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on four names (Sophie Lie, Wilhelm Killing, Elie Cartan, Hermann Weyl), Thomas
Hawkins comments: “[this account] is almost completely devoid of historical con-
tent. [. . . ] The challenge to the historian is to depict the origins of a mathematical
theory so as to capture the diverse ways in which the creation of that theory was
a vital part of the mathematics and mathematical perceptions of the era which
produced it” (Hawkins, 1987). Consequently, the focus has been much more on
localised issues, short-term interests and ephemeral situations, “the era which pro-
duced” the mathematics in question ; and moreover it has centred on diversity,
differences and changes.

Confluent factors are here at stake. One has been largely advertised. It is linked
to contemporary debates in the history of science in the large and comes with the
wish to take into account social aspects of mathematics and “how they shape the
form and the content of mathematical ideas” (Aspray and Kitcher, 1984, 25), while
dimming the line between so-called internal history (that of concepts and results)
and external history (that of institutions or scientific politics). It could mean draw-
ing precise connections or parallels between developments in mathematics and in
contemporary social or political events. Given the quantity of recent historical
writing on these issues, I shall only mention a few examples. The unification of
Italian states at the beginning of the second half of the nineteenth century and the
cultural Risorgimento which accompanied it favoured a flourishing of mathematics,
in particular a strong renewal of interest in geometry in all its forms, with Luigi
Cremona, Corrado Segre, Guido Castelnuovo or Eugenio Beltrami and their fol-
lowers (Bottazzini, 1994; Bottazzini and Nastasi, 2013; Casnati et al., 2016). The
Meiji Restoration in Japan witnessed a multifaceted confrontation between the then
extremely active, traditional Japanese mathematics (wasan) and its Western coun-
terparts (Horiuchi, 1996). The First World War, a “war of guns and mathematics,”
as one soldier described it, did not just kill hundreds of mathematicians (among
many millions of others) on the battlefields: it also launched entire fields on a vast
new scale, such as fluid mechanics or probability theory, and completely reconfig-
ured international mathematical exchanges (for instance fostering a development
of set theory, logic and real analysis in newly independent Poland) (Aubin and
Goldstein, 2014). One might also think of the variety of national circumstances
which preceded the creation of mathematical societies in the late nineteenth and
early twentieth centuries (Parshall, 1995) or the various reforms in mathematical
education (Karp and Schubring, 2014).

At a smaller scale, specific opportunities at specific times, putting mathemati-
cians in close contact with certain milieux have hosted particular, sometimes un-
expected, mathematical work, be they analysis in administrative reforms (Brian,
1994), number theory in the textile industry (Decaillot, 2002) or hardware (De Mol
and Bullynck, 2008), or convexity in the military (Kjeldsen, 2002). In such cases
(and in many others studied in detail over the last decades), it is not a question of
superficial analogies or obvious applications; very often the ways these connections
were made, the concrete manner of transmission of knowledge through personal or
institutional links, the objectives pursued, are what provides impulse to a math-
ematical investigation, explains the formulation it takes or the particular balance
between computations and theory it displays (Kjeldsen, 2010; Tournès, 2012). This
is, by definition, ephemeral in the sense that it implies links with social situations
which have their own time scale and are most certainly not “eternal truths.”
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However, another reason for this shorter-term focus has recently become even
more decisive, to wit, a more acute sensibility to the multi-layered structure of
mathematics and the need to study more carefully its variegated components. At
first sight, it seems simple enough: mathematics is most often inscribed in texts—
although ethnomathematicians also study it directly in strings or sand (Ascher,
1991; d’Ambrosio, 2000)—, it uses words, symbols and drawings, it defines or
studies certain objects, it states results and justifies them. It could seem that
all we have to do is to decipher the texts and explain the objects, the results and
the proofs. Of course, that there were at times debates among mathematicians
about certain proofs or objects is well-known: even as late as early modern times,
some would not accept a proof based on an algebraically-expressed relation and
required geometric proofs in the Euclidean style, as more solid; others dismissed
proofs by contradiction or, later, non-constructive proofs; the legitimacy of negative
numbers or of functions without derivatives or of sets has been put into question.
And around 1900, how to found mathematics—on axiomatics, on integers, or on
logic—was a topic of heated controversy among mathematicians, which in turn has
been studied by historians.

But more recently, other aspects have been explored, aspects which are not nec-
essarily linked to public and noisy debates, but are part and parcel of ordinary
mathematical activities. What is or could be an object or a result, how are they
chosen or defined or justified, has changed in time; it has also been seen as depend-
ing on the place or the author. What sort of question is considered interesting,
by whom and why; which criteria are required to make an argument convincing
or a solution satisfactory, again for whom and why; all these aspects and their
relations are worth being studied for their own sake. Historians have, for instance,
shown that arguments in words or symbols may rely upon, or be inspired by, or
sometimes even been replaced by figures, diagrams, tables, instruments.2 That
an acceptable answer to a problem may be, at times, and for certain groups of
mathematicians, a single number, an explicit description of all the solutions, an
equation, an existence theorem, or the creation of a new concept (Goldstein, 2001;
Chorlay, 2010; Ehrhardt, 2012). The way various domains are defined and inter-
act, or are perceived as distinct, has also changed within mathematics, but also
between mathematics and other domains, in particular physics (Archibald, 1989;
Gray, 1999; Schlote and Schneider, 2011).

