay C ¥V with [Ax| > N, we have
(19) inf liminfinf (', (Ay) > 2¢,:

no€(0,1) N—so0 Ael
Combined with (18), this implies

Corollary 13. For any € (0;1), where exists ¢, => 0 such that for any Ay C Vyn with
|An| > N, we have

SR TR N S -
N A g o N

Hence, while in the regular case we had |1y, V|> ~ for most ), in the general

case, we can still assert that ||1, g.N)||2 > C, > 0 for most ;N). This corollary indicates
that our theorem can truly be interpreted as a delocalization theorem.
We alse prove that that for any continuous F : R — R, we have uniformly in €1,

Im G (0; 0) .
(20) — Z F N f\vﬂm X)) N——>>+00E (F (E(ImgHi"O(O;o)))) :

(EGVN

This says that the empirical distribution of (N ﬁgmo( )) (when x is chosen uniformly at

Im G7 (0,0
E(m 0 (0,0)) 0))> This is a second way of saying that

ﬁvﬂ.m (x) is of order 1=N : when multiplied by N, it has a non-trivial limiting distribution.

random in V) converges to the law of (

Remark 14. The results proven in [9] actually hold for more general Schrédinger operators
than adjacency matrices : one can consider weighted Laplacians (with conductances on
the edges) and add a potential; in other words, on each Gy, we can consider a discrete
Schrodinger operator Hy. The limiting object in assumption (BSCT) is now a random
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rooted tree [T;0] endowed with a random Schridinger operator H. Assumption (Green)
has to be modified, replacing the adjacency matriz A by the operator H. Similarly, in the
statement of the theorem, the Green functions G} to be considered are those of Hy lifted

to the universal cover Gy.

Remark 15. In particular, our result applies to the case where the limiting system ([T;0]; H)
is T = X (the (q + 1)-regular tree) with an arbitrary origin 0, and H = H. = A+ W

where W is a random real-valued potential on X. More precisely the values VV(X) (X € X)

are i.i.d. random variables of common law . This is known as the Anderson model on

X. It was shown by A. Klein [76] that the spectrum of H. is a.s. purely aosolutely con-

tinuous on | = (=2,/0+ ;2,/0— ), provided is small enough (dependging on ). This

just assumes a second moment on . Under stronger reqularity assumptions on , one

can show that Assumption (Green) holds on | (see [11], following Aizenman-Warzel [2]).

Examples of sequences of expander reqular graphs Gy with discrete Schrodinger operators

Hy converging to ([X;0]; He) are given in [10].

Remark 16. Ezamples of sequences of non-regular graghs satisfying our three assumptions
were investigated in [11]. In the examples considered there, the limiting trees T are trees
of finite cone type; roughly speaking, those are irees where the local geometry can only take
a finite number of values. If A is the adjacercy matriz of such a tree, we showed in [11]
that the spectrum  of A is a finite union of closed intervals, and that there are a finite
il Yein such that Assumption (Green) holds on any | of the form

\(y1— ;yi+ JU:iUYe— Yo+ 1) (Jorany >0). We showed — extending Remark
15 — that on such trees, Assumption. (Green) remains true after adding a small random

potential to Ar. Finally, we snowed the existence of sequences (Gy) converging to T and
satisfying the (EXP) conditicn.

4. Perspectives and link with other work

4.1. Random regular graphs. It is important to stress the fact that Theorem 11 holds
for deterministic sequences of graphs. For any sequence (Gy) satisfying the assumptions
of the theorein, thie conclusion holds for any observable a. As already noted, the result
only says sornething about the delocalization of “most” eigenfunctions, where the “good”
eigenfuncticns exhibiting delocalization may depend on the choice of the observable a.

