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`1-regularized linear regression

I Random pair: (X ,Y ) ∼ P, in Rd × R.
I n independent samples drawn from P:

(X1,Y1), . . . , (Xn,Yn).
I Find β so linear function 〈X , β〉 has small risk,

P`β = P (〈X , β〉 − Y )2 .

Here, `β(X ,Y ) = (〈X , β〉 − Y )2 is the quadratic loss of the
linear prediction.
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(X1,Y1), . . . , (Xn,Yn).
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Example. `1-regularized least squares:

β̂ = arg min
β∈Rd

�
Pn`β + ρn‖β‖`d1

�
,

where Pn`β =
1
n

nX
i=1

(〈Xi , β〉 − Yi)
2 , and ‖β‖`d1 =

dX
j=1

|βj |.
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Example. `1-regularized least squares:

β̂ = arg min
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where Pn`β =
1
n

nX
i=1

(〈Xi , β〉 − Yi)
2 , and ‖β‖`d1 =

dX
j=1

|βj |.

I Tends to select sparse solutions (few non-zero
components βj ).

I Useful, for example, if d � n.
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Example. `1-regularized least squares:

β̂ = arg min
β∈Rd

�
Pn`β + ρn‖β‖`d1

�
,

Example. `1-constrained least squares:

β̂ = arg min
‖β‖

`d1
≤bn

Pn`β.

[Recall: `β(X ,Y ) = (〈X , β〉 − Y )2.]



`1-regularized linear regression

Example. `1-regularized least squares:

β̂ = arg min
β∈Rd

�
Pn`β + ρn‖β‖`d1

�
,

Example. `1-constrained least squares:

β̂ = arg min
‖β‖

`d1
≤bn

Pn`β.

Some questions:
I Prediction: Does β̂ give accurate forecasts?

e.g., How does P`β̂ compare with P`β∗?

Here, β∗ = arg min
n

P`β : ‖β‖`d1 ≤ bn

o
.
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Example. `1-regularized least squares:

β̂ = arg min
β∈Rd

�
Pn`β + ρn‖β‖`d1

�
,

Example. `1-constrained least squares:

β̂ = arg min
‖β‖

`d1
≤bn

Pn`β.

Some questions:
I Does β̂ give accurate forecasts?

e.g., P`β̂ versus P`β∗ = min
n

P`β : ‖β‖`d1 ≤ bn

o
?

I Estimation: Under assumptions on P, is β̂ ≈ correct?
I Sparsity Pattern Estimation: Under assumptions on P,

are the non-zeros of β̂ correct?



Outline of Talk

1. For `1-constrained least squares, bounds on P`β̂ − P`β∗ .
I Persistence: (Greenshtein and Ritov, 2004)

For what dn,bn →∞ does P`β̂ − P`β∗ → 0?
I Convex Aggregation: (Tsybakov, 2003)

For b = 1 (convex combinations of dictionary functions),
what is rate of P`β̂ − P`β∗?

2. For `1-regularized least squares, oracle inequalities.
3. Proof ideas.



`1-regularized linear regression

Key Issue: `β is unbounded, so some key tools (e.g.,
concentration inequalities) cannot immediately be applied.

I For (X ,Y ) bounded, `β can be bounded using ‖β‖`d1 , but
this gives loose prediction bounds.

I We use chaining to show that metric structures of
`1-constrained linear functions under Pn and P are similar.



Main Results: Excess Risk

For `1-constrained least squares,

β̂ = arg min
‖β‖

`d1
≤b

Pn`β,

if X and Y have suitable tail behaviour then, with probability
1− δ,

P`β̂ − P`β∗ ≤
c logα(nd)

δ2 min
�

b2

n
+

d
n
,

b√
n

�
1 +

b√
n

��
.

I Small d regime: d/n.
I Large d regime: b/

√
n.
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P`β̂ − P`β∗ ≤
c logα(nd)

δ2 min
�

b2

n
+

d
n
,

b√
n

�
1 +

b√
n

��
.

Conditions:
1. PY 2 is bounded by a constant.
2. I ‖X‖∞ bounded a.s.,

I X log concave and maxj ‖〈X ,ej〉‖L2 ≤ c, or
I X log concave and isotropic.



Application: Persistence

Consider `1-constrained least squares,

β̂ = arg min
‖β‖

`d1
≤b

Pn`β.