What are called “epistemic values,” the internalised criteria of what constitutes
good mathematics at one time, have also been studied: rigour is the most obvious
perhaps and has a complex history, but effectiveness or generality or naturalness
may appear at some moments to be even more decisive (Mehrtens, 1990; Rowe,
1992; Schubring, 2005; Corry, 2004; Chemla et al., 2016). Working mathematicians
have usually their own answer to these questions, but the point here is to reconstruct
the whole range of positions at a given time, in a given milieu, and to understand
their effect in mathematical work. For instance, in the dispute between Leopold
Kronecker and Camille Jordan in 1874 about what we now see as the same reduction
theorem for matrices, differences in formulation (elementary divisors on one side,

2For illustrations of these different cases, see for instance (Netz, 1999; Lorenat, 2014; Mumma
et al., 2012; Martin et al., 2003; Durand-Richard, 2010; Tobies and Tournès, 2011). References
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canonical form on the other), and in disciplines (invariant theory vs group theory)
were at play, but also in conceptions of generality (Brechenmacher, 2016).

Last, but not least, the way mathematics is made public and circulates has been
proved to be both a serious constraint on its form and an essential factor in its
transmission; the organization of correspondence among mathematicians (indeed
the mere form of a mathematical letter), the creation of mathematical research
journals in the nineteenth century and their different organisation through time,
the advent of academies, seminars and conferences, teaching programs and text-
books, for instance, have all been scrutinised (Ausejo and Hormigón, 1993; Peif-
fer, 1998; Schubring, 1985a; 1985b; Verdier, 2009; Gérini, 2002; Remmert and
Schneider, 2010). The last two aspects could also be considered as links between
mathematical developments and general cultural issues, but here the emphasis is
on the combination of these components inside mathematical texts themselves.

Depending on one’s own tastes, the sheer variety of them in the course of time
may appear fascinating or an irrelevant antiquarian interest. However, we now have
enough evidence that all these aspects may count for understanding the develop-
ment of mathematics. Mathematics weaves together objects, techniques, signs of
various kinds, justifications, professional lifestyles, epistemic ideas, and these com-
ponents have distinct time-scales. Changes in the various components do not occur
simultaneously. One can of course, study these aspects separately, as witnessed by
several recent projects; often in a comparative way, and to display their variety. But
even when one is able to understand a long-term development of one component
(for instance, of mathematical publishing), its articulation with other components
is generally stable only over a shorter period—recent biographies, indeed, offer suc-
cessful examples of the study of such articulations, see (Parshall, 2006; Crilly, 2006;
Alfonsi, 2011).

A further difficulty is that if concepts or theorems are aspects of which the
mathematician is aware (and very much so), some of the components I mentioned
are much more implicit, or are operational at a collective, not at an individual, level
and can be best detected and analysed for an entire group (Goldstein, 1999). All
this explains the interest in studying what I am calling here “configurations," a word
borrowed from the sociologist Norbert Elias. Elias wanted to set himself apart from
previous sociological theories based on an a priori hierarchic opposition between
individuals and society, and he promoted the idea of first studying configurations
formed by interactions between persons in interdependence, at different scales, be
they players in a game or workers in an enterprise. For us, configurations are
between texts or persons, coordinating some of the components we have mentioned
(we shall see other examples later).

A last reason has favoured more localised studies: a critical outlook by histori-
ans of mathematics on their own practice. For a long time, words like “discipline”
or “school” have been used without further ado, in particular because they were
terms inherited from mathematicians of the past themselves. Recent work has
shown that to define and use them more carefully gave a better grasp for describing
the past. For instance, using a characterisation of a discipline as a list of internal
elements (core concepts, proof system, etc) provided by Ralf Haubrich, Norbert
Schappacher and I were able to distinguish in the lineage of C. F. Gauss’s Disquisi-
tiones Arithmeticae those parts which fused into a existing discipline (his treatment
of the cyclotomic equation, for instance, which had a potent effect on the theory of
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equations), those parts which emancipated themselves as autonomous disciplines
with their own programmes and priorities (quadratic forms in the middle of the
nineteenth century, reciprocity laws in the theory of number fields later), and those
parts which, in the nineteenth century, did not (primality tests), even if they were
taken over in an isolated manner by some mathematicians.3 Caution also applies to
common descriptors of historical phenomena themselves, such as “context” (Ritter,
2004), “longue durée” (Aubin and Dahan Dalmedico, 2002) or “revolution” (Gillies,
1992). This reflexivity has also permitted historians to find counter-examples to
overly-crude hypotheses on the long-term development of mathematics (Gilain and
Guilbaud, 2015).

