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X(−1) is comprised of the empty set, X(0) - of the vertices, X(1) - the
edges, X(2) - the triangles, etc. Let d = dimX = max{i|X(i) ̸= ∅} and
assume X is a pure simplicial complex of dimension d, i.e., for every
F ∈ X, there exists G ∈ X(d) with F ⊆ G. Throughout this discussion
we will assume that X(0) = {v1, . . . , vn} is the set of vertices and we fix
an order v1 < v2 < . . . < vn among the vertices. Now, if F ∈ X(i) we
write F = {vj0 , . . . , vji} with vj0 < vj1 < . . . < vji . If G ∈ X(i−1), we
denote the oriented incidence number [F : G] by (−1)ℓ if F\G = {vjℓ}
and 0 if G ⊈ F . In particular, for every vertex v ∈ X(0) and for the
unique face ∅ ∈ X(−1), [v : ∅] = 1.
If F is a field then Ci (X,F) is the F-vector space of the functions

from X(i) to F. This is a vector space of dimension
∣∣X(i)

∣∣ over F where
the characteristic functions

{
eF

∣∣F ∈ X(i)
}
serve as a basis.

The coboundary map δi : C
i (X,F) → Ci+1 (X,F) is given by:

(δif) (F ) =
∑

G∈X(i)

[F : G] f (G) .

So, if f = eG for some G ∈ X(i), δieG is a sum of all the simplices of
dimension i + 1 containing G with signs ±1 according to the relative
orientations.
It is well known and easy to prove that δi◦δi−1 = 0. Thus Bi (X,F) =

im δi−1 - “the space of i-coboundaries” is contained in Zi (X,F) = ker δi
- the i-cocycles and the quotient H i (X,F) = Zi (X,F)/Bi (X,F) is the
i-th cohomology group of X over F.
In a dual way one can look at Ci (X,F) - the F-vector space spanned

by the simplices of dimension i. Let ∂i : Ci (X,F) → Ci−1 (X,F)
be the boundary map defined on the basis element F by: ∂F =∑

G∈X(i−1) [F : G] ·G, i.e. if F = {vj0 , . . . , vji} then ∂iF =
∑i

t=0 (−1)t

{vj0 , . . . , v̂jt , . . . , vji}. Again ∂i ◦ ∂i+1 = 0 and so the boundaries
Bi (X,F) = im ∂i+1 are inside the cycles Zi (X,F) = ker ∂i and
Hi (X,F) = Zi (X,F)/Bi (X,F) gives the i-th homology group of X
over F. As F is a field, it is not difficult in this case to show that
Hi (X,F) ≃ H i (X,F).
In the next section, we will need the case F = F2 - the field of

two elements, but for the rest of Section 2 we work with F = R.
In this case Ci(X,R) has the natural structure of a Hilbert space,
where for f, g ∈ Ci(X,R), ⟨f, g⟩ =

∑
F∈X(i)

deg(F )f(F )g(F ), when

deg(F ) = #{G ∈ X(d)
∣∣∣G ⊇ F}. Now, Ci(X,R) is the dual of Ci(X,R)

in a natural way and we can identify them and treat the operators
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Bruhat and Tits developed a theory which associates with G an infi-
nite (if r ≥ 1) contractible simplicial complex B = B(G) of dimension r.
Here is a quick description of it: G has r+1 conjugacy classes of max-
imal compact subgroups (cf. [77, Theorem 3.13, p. 150]) and a unique
class of maximal open pro-p subgroups, called Iwahori subgroups. The
vertices of B are the maximal compact subgroups (so they come with
r+1 “colors” according to their conjugacy class) and a set of i+1 such
vertices form a cell if their intersection contains an Iwahori subgroup.
This is an r-dimensional simplicial complex whose maximal faces can
be identified with G/I when I is a fixed Iwahori subgroup (for more
see [13], [77] and [57] for a quick explicit description of B (SLn(Qp)).
The case of B (SL2(K)), which is a (q + 1)-regular tree, is studied in
detail in [81]).
Let Γ be a cocompact lattice in G, i.e., a discrete subgroup with

