`1**-Regularized Linear Regression: Persistence and Oracle Inequalities**

Peter Bartlett EECS and Statistics UC Berkeley

slides at http://www.stat.berkeley.edu/∼bartlett

Joint work with Shahar Mendelson and Joe Neeman.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- **►** Random pair: $(X, Y) \sim P$, in $\mathbb{R}^d \times \mathbb{R}$.
- ▶ *n* independent samples drawn from *P*: $(X_1, Y_1), \ldots, (X_n, Y_n).$
- Find β so linear function $\langle X, \beta \rangle$ has small risk,

$$
P\ell_{\beta}=P(\langle X,\beta\rangle-Y)^2.
$$

Here, $\ell_{\beta}(X, Y) = (\langle X, \beta \rangle - Y)^2$ is the quadratic loss of the linear prediction.

KOD KOD KED KED E VOOR

- ► Random pair: $(X, Y) \sim P$, in $\mathbb{R}^d \times \mathbb{R}$.
- ▶ *n* independent samples drawn from *P*: $(X_1, Y_1), \ldots, (X_n, Y_n).$
- Find β so linear function $\langle X, \beta \rangle$ has small risk,

$$
P\ell_{\beta}=P(\langle X,\beta\rangle-Y)^2.
$$

Example. ℓ_1 -regularized least squares:

$$
\hat{\beta} = \arg \min_{\beta \in \mathbb{R}^d} \quad P_n \ell_\beta + \rho_n ||\beta||_{\ell_1^d} \quad ,
$$
\nwhere
$$
P_n \ell_\beta = \frac{1}{n} \sum_{i=1}^{\mathcal{N}} (\langle X_i, \beta \rangle - Y_i)^2, \text{ and } ||\beta||_{\ell_1^d} = \sum_{j=1}^{\mathcal{N}} |\beta_j|.
$$

KOD KOD KED KED E VOOR

Example. ℓ_1 -regularized least squares:

$$
\hat{\beta} = \arg \min_{\beta \in \mathbb{R}^d} P_n \ell_{\beta} + \rho_n ||\beta||_{\ell_1^d} ,
$$

where $P_n \ell_{\beta} = \frac{1}{n} \bigg|_{i=1}^{\mathcal{N}} (\langle X_i, \beta \rangle - Y_i)^2$, and $||\beta||_{\ell_1^d} = \frac{\mathcal{A}}{1} \bigg|_{i=1}^{\mathcal{N}} |\beta_i|$.

KORK ERKER ADAM ADA

- \blacktriangleright Tends to select sparse solutions (few non-zero components β*^j*).
- \blacktriangleright Useful, for example, if $d \gg n$.

*L***₁-regularized linear regression**

Example. ℓ_1 -regularized least squares:

$$
\hat{\beta} = \arg\min_{\beta \in \mathbb{R}^d} \ \ P_n \ell_\beta + \rho_n ||\beta||_{\ell_1^d} \quad ,
$$

Example. ℓ_1 -constrained least squares:

$$
\hat{\beta} = \arg \min_{\|\beta\|_{\ell_1^d} \le b_n} P_n \ell_\beta.
$$

KORK ERKER ADAM ADA

[Recall: $\ell_{\beta}(X, Y) = (\langle X, \beta \rangle - Y)^2$.]

Example. ℓ_1 -regularized least squares:

$$
\hat{\beta} = \arg\min_{\beta \in \mathbb{R}^d} \ \ P_n \ell_\beta + \rho_n ||\beta||_{\ell_1^d} \quad ,
$$

Example. ℓ_1 -constrained least squares:

$$
\hat{\beta} = \arg \min_{\|\beta\|_{\ell_1^d} \leq b_n} P_n \ell_{\beta}.
$$

Some questions:

Prediction: Does $\hat{\beta}$ give accurate forecasts? e.g., How does $P\ell_{\hat{\beta}}$ compare with $P\ell_{\beta^*}$?