Let us now return to long-term histories. It may happen that the statement
or the object we are interested in bears obvious traces of its time. For instance,
let us consider the following three sentences : “the area of a right-angled triangle
in integers cannot be a square," “the equation x4 − y4 = z2 has no non-trivial
rational solutions," “the plane projective curve defined over Q by y2z = x3 − xz2

has exactly four points with rational coordinates." The first is the form under which
it was proved by Pierre Fermat around 1640; the second is the form under which
the first was often presented after the eighteenth century; the third is a special
case of Louis Mordell’s 1922 theorem on rational points of elliptic curves. Different
geometrical objects, even different types of geometry, and different equations are
involved. But as explained by André Weil, not only the statements, but the proofs
themselves, can be identified and seen as the same, all expressing the fact that the
Mordell-Weil group of the elliptic curve defined by y2z = x3−xz2 is Z/2Z×Z/2Z.
Such retrospective identification, then, can be used as a basis for tracing a long-term
history of any of these three statements; or, more in line with current historiography,
it can be seen as a historical problem per se, which requires first the reconstruction
of various configurations involving each of the statements and, if possible, how they
have come to be identified.4

Another case is even more delicate and can be illustrated by the theorem that
there are exactly twenty-seven lines on a non-singular cubic projective surface; since
its statement (and proof) in 1849 by both Arthur Cayley and George Salmon, its
formulation has remained remarkably stable for more than a century. But what
changed is its association with other problems: as shown in (Lê, 2015), it is for
instance in tandem with the fact that there are 9 inflection points on a cubic
projective plane curve and other analogous statements that it played a decisive role
for the assimilation of group-theoretical methods by geometers before Felix Klein’s
Erlangen Program; this specific configuration of questions and disciplinary issues,
around the so-called “equations of geometry,” lasted only some years, but was a
key feature in the transmission of the theorem.

Concepts or theories, instead of statements, may also come with a diversity of
formulations: we may think of ideals, points or Galois theory (Edwards, 1980; 1992;
Schappacher, 2010; Ehrhardt, 2012). But I would like to discuss in some detail the

3(Goldstein and Schappacher, 2007), see also (Gauthier, 2009; 2010). On “school,” see the
synthesis (Rowe, 2003).

4See (Goldstein, 1995). For other theorems and similar historical issues, see (Gilain, 1991;
Sinaceur, 1994; Brechenmacher, 2007).
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go-between for mathematics: his 1832 article, written in French, was clearly aimed
at an international audience. In the same decade, he would use new tools developed
by analysts, in particular Fourier series, to complete proofs of Gauss’s statements
and a number of his arithmetical results would be published both in German and
in French, in a way that would draw greater attention to them. In 1840, a letter
to Joseph Liouville, on the occasion of a French translation of one of his papers,
already announced to the French community his current interest for “extending to
quadratic forms with complex coefficients and indeterminates, that is, of the form
t + u

√
−1, the theorems which occur in the ordinary case of real integers. If one

tries in particular to obtain the number of different quadratic forms which exist in
this case for a given determinant, one arrives at this remarkable result, that the
number in question depends on the division of the lemniscate; exactly as in the case
of real forms with positive determinant, it is linked to the division of the circle”
(Dirichlet, 1840). The lemniscate pointed to the integral

∫
dx√
1−x4

and to elliptic
functions, then at the forefront of research. Dirichlet’s letter was even reproduced
twice: in Liouville’s Journal de mathématiques pures et appliquées (created in 1836)
and in the Comptes rendus hebdomadaires des séances de l’Académie des sciences
(created in 1835).

The ten years preceding Hermite’s 1853 paper were indeed turbulent years for
complex functions and numbers, and for quadratic forms. Also with reciprocity
laws in view, several authors tried to tackle numbers of the type t + u

√
a, for t

and u integers and a an integer without square divisors. In a footnote of his 1832
paper, Dirichlet announced, somehow optimistically, that they give rise to theorems
analogous to those on Gaussian integers, and with similar proofs. In 1839 (with
a French translation in Liouville’s journal three years later), Carl Jacob Jacobi,
again recalling Gauss’s theory of complex integers, showed that a prime number
p = 8n + 1 can be written not only as a product of two prime Gaussian complex
integers (a+ b