Γ \ G compact. Assume, for simplicity that Γ is torsion free, a con-
dition which can always be achieved by passing to a finite index sub-
group. Such Γ is always an arithmetic lattice if r ≥ 2 by Margulis
arithmeticity Theorem ([66]) and, at least if char(K) = 0, there are
always such lattices by Borel and Harder ([9]). When we fix K and
G and run over all such lattices in G, for example, over the infinitely
many congruence subgroups of Γ, we obtained a family of bounded de-
gree simplicial complexes, i.e. every vertex is included in a bounded
number of faces. These simplicial complexes, give the major examples
of “high dimensional expanders” discussed in this paper.
Garland’s method described in the prev de-
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difficult. In fact, as of now, there is no known “random model” for d-
dimensional simplicial complexes of bounded degree (in the strong sense
- see below) which gives high dimensional topological expanders. This
is surprising as the existence of such topological expanders is known by
now by ([44], [26]) as was explained in §3. One may start to wonder
if such a model exists at all, or maybe topological bounded degree
expanders of high dimension are very rare objects. Perhaps there is a
kind of rigidity phenomenon analogue to what is well known by now
in Lie theory and locally symmetric spaces: While there are many
different Riemann surfaces (parameterized by Teichmüller spaces), the
higher dimensional case is completely different and rigidity results say
that there are “very few” and mainly the ones coming from arithmetic
lattices.
Let us now leave aside such a speculation and give a brief background
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slight twist of the construction, replacing the Latin squares by Steiner
systems and using the recent breakthrough of Keevash [46] on existence
of designs. Let us briefly describe the general model W d(n, k).
Let r ≤ q ≤ n be natural numbers and λ ∈ N. An (n, q, r, λ)-design

is a collection S of q-element subsets of [n] such that each r-element
subset of [n] is contained in exactly λ elements of S. Given n, d ∈ N, an
(n, d)-Steiner system is an (n, d+1, d, 1)-design, namely, a collection S

of subsets of size d + 1 of [n], such that each set of size d is contained
in exactly one element of S. Using the terminology of simplicial com-
plexes, an (n, d)-Steiner system can be considered as a d-dimensional
simplicial complex of upper degree one. Recently, in a groundbreaking
paper [46], Peter Keevash gave a randomized construction of Steiner
systems for any fixed d and large enough n satisfying certain necessary
divisibility conditions (which hold for infinitely many n ∈ N). From
now on, we will assume that given a fixed d ∈ N, the value of n satisfies
the divisibility condition from Keevash’s theorem.
Keevash’s construction of Steiner systems is based on randomized

algorithm which has two stages. We will explicitly describe the first
stage and use the second stage as a black box.
Given a set of d-cells A ⊆

(
[n]
d+1

)
, we call a d-cell τ legal with respect to

A if there is no common (d−1)-cell in τ and in any cell in A. Non-legal
cells are also called forbidden cells.
In the first stage of Keevash’s construction, also known as the greedy

stage, one selects a sequence of d-cells according to the following pro-
cedure. In the first step, a d-cell is chosen uniformly at random from(

[n]
d+1

)
. Next, at each step a legal d-cell (with respect to the set of

d-cells chosen so far) is chosen uniformly at random and is added to
the collection of previously chosen d-cells. If no such d-cell exists the
algorithm aborts. The procedure stops when the number of (d − 1)-
cells which do not belong to the boundary of the chosen d-cells is at
most nd−δ0 for some fixed δ0 > 0 which only depends on d. In partic-
ular, if the algorithm does not abort the number of steps is at least
(
(
n
d

)
− nd−δ0)/(d+ 1) ≥ nd/(2(d+ 1)!).

In the second stage, Keevash gives a randomized algorithm that adds
additional d-cells in order to cover the remaining (d− 1)-cells that are
not contained in any of the d-cells chosen in the greedy stage. We
do not need to go into the details of this algorithm. The important
thing for us is that with high probability the algorithm produces an
(n, d)-Steiner system.
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recent work by Sarnak and Parzanchevski [76] who came up with op-
timal (a.k.a. golden) gates and an explicit generative algorithm based
on Ramanujan graphs. In ongoing work they use higher dimensional
Ramanujan complexes to find such “golden gates” for higher n [73].

Acknowledgments: The author is indebted to S. Evra, G. Kalai, N.
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