Here,
$$
\beta^* = \arg\min \left\{ P\ell_\beta : ||\beta||_{\ell_1^d} \le b_n \right\}^{\text{O}}
$$
.

KOD KOD KED KED E VOOR

Example. ℓ_1 -regularized least squares:

$$
\hat{\beta} = \arg\min_{\beta \in \mathbb{R}^d} \left. P_n \ell_\beta + \rho_n \| \beta \|_{\ell_1^d} \right|,
$$

Example. ℓ_1 -constrained least squares:

$$
\hat{\beta} = \arg \min_{\|\beta\|_{\ell_1^d} \leq b_n} P_n \ell_\beta.
$$

Some questions:

- \triangleright Does $\hat{\beta}$ give accurate forecasts? e.g., $P\ell_{\hat{\beta}}$ versus $P\ell_{\beta^*} = \min \left\|P\ell_{\beta} : ||\beta||_{\ell_1^d} \le b_n \right\|^2$
- **Estimation:** Under assumptions on *P*, is $\hat{\beta} \approx$ correct?
- ▶ Sparsity Pattern Estimation: Under assumptions on *P*, are the non-zeros of $\hat{\beta}$ correct?

Outline of Talk

- 1. For ℓ_1 -constrained least squares, bounds on $P\ell_{\hat\beta} P\ell_{\beta^*}$.
	- For what $d_n, b_n \to \infty$ does $P\ell_{\hat{\beta}} - P\ell_{\beta^*} \to 0$?
	- ▶ **Convex Aggregation:** (Tsybakov, 2003) For $b = 1$ (convex combinations of dictionary functions), what is rate of $P\ell_{\hat{\beta}} - P\ell_{\beta^*}$?

KORKARA KERKER DAGA

- 2. For ℓ_1 -regularized least squares, oracle inequalities.
- 3. Proof ideas.

Key Issue: ℓ_{β} is unbounded, so some key tools (e.g., concentration inequalities) cannot immediately be applied.

- For (X, Y) bounded, ℓ_β can be bounded using $\|\beta\|_{\ell^d_1}$, but this gives loose prediction bounds.
- \triangleright We use chaining to show that metric structures of ℓ_1 -constrained linear functions under P_n and P are similar.

KORK ERKER ADAM ADA

Main Results: Excess Risk

For ℓ_1 -constrained least squares,

$$
\hat{\beta} = \arg \min_{\|\beta\|_{\ell_1^d} \leq b} P_n \ell_\beta,
$$

if *X* and *Y* have suitable tail behaviour then, with probability $1 - \delta$.

$$
P\ell_{\hat{\beta}} - P\ell_{\beta^*} \leq \frac{c \log^{\alpha}(nd)}{\delta^2} \text{min} \quad \frac{b^2}{n} + \frac{d}{n}, \frac{b}{\sqrt{n}} \quad 1 + \frac{b}{\sqrt{n}}
$$

.

KORK ERKER ADAM ADA

- \blacktriangleright Small *d* regime: d/n .
- **►** Large *d* regime: $b/\sqrt{ }$ *n*.

Main Results: Excess Risk

For ℓ_1 -constrained least squares, with probability 1 – δ ,

$$
P\ell_{\hat{\beta}} - P\ell_{\beta^*} \leq \frac{c \log^{\alpha}(nd)}{\delta^2} \min \quad \frac{b^2}{n} + \frac{d}{n}, \frac{b}{\sqrt{n}} \quad 1 + \frac{b}{\sqrt{n}}
$$

.

KORK ERKER ADAM ADA

Conditions:

- 1. *PY*² is bounded by a constant.
- 2. \triangleright $||X||_{\infty}$ bounded a.s.,
	- ▶ *X* log concave and max_{*i*} $\|\langle X, e_i \rangle \|_{L_2}$ ≤ *c*, or
	- \triangleright *X* log concave and isotropic.