√
−1)(a− b

√
−1) and thus represented by the quadratic form a2+ b2,

but also as (c + d
√
−2)(c − d

√
−2) = c2 + 2d2, as well as (e + f

√
2)(e − f

√
2) =

e2 − 2f2. Through computations, Jacobi rewrote p as a product of four complex
numbers, each of them a linear combination with integral coefficients of powers of
a given 8th-root of unity: the three combinations of these four numbers, two by
two, provide the three decompositions of p noted by Jacobi, but this time, as he
writes, “from a common source.” Announcing similar results for a prime p = 5n+1
(and 5th-roots of unity), but with no hint of a proof, Jacobi provided the spur for
decisive work by several younger mathematicians in the 1840s. These included Ernst
Eduard Kummer’s theory of ideal numbers (in what we call now cyclotomic rings),
Gotthold Eisenstein’s approach to complex multiplication, and Hermite’s own first
research on quadratic forms, concerning which he wrote directly to Jacobi from
1847 on.6 Personal relations here reinforced the circulation of the articles; Hermite
was informed of Kummer’s approach to the arithmetic of complex numbers by the
mathematician Carl Wilhelm Borchardt during the latter’s 1847 Parisian tour and
he met Dirichlet and Eisenstein, among others, during his own trip to Berlin at the
beginning of the 1850s.

Kummer’s display that unique factorization failed in general certainly crushed
Dirichlet’s 1832 hopes and showed that “In certain circumstances, this extension
[of arithmetic to complex numbers] seems to require new principles.” Hermite’s

6This is explained in more detail in (Goldstein and Schappacher, 2007, 39-51).
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forms arose at least as much from his close reading of Jacobi as from Dirichlet’s
work on complex numbers. In letters to Jacobi on quadratic forms, published in
1850, Hermite had considered forms with any number of indeterminates and real
coefficients (instead of the two indeterminates and integral coefficients of Gauss’s
Disquisitiones). His main result was to establish that there exists a (non-zero)
value of the form, when evaluated on integers, which is less than a certain bound,
depending on the number of indeterminates and on the determinant of the form,
but not of its coefficients.7 In particular:

Hermite’s Main Theorem
Let f(x0, x1 · · ·
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f(x, y) is not 0 and is less that 1, 15p; thus it should be exactly p. And thus the
number p = (px − αy)2 + y2 is a sum of two squares. Hermite also adapted these
forms to discuss the divisors of forms of the type x2+Ay2, which also played a role
in Jacobi’s 1839 paper, and it seemed a natural step to adapt them also for the
famous theorem that every integer is the sum of four squares.

Let A be a non-zero integer and let assume without loss of generality that 4 does
not divide A. Hermite first showed that one can find integers α and β such that
α2 + β2 ≡ −1 mod (A).

He then introduced the quadratic form with 4 variables:

f(x, y, z, u) = (Ax+ αz + βu)2 + (Ay − βz + αu)2 + z2 + u22Ay
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other, those which can be expressed as:
v = aV + bW

v0 = a0V0 + b0W0

w = cV + dW

v0 = c0V0 + d0W0

where a, b, c, d are arbitrary imaginary numbers and a0, b0, c0, d0
their conjugates. Thus one obtains a perfectly defined class of real
transformations.

In a modernised matrix notation, these transformations are such that(
v
w

)
=

(
a b
c d

)(
V
W

)
for a, b, c, d complex numbers, which is the same as a specific transformation with
4 real variables:

x
y
z
u

 =


Re (a) − Im (a) Re (b) − Im (b)
Im (a) Re (a) Im (b) Re (b)
Re (c) − Im (c) Re (d) − Im (d)
Im (c) Re (c) Im (d) Re (d)



X
Y
Z
U

 .

It is at this point that Hermite introduced what we now call Hermitian forms,
for him quadratic forms of the type:
(3) f(v, w) = Avv0 +Bvw0 +B0wv0 + Cww0

where A et C are real numbers, and B a complex number (B0 its complex conju-
gate).

If one replaces the complex variables v and w by their real and imaginary parts,
that is by real variables, one finds:
f(x, y, z, u) = A(x2 + y2) + 2Re(B)(zx+ yu) + 2 Im(B)(xu− zy) + C(z2 + u2),

of which the form (2) used to prove the theorem of four squares is a prototype.
Considered with respect to the original variables x, y, z, u, these
forms are entirely real, but their study, with respect to the trans-
formations we have defined previously, essentially relies upon the
use of complex numbers. One is then led to attribute to them a
mode of existence singularly analogous to that of binary quadratic
forms, although they essentially contain four indeterminates (Her-
mite, 1854, 346).

If the linear transformations he had “defined previously” have a determinant of
complex norm 1, they leave invariant the quantity ∆ = BB0 − AC, which, thus,
will play the role of the determinant for the form (3). Hermite then proceeds to
classify the forms with a fixed determinant up to the special linear transformations
he has selected, provides a reduction theory for them, uses them to approximate
complex numbers by quotients of Gaussian integers, etc.