Suppose that PY 2 is bounded by a constant and tails of X
decay nicely (e.g., ‖X‖∞ bounded a.s. or X log concave and
isotropic).
Then for increasing dn and

bn = o

 √
n

log3/2 n log3/2(ndn)

!
,

`1-constrained least squares is persistent
(i.e., P`β̂ − P`β∗ → 0).



Application: Persistence

If PY 2 is bounded and tails of X decay nicely, then
`1-constrained least squares is persistent provided that dn is
increasing and

bn = o

 √
n

log3/2 n log3/2(ndn)

!
.

Previous Results (Greenshtein and Ritov, 2004):

1. bn = ω(n1/2/ log1/2 n) implies empirical minimization is not
persistent for Gaussian (X ,Y ).

2. bn = o(n1/2/ log1/2 n) implies empirical minimization is
persistent for Gaussian (X ,Y ).

3. bn = o(n1/4/ log1/4 n) implies empirical minimization is
persistent under tail conditions on (X ,Y ).



Application: Convex Aggregation

Consider b = 1, so that the `1-ball of radius b is the convex hull
of a dictionary of d functions (the components of X ).
Tsybakov (2003) showed that, for any aggregation scheme β̂,
the rate of convex aggregation satisfies

P`β̂ − P`β∗ = Ω

 
min

 
d
n
,

r
log d

n

!!
.

For bounded, isotropic distributions, our result implies that this
rate can be achieved, up to log factors, by least squares over
the convex hull of the dictionary.
Previous positive results (Tsybakov, 2003; Bunea, Tsybakov
and Wegkamp, 2006) involved complicated estimators.
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Proof Ideas: 1. ε-equivalence of P and Pn structures

Define

Gλ =

�
λ

P(`β − `β∗)
(`β − `β∗) : P(`β − `β∗) ≥ λ

�
.

Then:
E supg∈Gλ |Png − Pg| is small
⇒ with high probability, for all β with P(`β − `β∗) ≥ λ,

(1− ε)P(`β − `β∗) ≤ Pn(`β − `β∗) ≤ (1 + ε)P(`β − `β∗)

⇒ P(`β̂ − `β∗) ≤ λ, where β̂ = arg minβ Pn`β.
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Proof Ideas: 2. Symmetrization, subgaussian tails



Proof Ideas: 3. Chaining

For a subgaussian process {Zt} indexed by a metric space
(T ,d), and for t0 ∈ T ,

E sup
t∈T
|Zt − Zt0 | ≤ cD(T ,d) = c

Z diam(T ,d)

0

p
log N(ε,T ,d) dε,

where N(ε,T ,d) is the ε covering number of T .



Proof Ideas: 4. Bounding the Entropy Integral

It suffices to calculate the entropy integral D(
√
λD ∩ 2bBd

1 ,d).
We can approximate this by

D(
√
λD ∩ 2bBd

1 ,d) ≤ min
�
D(
√
λD,d),D(2bBd

1 ,d)
�
.

This leads to:

P`β̂ − P`β∗ ≤
c logα(nd)

δ2 min
�

b2

n
+

d
n
,

b√
n

�
1 +

b√
n

��
.



Proof Ideas: 5. Oracle Inequalities

We get an isomorphic condition on {`β − `β∗},

1
2

Pn(`β − `β∗)− εn ≤ P(`β − `β∗) ≤ 2Pn(`β − `β∗) + εn,

and this implies that β̂ = arg minβ (Pn`β + cεn) has

P`β ≤ inf
β

�
P`β + c′εn

�
.

This leads to oracle inequality: For `1-regularized least squares,

β̂ = arg min
β

�
Pn`β + ρn‖β‖`dn

1

�
,

with probability at least 1− o(1),

P`β̂ ≤ inf
β

�
P`β + cρn

�
1 + ‖β‖

`dn
1

��
.



Outline of Talk

1. For `1-constrained least squares,

P`β̂ − P`β∗ ≤
c logα(nd)

δ2 min
�

b2

n
+

d
n
,

b√
n

�
1 +

b√
n

��
.

I Persistence:
If bn = õ(

√
n), then P`β̂ − P`β∗ → 0.

I Convex Aggregation:
Empirical risk minimization gives optimal rate (up to log
factors): Õ

�
min(d/n,

p
log d/n)

�
.

2. For `1-regularized least squares, oracle inequalities.
3. Proof ideas: subgaussian Rademacher process.