In the past years, there has been tremendous interest in spectral statistics and delocal-
ization of eigenfunctions of random sequences of graphs and Schrédinger operators. Many
papers consider random regular graphs, with degree going slowly to infinity [113, 45, 15, 13]
or fixed [56, 14], sometimes adding a random i.i.d potential [56]. A (labelled) random reg-

all the ways to draw edges between those vertices, that produce a (q + 1)-regular graph

(without self-loops and multiple edges); note that (q+ 1)N has to be an even integer. Pick

a graph at random for the uniform probability measure on all possible configurations.
The very impressive papers [15, 13, 14] show “quantum unique ergodicity” for the adja-
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most (q 4 1)-regular graphs on the vertices {1;:::;N} we have that 3> | ay(x)| SN) (x)[?

is close to (ay) for all indices j, with an excellent control of the remainder term :

Theorem 17 (Bauerschmidt-Huang-Yau [14]). Let ! be such that /g > (1 + 1)22+%5,
(i) With probability > 1 — o(N~“"®) on the choice of the graph,

(log N )121
VN

for all eigenfunctions associated to eigenvalues such that | ; £ 2./4] > (log N)73/2.
(ii) (Quantum Unique Ergodicity for random reqular graphs) Given an cbservable ay :

| illee <

for N large enough,

N A VN Wi 1 BN
N (logN)*0  fees ) .
(21) > av®)| V)P - (av)| < T«,B_, A (X))
=1 \/ P
for all eigenfunctions associated to eigenvalues ; € (=2 /9+ ;2./— ) (bulk eigenvalues).
J V
In particular, if ay = 1y, where Ay C {1;::: N}, we find
A logN)?0
TEAN ' )

(Note in passing that ! > 8 implies that g > 212%).

So the “*>°-norm of bulk eigenfuncticns is as small as can be, and QUE takes place on
sets of size [Ax| > (log N )%, By comparison, in Theorem 11, for graphs whose girth goes
to oo, our proof would never do better than

=gz AN 1 .
51 N | S TR VA

So Theorem 17 is a considerable strengthening of (18), that only said something for
most indices j and for |Ay| > N'/2. This possibility to prove QUE is, of course, due to the
fact that a, is probabilistically independent of the choice of the graph; in Theorem 11 and
(18), ay <ouid depend on the graph. It might well be that a positive proportion of graphs
contradicts QUE, if we were allowed to choose observables a, depending on the graph (this
is a completely open question). Note also that if we are given a deterministic sequence of
regular graphs (for instance, say, the Lubotzky-Phillips-Sarnak Ramanujan graphs [86]),
we do not know if Theorem 17 applies to it, as it is an almost sure conclusion.

| LENY

Remark 18. Note that we emphasized Theorem 17 from [14] because our main concern
here is the delocalization of eigenfunctions. The main focus of [14] is however on the
universality of the local spectral statistics for random reqular graphs. This would deserve a
separate paper.

The recent paper by Backhausz and Szegedy [12] proves a very important result, saying

that for almost all random regular graphs Gy on N vertices, and all eigenvectors §N)s,
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the obtained random function is close in distribution to a gaussian process on Bx(0; R).
The covariance function has to be of the form 7@, (d(x;y)) where ®,; is the spherical
function of parameter ; on the (q + 1)-regular tree X. Proving that ; = 1, or even just
that ; # 0, is a challenge; it would amount to proving that eigenfunctions cannot be
localized on o(N) vertices. Theorem 10 does not say this, it only says that eigenfunctions
cannot be localized on N* vertices. Our Theorem 11, or the random version Theorem 17
do not say this either, because we can only test one observable ay at a tine. The indices
J for which (18) holds, or the set of graphs satisfying (21), depend on a. If we wanted to
have a common set that does the job for all observables (whose rimber is exponential in
N), we would need to have exponential error bounds in (18) ov (21).

4.2. From graph Laplacians to Hecke operators. What do these discrete results teach
us about the problem we were originally interested in, iramely the eigenfunctions of the
Laplace-Beltrami operators on a riemannian manifold ? A natural question that comes
to mind is to try to adapt Theorem 11 to seauences of graphs that are finer and finer
triangulations of some given Riemann surface. With the appropriate choice of conductances
on the edges, the corresponding discrete Lagiacians approximate the continuous Laplacian.
At the present time, we are unable to say anything about such graphs, because they have
many loops and this is excluded by the hypotheses of Theorem 11.