I would like to underline two important features. The first one is the central
role played by the linear transformations: this is the restriction on these trans-
formations that defines the new type of forms. In several memoirs around 1850,
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Hermite and some of his contemporaries, Arthur Cayley, Borchardt, Eisenstein,
for instance, defined several types of equivalence among forms, depending on the
transformations which are taken into account: either they look for transformations
which keep a given form or function invariant, or, fixing a group of transforma-
tions, they study the forms which are left invariant by them. In 1855, in a study on
the transformations of Abelian functions with 2 variables (more precisely of their
periods), Hermite again introduces other “particular forms with 4 indeterminates,
where one does not use as analytical tool the most general transformations among
4 variables, but particular transformations . . . which reproduce analogous forms”
(Hermite, 1855b, 785).

This point of view, changing the group of transformations operating on the
variables into forms or functions to delineate which type of forms will be studied,
was at the time tightly linked to invariant theory (Parshall, 1989). Its applications,
again, are varied, from the law of inertia for quadratic forms to Sturm’s theorem
on the number of roots of an equation that belong to a certain domain. It is in
this context that Hermite generalised his 1853 construction for n = 2 to quadratic
forms with 2n “pairwise conjugate” indeterminates,

f(x1, x2, . . . , xn, x1,0, . . . , xn,0) =
∑
i,j

ai,jxixj,0,

with ai,j and aj,j complex conjugates (thus ai,i real numbers) (Hermite, 1855a;
1856) ; he called them “quadratic forms with conjugate imaginary indeterminates.”

The second key point is about the introduction of new objects. Hermite’s “forms
with conjugate imaginary indeterminates” are quadratic forms of a specific type,
not a new type of objects defined in an ad hoc way to accommodate complex num-
bers. They are distinguished among a larger class of well-known objects because
of their special properties (here their stability under a certain group of transfor-
mations). For Hermite, as well as many other mathematicians of the nineteenth
century, mathematicians do not, should not, create their objects: they “meet them
or discover them and study them, like physicists, chemists and zoologists” (Hermite
and Stieltjes, 1905, vol. 2, p. 398). This conviction accompanies the emphasis on
classification, which in turn permits an assimilation of mathematics to a natural
science (Lê and Paumier, 2016). “Collecting and classifying” was also a very strong
incentive for invariant theorists like Cayley (Crilly, 2006, 193-195), but not lim-
ited to them, nor to the 1850s: in 1876, still, Leo Königsberger wrote for instance:
“It seems to me that the main task now just as for descriptive natural history
consists in gathering as much material as possible and in discovering principle by
classifying and describing this material” (File H1850(6), Staatsbibliothek zu Berlin,
Handschriftenabteilung).

Thus the configuration about the appearance of Hermitian forms I have just
briefly sketched include local incentives, a series of specific themes, a collection
of objects and the disciplinary tools available to study them (here for instance
the reduction theory of forms), the state of the art on certain topics (for instance
complex numbers) and general points of view on mathematics. Some of these
components will evolve separately and at different rates (an obvious instance is the
decomposition of numbers into irreducible complex factors), losing their connections
with the development of our forms “with conjugate imaginary indeterminates.”
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Picard was at first in search of a single example with two variables, one that would
be analogous to the modular functions. For this he studied the curve of equation
z3 = t(t− 1)(t− x)(t− y) and the periods of w =

∫
z−1dt (Picard, 1882a). These

periods, as functions of x and y, satisfy a system of partial differential equations,
which admits a basis of three independent solutions A1, A2, A3. Picard defined the
functions u, v of the two variables x and y by u = A2

A1
, v = A3

A1
, and by inversion,

obtained what he was looking for, two uniform functions of the two variables u, v,
defined on the domain 2Re(v) + Reu2 + Im(u)2 < 0
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hyperfuchsian, associated to the tesselation of the hypersurface. In later papers, he
constructed hyperfuchsian functions defined in the interior of the hypersurface and
invariant by such a group, showing that hyperfuchsian functions corresponding to
the same group can be expressed as rational functions of three of them (linked by
an algebraic relation). Picard also developed an analogous arithmetical study of
binary forms with conjugate indeterminates, interpreting their reduction geomet-
rically in terms of domains on the plane limited by arcs of circles and, this way,
constructed afresh Fuchsian groups (Picard, 1884).

When he picked up the topic in 1890, Luigi Bianchi was coming from a quite
different background; he had just studied the arithmetic of Dirichlet forms with
Gaussian-integer coefficients, with the intent to complete Dirichlet’s results on the
number of classes of such forms. He then proceeded to complete some points in
Picard’s study of the arithmetic of Hermitian forms, launching both an extension
to forms with coefficients in any quadratic field and a detailed examination of the
associated groups of transformations and their subgroups of finite index (Brigaglia,
2007). All along, and in particular in his synthesis published in Mathematische
Annalen in German, Bianchi handled side by side the arithmetic of Dirichlet and
of Hermitian forms and their geometrical interpretations, in particular the deter-
mination of their fundamental polyhedra. Bianchi had studied with Felix Klein in
Göttingen during his European post-doctoral tour and his main reference in his
papers on the arithmetic of forms is Klein’s Vorlesungen über die Theorie der el-
liptischen Modulfunctionen, completed by Robert Fricke, which had just appeared
in 1890. As Bianchi explained it (Bianchi, 1891, 313):

The geometrical method, on which Professor Klein bases the arith-
metical theory of the ordinary binary quadratic forms may be ap-
plied with the same success on a larger scale. To prove this is
the aim of the following development which will treat in the same
way the theory of Dirichlet forms with integral complex coefficients
and indeterminates and of Hermitian forms with integral complex
coefficients and conjugate indeterminates.