Application: Persistence

Consider ℓ_1 -constrained least squares,

$$
\hat{\beta} = \arg \min_{\|\beta\|_{\ell_1^d} \leq b} P_n \ell_\beta.
$$

Suppose that *PY*² is bounded by a constant and tails of *X* decay nicely (e.g., $||X||_{\infty}$ bounded a.s. or X log concave and isotropic).

Then for increasing *dⁿ* and

$$
b_n = o \frac{\sqrt{n}}{\log^{3/2} n \log^{3/2} (nd_n)},
$$

 ℓ_1 -constrained least squares is persistent (i.e., *Pl_ĝ − Pl_{β*} →* 0).

Application: Persistence

If *PY*² is bounded and tails of *X* decay nicely, then ℓ_1 -constrained least squares is persistent provided that d_n is increasing and

$$
b_n = o \frac{\sqrt{n}}{\log^{3/2} n \log^{3/2} (nd_n)}
$$

.

Previous Results (Greenshtein and Ritov, 2004):

- 1. $b_n = \omega(n^{1/2}/\log^{1/2} n)$ implies empirical minimization is not persistent for Gaussian (*X*, *Y*).
- 2. $b_n = o(n^{1/2}/log^{1/2} n)$ implies empirical minimization is persistent for Gaussian (*X*, *Y*).
- 3. $b_n = o(n^{1/4}/log^{1/4} n)$ implies empirical minimization is persistent under tail conditions on (*X*, *Y*).

Application: Convex Aggregation

Consider $b = 1$, so that the ℓ_1 -ball of radius *b* is the convex hull of a dictionary of *d* functions (the components of *X*). Tsybakov (2003) showed that, for any aggregation scheme $\hat{\beta}$, the rate of convex aggregation satisfies

$$
P\ell_{\hat{\beta}} - P\ell_{\beta^*} = \Omega
$$
 min $\frac{d}{n}$, $\frac{d}{\log d}$

For bounded, isotropic distributions, our result implies that this rate can be achieved, up to log factors, by least squares over the convex hull of the dictionary.

Previous positive results (Tsybakov, 2003; Bunea, Tsybakov and Wegkamp, 2006) involved complicated estimators.

.

Outline of Talk

- 1. For ℓ_1 -constrained least squares, bounds on $P\ell_{\hat\beta} P\ell_{\beta^*}.$
	- **Persistence:**

For what $d_n, b_n \to \infty$ does $P\ell_{\hat{\beta}} - P\ell_{\beta^*} \to 0$?

EXECONVEX Aggregation: For $b = 1$ (convex combinations of dictionary functions), what is rate of $P\ell_{\hat{\beta}} - P\ell_{\beta^*}$?

KORK ERKER ADAM ADA

- 2. For ℓ_1 -regularized least squares, oracle inequalities.
- 3. Proof ideas.

Proof Ideas: 1. -equivalence of *P* **and** *Pⁿ* **structures**

Define

$$
G_{\lambda} = \frac{\lambda}{P(\ell_{\beta} - \ell_{\beta^*})} (\ell_{\beta} - \ell_{\beta^*}) : P(\ell_{\beta} - \ell_{\beta^*}) \geq \lambda \quad .
$$

Then:

Esup*g*∈*G*^λ |*Png* − *Pg*| is small \Rightarrow with high probability, for all β with $P(\ell_{\beta} - \ell_{\beta^*}) > \lambda$,

$$
(1-\epsilon)P(\ell_{\beta}-\ell_{\beta^*})\leq P_n(\ell_{\beta}-\ell_{\beta^*})\leq (1+\epsilon)P(\ell_{\beta}-\ell_{\beta^*})
$$

KORKARA KERKER DAGA

 \Rightarrow $P(\ell_{\hat{\beta}} - \ell_{\beta^*}) \leq \lambda$, where $\hat{\beta} = \arg\min_{\beta} P_n \ell_{\beta}$.