But let us throw a look in a di ¢rent direction, that of “Arithmetic quantum ergodicity”.

Consider S?, the 2-dimensicnal sphere with its usual, round metric. The eigenfunctions
of Ag are spherical harmonrics, i.e. restrictions to S C R3 of harmonic homogeneous
polynomials in 3 variahles. Harmonic homogeneous polynomials of degree “ give rise to
eigenfunctions of Ag. for the eigenvalue —*(“+1) (the dimension of the eigenspace is 2“+1).

The Laplacian Ag2 commutes with the infinitesimal rotation J;, = 1 (XQC%Q — xga% .
Note that J,, ic a di erential operator of order 1, and that its principal symbol is the
kinetic momentum around the vertical axis.

The bésis ( ) = (Y,")e=0,m|<¢ Of joint eigenfunctions of Ags and J;, cannot satisfy the
conclusions of Theorem 5. In fact, using the same notation as in 82.4, let us consider
a subsequence ( ,,) such that ( , ;A ,, ) converges for all A; the limit is of the form
fS*M °(A)d , where is a probability measure on S*M. The fact that ,,_is an eigen-
function of J5 is converted into the property that is carried by a level set of the kinetic
momentum (which is a submanifold of positive codimension in S*M); thus  cannot be
the Lebesgue measure.

Because the spectrum of the Laplacian has huge multiplicities, one can wonder whether
other bases of eigenfunctions on the sphere satisfy Theorem 5. Zelditch had the idea of
considering random eigenbases [118]. He showed that “almost every” choice of eigenbasis
satisfies Theorem 5 (this was strengthened to Quantum Unique Ergodicity by Van Der
Kam [114]).
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Brooks, Le Masson and Lindenstrauss [37] showed quantum ergodicity for an explicit
basis of eigenfunctions of Agz, that are also eigenfunctions of a kind of “discrete” Laplacian

Tif(x) = > (F(g,x) +F(g;'x))

j=1
commutes with Age.

Theorem 19 (Brooks, Le Masson and Lindenstrauss [37]). Assume that gi;:::;Qx generate
a free subgroup of SO(3).

For each *, let ( j(é))?e:ﬁl be an orthonormal family of eigenfunctions of —Agz of eigen-
value “(* + 1), that are also eigenfunctions of T.

Then for any continuous function a on S?, we have

A, . , )
0) (12 N .
211 ]21 /Ma(X)| 5 (X)[FdVol(x) — J,«M a{x)dVol(x) — 0:

Restricting T, to the space of spherical harmaonics of degree “ is shown to be roughly the
same as letting T, act on a discretization of the sphere by an “~!-net. This is the same

generate a free subgroup, this graph has tew short loops. Thus, Theorem 19 is similar to
Theorem 11. The theorem on regular graphs can serve as a canvas to prove Theorem 19.

Remark 20. Ty is not a pseudodifferential operator, so the argument sketched above to
show that the basis (Y, )r>o0,jmi<¢ could not satisfy quantum ergodicity does not apply here.

Remark 21. We note tiiot for very special choices of rotations — rotations that correspond
to norm N elements in an order in a quaternion division algebra, the operators Ty, are called
Hecke operators. It hus been conjectured by Bécherer, Sarnak, and Schulze-Pillot [25] that
such joint eigenfunctions satisfy the much stronger quantum unique ergodicity property.
This conjecture is still open.