This publication pushed Picard to write to Klein on May 15, explaining how
to extract from his own articles some of the results obtained by Bianchi in the
case of Hermitian forms with Gaussian integers as coefficients. . . However, a year
later, Bianchi would handle forms whose coefficients are integers in quadratic fields
Q
√
−D for D = 1, 2, 3, 5, 6, 7, 10, 11, 13, 15, 19, displaying a good knowledge of

Dedekind’s theory of ideals. In this paper, he extended the main group of transfor-
mations to include those whose determinant is any unity and, following an idea of
Fricke, those of the type z → az0+b

cz0+d (the index, as before, indicating the complex
conjugation) and he computed the corresponding fundamental polyhedra. Klein
and Fricke integrated all these results, mostly from Bianchi’s point of view, in their
1897 Vorlesungen über die Theorie der automorphen Funktionen; Bianchi’s and the
number-theoretical part of Picard’s results would then be taken up and developed
through different methods by a number of mathematicians in the following decades,
Onorato Nicoletti, Otto Bohler, Leonard Dickson, Georges Humbert, Gaston Julia,
Hel Braun, Hua Luogeng, and many others. The “Bianchi groups” would then
be our groups PSL2(Od), for Od the ring of integers of the imaginary quadratic
field Q

√
−d, while the “Picard group” would designate the case d = 1, that of the

Gaussian integers.
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particular their “fundamental equations” (for us, the characteristic equations of the
matrices associated to the group of monodromy transformations) (Gray, 1984). In
his July presentation, Fuchs stated that, under several assumptions on the roots
of these fundamental equations (in particular, that, for one equation at least, the
roots are all distinct and of modulus 1), there exists a linear combination with
determined real coefficients Ai

ϕ = A1ω1ω
′
1 +A2ω2ω

′
2 + · · ·Anωnω

′
n

of a fundamental system of solutions ωi of the differential equation (ωi’ being here
the conjugate function . . . ) which is unaltered by the group of monodromy. For
algebraically integrable differential equations, the group is finite and Fuchs (like
Loewy will do) uses his theorem to complete Picard’s work on ternary forms. In his
Berlin Academy presentation, even for the finite case, he had explicitly (and quite
unnecessarily) assumed that the roots of at least one fundamental equation should
be distinct, an assumption which is not repeated in his August note to the French
Academy.

From September 21 to September 26, the annual meeting of the Deutsche Mathe-
matiker-Vereinigung took place in Frankfurt and Klein presented a one-page paper
(Klein, 1896) which added another author to the theorem. First of all, Klein re-
called his own 1875 work (Klein, 1875) where he had explained how to interpret a
finite group of complex linear transformations on two variables as a group of real
quaternary collineations of the ellipsoid, x2 + y2 + z2 − w2 = 0; and he had shown
that this group necessarily fixes a point within the ellipsoid, thus providing a finite
group of (real) rotations around a fixed point. This was the basis of his classifica-
tion in the binary case. The ternary case he attributed not only to Picard, but also
to Hermann Valentiner. Valentiner, who after a thesis on space curves had gone to
work for a Danish insurance company, while still contributing to mathematics, had
indeed published in 1889 a book on the classification of finite binary and ternary
groups of linear transformations (Valentiner, 1889). Then, after a nod to Loewy’s
note, Klein devoted the remainder of his presentation to another, simpler, proof that
Eliakim Hastings Moore has communicated to him. The proof is indeed simple. For
any Hermitian definite form, the sum of its transformations by the (finitely) many
elements of the group is still a Hermitian definite form and it is fixed by the group.
It is remarkable enough that Klein had to explain in detail that such a procedure
would not necessarily work if the group was infinite. . . In the written version, Klein
adds that Moore had indeed spoken about his theorem at a mathematical meeting
in Chicago on July 10 (with a written version published locally on July 24!).10 He
also alluded to Fuchs’s work without more details (given the past tensions between
Fuchs and Klein, one may think that this vague recognition was not completely
satisfactory to Fuchs (Gray, 1984)).