Proof Ideas: 2. Symmetrization, subgaussian tails

K ロ X (日) X (日)

Proof Ideas: 3. Chaining

For a subgaussian process $\{Z_t\}$ indexed by a metric space (T, d) , and for $t_0 \in T$,

$$
\mathsf{E}\sup_{t\in\mathcal{T}}|Z_t-Z_{t_0}|\leq c\mathcal{D}(\mathcal{T},d)=c\int\limits_{0}^{Z}\frac{\textsf{diam}(\mathcal{T},d)}{\log N(\epsilon,\mathcal{T},d)}\,d\epsilon,
$$

KORKARA KERKER DAGA

where $N(\epsilon, T, d)$ is the ϵ covering number of T.

Proof Ideas: 4. Bounding the Entropy Integral

It suffices to calculate the entropy integral $\mathcal{D}(% \mathbb{R})$ $\sqrt{\lambda}D \cap 2bB_1^d$, *d*). We can approximate this by

 $\mathcal{D}(% \mathcal{D}(X,\mathcal{C})\cap \mathcal{D}(X,\mathcal{D}))$ $\sqrt{\lambda}D \cap 2bB_1^d$, *d*) \leq min D($\sqrt{\lambda}D, d$, $\mathcal{D}(2bB_1^d, d)$.

This leads to:

$$
P\ell_{\hat{\beta}} - P\ell_{\beta^*} \leq \frac{c \log^{\alpha}(nd)}{\delta^2} \min \frac{b^2}{n} + \frac{d}{n}, \frac{b}{\sqrt{n}} \quad 1 + \frac{b}{\sqrt{n}}
$$

.

KOD KOD KED KED E VOOR

Proof Ideas: 5. Oracle Inequalities

We get an isomorphic condition on $\{\ell_\beta - \ell_{\beta^*}\}\$,

$$
\frac{1}{2}P_n(\ell_{\beta}-\ell_{\beta^*})-\epsilon_n\leq P(\ell_{\beta}-\ell_{\beta^*})\leq 2P_n(\ell_{\beta}-\ell_{\beta^*})+\epsilon_n,
$$

and this implies that $\hat{\beta} = \arg \min_{\beta} (P_n \ell_{\beta} + c \epsilon_n)$ has

$$
P\ell_{\beta} \le \inf_{\beta} P\ell_{\beta} + c'\epsilon_n.
$$

This leads to oracle inequality: For ℓ_1 -regularized least squares,

$$
\hat{\beta} = \arg\min_{\beta} \ P_n \ell_{\beta} + \rho_n ||\beta||_{\ell_1^{d_n}} \ ,
$$

with probability at least 1 − *o*(1),

$$
P\ell_{\hat{\beta}} \le \inf_{\beta} P\ell_{\beta} + c\rho_n \quad 1 + ||\beta||_{\ell_1^{d_n}}
$$

.

Outline of Talk

1. For ℓ_1 -constrained least squares,

$$
P\ell_{\hat{\beta}} - P\ell_{\beta^*} \leq \frac{c \log^{\alpha}(nd)}{\delta^2} \min \frac{b^2}{n} + \frac{d}{n}, \frac{b}{\sqrt{n}} \quad 1 + \frac{b}{\sqrt{n}}
$$

.

KOD KOD KED KED E VOOR

Persistence: $\lim_{n \to \infty} E_n = \tilde{o}(\sqrt{n})$, then $P\ell_{\hat{\beta}} - P\ell_{\beta^*} \to 0$. **EXECONVEX Aggregation:** Empirical risk minimization gives optimal rate (up to log factors): \tilde{O} min(d/n , $\sqrt[p]{\log d/n}$.

- 2. For ℓ_1 -regularized least squares, oracle inequalities.
- 3. Proof ideas: subgaussian Rademacher process.