The idea of adapting a result on discrete graphs to the realm of Hecke operators on
arithmetic manifolds had already been used in [39]. In 2000, Bourgain and Lindenstrauss
had considered the measures obtained in Theorem 7, when the eigenfunctions ( ,,) are
joint eigenfunctions of A and of the infinite family of Hecke operators on an arithmetic
hyperbolic surface (e.g., the modular surface). They were able to show that has positive
entropy on almost-every ergodic component, and this fact was a key ingredient in the proof
of Arithmetic Quantum Unique Ergodicity by Lindenstrauss [84]. In [39], Brooks and
Lindenstrauss used the fact that a Hecke operator, restricted to a net in the manifold M,
acts similarly to the discrete Laplacian on a regular graph with few short loops, to adapt
Theorem 10 and show that has positive entropy on almost-every ergodic component,
using only one Hecke operator.
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In the next paragraph, we mention another continuous adaptation of Theorem 11 :
instead of thinking of discrete Laplacians living in a riemannian manifold and restricted
to a finer and finer net, we look at riemannian manifolds that get larger and larger :

4.3. Quantum ergodicity on Riemann surfaces of high genus. Theorems 11 and 12
were dubbed as “quantum ergodicity” theorems in reference to the historical Theorem 5.
However, we already noted a di erence in the meaning of these results. Theorem 5 holds in
the high-frequency régime, whereas the graph-results deal with the large-scale régime. So,
a continuous analogue of Theorem 11 would be to consider compact Riemarinian manifolds
whose volume goes to infinity. Such a result was obtained by Le Masson and Sahlsten for
Riemann surfaces of high genus :

Theorem 22 (Le Masson- Sahlsten [80]). Let (Sy) be a sequence of hyperbolic surfaces,
whose genus (equivalently, volume) goes to co.
(EXP) Assume the first eigenvalue 1(N) of —A on Sy is bounded away from 0 as
N — oo.
(BSH)Assume there are few short geodesics; ir. cther words, (Sy) converges in the
Benjamini-Schramm sense to the hyperbolic disc : for any R >0,
Vol{x € Sy: (x) <R}

lim ————— =0
N—+o00 VOl(EaN)

where (X) means the injectivity radius ot X.
Fiz an interval | C (1=4; +00).

Let ( l(»N)) be an orthonormal basis of eigenfunctions of the Laplacian on Sy.

Leta=ay : Sy — C be such that |a(X)| < 1 for all X € Sy. Then

/ a0 M) Pax— (a)] =0
SN

(VeI
A

where (a) = m)- Sy alxdx.

We note that {1=4; +00) is the L2-spectrum of the Laplacian on the hyperbolic disc. This
spectrum is purely absolutely continuous. So, like in the graph case, we are working with
the sequence of compact Sy converging to an infinite-volume simply connected manifold,
with purely absolutely continuous spectrum. It would be interesting to find more examples
of such manifolds (and to extend Theorem 22 to that more general setting), but we have
already mentioned in §2.5.1 the di culty of proving absolutely continuous spectrum.

A tremendously interesting question would to put this result in the framework of random
Riemann surfaces :

e does Quantum Unique Ergodicity hold for large random Riemann surfaces, in the
spirit of Theorem 17 ?

e for a typical random Riemann surface, is the value distribution of the eigenfunc-
tions ( §N>) asymptotically gaussian, similarly to the case of random regular graphs
recently treated by Backhausz-Szegedy in [12] ? This would come very close to
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justifying Berry’s Random Wave ansatz [20] — the latter was formulated in the
high-frequency régime, but a version in the large-scale limit would also be of high
interest.

The most natural notion of random Riemann surface of genus g is obtained by putting the
Weil-Petersson volume measure on their moduli spaces. The volume of the moduli space
of Riemann surface of genus g was computed by Mirzakhani (see [91, 92] and references
therein), and she could give its asymptotic behaviour as ¢ — +oo. She showed that a
random Riemann surface has a uniform spectral gap in the spectrum of the L aplacian, as
g — +oo; this is similar to what is known for random regular graphs. She alzo obtained
asymptotic information about the law of the length of the shortest clesed geodesic and the
shortest separating geodesic. However, this model of random Rieman surfaces does not
seem flexible enough to allow for a direct transposition of the wonderful result of [12]. This
is a very intriguing topic to explore.
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