Both Moore and Loewy published an extended version of their respective work
in the same issue of the Mathematischen Annalen, in 1898. Both men analysed
the literature, in particular the various claims made about their theorem. They
underlined Fuchs’s superfluous condition to refute his claim to the theorem (Loewy
emphasising that, above all, the definite character of the invariant form was never

10Another date comes from the archives of the Math Club, see (Parshall and Rowe, 1994, 399)
which also explains the Chicago environment of the theorem.
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Hermitian forms. Fubini considered an Hermitian form algebraically equivalent to
x1x

0
1+x2x

0
2+· · ·xn−1x

0
n−1−xnx

0
n (here again the exponent 0 indicates the complex

conjugation) and the associated group transforming a “hypervariety” of the type∑n−1
1 uiu

0
i − 1 = 0 into itself. For two points, u and ū (the bar does not designate

the complex conjugation), he introduced the quantity

(6) Ruū =
(
∑n−1

1 uiū
0
1 − 1)(

∑n−1
1 u0

i ū1 − 1)

(
∑n−1

1 uiu0
1 − 1)(

∑n−1
1 ū0

i ū1 − 1)
− 1.

This is invariant under the group of transformations, real and equal to 0 within
the hypervariety only when the two points coincide; it is thus legitimate to call it
a (pseudo)-distance between the two points. Fubini used it primarily with arith-
metical and analytical applications in view (Fubini, 1903), but he also refined his
construction in order to interpret the Hermitian form as a metric for a complex
space (Fubini, 1904).

One year later, but independently, Study became interested in the same question
and in an article published in Mathematische Annalen (Study, 1905), he also defined
Hermitian metrics and distances. His project however was different and, as far as
geometry was concerned, more extensive. Study had worked before on invariant
theory and quaternions and had just published in 1903 a book on Geometrie der
Dynamen, using biquaternions and geometrical tools to study mechanical forces.12

At the beginning of his 1905 paper, he remarks that, while integration and other
questions depending on equalities had been successfully extended to the complex
realm, this was still not the case for problems of extrema.

His idea then is to develop this study within the framework defined by Cor-
rado Segre who, in 1890, had opened new vistas in complex geometry. Segre had
adapted Karl von Staudt’s approach to the complex case (Segre, 1890a; 1890b). In
particular, while polarities were associated, in the real case, to symmetric bilinear
forms, Segre had associated to his newly-found antipolarities, which occur only in
the complex case, the forms which, in Segre’s words “have also already been in-
troduced in number theory thanks to M. Hermite, M. Picard and others,” that is
Hermitian forms (Brigaglia, 2016, 275). From a ternary indefinite Hermitian form,
(xx̄) = x1x̄1 − x2x̄2 − x3x̄3 for instance (here the bar does designate the complex
conjugation), Study, following Segre’s concepts if not his terminology, defined a
“Hermitian point-complex” by (xx̄) = 0 (Segre’s iperconica) and the inside of the
point-complex by the condition (xx̄) > 0. He was then able to define a hyperbolic
Hermitian metric and the (real) distance of two points inside the point-complex.
Under an adequate normalization, the distance between two points x and y is

(x, y) = 2 cosh−1

√
(xȳ)(x̄y)√
(xx̄)

√
(yȳ)

,

Study showing then that the distance between two points is the length of the
geodesics linking them. He also developed the case of an elliptic Hermitian metric,
based this time on a definite Hermitian form. This setting would then be developed
by Julian Coolidge, Wilhelm Blaschke and of course Erich Kähler, Jan Schouten
and Élie Cartan in the 1920s and 1930s.

12On Study’s work and program, see (Hartwich, 2005).
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with conjugate indeterminates (or variables)”, “forms of M. Hermite,” “Hermit-
ian forms,” while this last designation is applied also to other types of forms or
matrices.

This hint is confirmed by the fact that we do not find them in textbooks; nei-
ther in Richard’s Baltzer’s classic Determinantentheorie, nor in Heinrich Weber’s
Lehrbuch der Algebra, nor even in Max Bôcher’s 1907 Introduction to Higher Al-
gebra, which last is devoted to matrices and bilinear and quadratic forms. The
situation changes only after the first decade of the twentieth century, with, for in-
stance, the sections on Hermitian forms in Gerhard Kowalewski’s Einführung in die
Determinantentheorie in 1909, David Hilbert’s 1912 Grundzüge einer allgemeinen
Theorie der Integralgleichungen, or Harold Hilton’s Homogeneous Linear Substitu-
tions of 1914.

Moreover, in the configurations we have sketched, the references prior to 1880
cited by our authors do not mention Hermitian forms (except for a possible, isolated,
reference to Hermite himself). Typically, for instance, Picard quotes a 1880 memoir
by Jordan on the equivalence and the reduction of Hermitian forms, but there are no
Hermitian forms in the articles cited by Jordan himself. In the case of finite groups
of transformations, neither Klein in 1875, for the binary case, nor Valentiner in
1889, for the ternary case, uses Hermitian forms (but in the reedition of the former
in his Werke, Klein will add a note on the interpretation of his results by Hermitian
forms). A rare exception seems an article by Elwin Bruno Christoffel in 1864 (cited
by Frobenius in 1883, in an article cited by Loewy) (Christoffel, 1864): Christoffel
considers bilinear forms ϕ =

∑
[gh]ugvh and their values when the values of ug and

vg are complex conjugate numbers, under the assumption that the coefficients [gh]
and [hg] are complex conjugates. However, this exception tends to prove the rule:
while he refers for one particular case to Hermite’s 1855 article (Hermite, 1855a),
Christoffel does not attribute the general construction to Hermite nor does he give
any special name to these bilinear forms. In any case, Hermitian forms, under any
name, reappear on the mathematical scene in the 1880s after their eclipse in the
1860s and 1870s.

In our restricted range of cases, there are also perceptible differences in the
way Hermitian forms are handled and perhaps perceived in this half century. In
Hermite’s work, they appear as particular cases of quadratic forms (with twice as
many indeterminates) and parallels are drawn to other types of quadratic forms,
similarly distinguished inside all quadratic forms by the specific transformations
which leave them invariant. Later, we have seen that they are studied either in
parallel with ordinary quadratic forms, or in parallel with Dirichlet quadratic forms,
depending on the domain. And at the very end of the period, on the contrary,
quadratic forms may be treated as a particular case of Hermitian forms, in which
complex conjugation reduces to identity.

Let us come back to the question of long-term history, or in this particular case,
to a history of Hermitian forms in the second half of the nineteenth century. It is
clear that it should integrate the various episodes I just outlined, take into account
the breaks we found and establish some continuities between these episodes, that
is understand how they are related. Links are perhaps the easiest to trace, in a
variety of ways. Some are quite tenuous, for instance the terminology, or the way
complex conjugation is denoted, but it may indicate which sources have been used.
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One can also of course use cross-references among articles. For instance, Picard’s
work on hyperfuchsian groups and differential equations inspires Fubini, even if his
papers on the future Fubini-Study metric do not (yet) touch the same subjects. But
other links extend on a much longer duration: the problem of the transformation
of a quadratic form in itself crosses our story many times, from Borchardt’s work
to Loewy’s and beyond. One might also think of Cayley’s definition of a metric in
a projective space, linked to his work on invariants in the 1860s, and which will be,
mostly mediated by Klein, a model for the formulas used in the complex case at
the end of the century.

It is important in this respect to analyze these links as concretely as possible:
if the same topic (for intance the transformation of a quadratic form into itself)
appears in a series of papers published regularly over a certain period, elaborating
on each other, we may speak of continuity. But an older reference in several papers,
such as Hermite’s 1854 paper returning to the forefront in the 1880s, does not say
much about the transmission of his ideas. In this case, for instance, Hermite’s name
and paper are often cited because Picard cites them, and not read directly. And the
personal proximity and well-documented communications between Hermite himself
and Picard (his son in law), or Jordan’s good knowledge of Hermite’s work, may
explain this resurrection of Hermitian forms in the 1880s. Obviously, links that
may be useful for tracing the development of mathematics are not always displayed
in publications. For instance, in November 1894, Segre wrote to Adolf Hurwitz
(Brigaglia, 2016, 276):

I take this opportunity to draw your attention to my notes (which
you have) entitled “Un nuovo campo di ricerche geom.” and “Le
rappresentaz. reali delle forme complesse. . . ” because if you, con-
tinuing your arithmetical research, pass to the forms of Hermite,
you will perhaps find some points of contact with my work. In fact,
I study there, among other hyperalgebraic entities, those that I call
hyperconics, etc, which are represented analytically by the forms
of Hermite [. . . ] I am persuaded that profit can be drawn from
studying arithmetical questions with geometrical aids.

As for discontinuiites, we have yet few studies focussing specifically on these
issues, that is how to describe as precisely as possible breaks in the mathematical
development. It may happen that different aspects change simultaneously and we
may tend to speak in this case of a “revolution” (Gillies, 1992). Very often however
this is not the case (Gilain and Guilbaud, 2015). Indifference is of course the most
obvious cause of decline, but rediscovery or recycling into another theory are quite
frequent in modern times and the circumstances of such rebirth are often puzzling.

We might think of invariant theory itself, given over for dead (Fisher, 1966), but
then born again, “like an Arabian phoenix arising from its ashes” (Rota, 2001). Or
the so-called “theory of order,” that Louis Poinsot, inspired by the relations among
roots of unity, promoted at the beginning of the century, and which disappeared and
reappeared (still attached to Poinsot’s name) several times, in mathematics and also
in ornamental architecture (Boucard and Eckes, 2015). Another example is tactics,
a field which mixed what we would now describe as combinatorics and group theory
(Ehrhardt, 2015). A different type of (local) discontinuity, at a semiotical level, has
been detected and analyzed by Alain Herreman (Herreman, 2013): in what he calls
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