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Introduction

The classification problem
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Example: Classifying human acute leukemias into two types
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When the distribution of x is known (µ and Σ are known)
An optimal classification rule exists, which classifies x to class 1 if
and only if

δ′
Σ

−1(x−µ) ≥ 0

δ = µ1 −µ2, µ = (µ1 +µ2)/2

It minimizes the average misclassification rate

The optimal misclassification rate is

ROPT = Φ(−∆p/2) , ∆p =
√

δ′Σ−1δ

Φ: the standard normal distribution function

This rule is the Bayes rule with equal prior probabilities for two
classes

The dimension p: the larger, the better

lim
∆p→∞

ROPT = 0, lim
∆p→0

ROPT = 1/2
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When µ and Σ are unknown
We have a training sample X = {xki , i = 1, ...,nk ,k = 1,2}
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When µ and Σ are unknown
We have a training sample X = {xki , i = 1, ...,nk ,k = 1,2}
xki ∼ Np(µk ,Σ), k = 1,2

n = n1 +n2

All xki ’s are independent and X is independent of x

Statistical issue
How to use the training sample to construct a rule having a
misclassification rate close to ROPT

Traditional application: small-p-large-n
The well known linear discriminant analysis (LDA) replaces unknown
δ, µ, and Σ by δ̂ = x1 −x2, µ̂ = x = (x1 +x2)/2, and Σ̂

−1 = S−1 where

xk =
1
nk

nk

∑
i=1

xki , k = 1,2, S =
1
n

2

∑
k=1

nk

∑
i=1

(xki −xk )(xki −xk )′

are the maximum likelihood estimators
Jun Shao (ECNU and UW-Madison) Sparse Linear Discriminant Analysis July, 2010 6 / 28



logo

When µ and Σ are unknown
We have a training sample X = {xki , i = 1, ...,nk ,k = 1,2}
xki ∼ Np(µk ,Σ), k = 1,2

n = n1 +n2

All xki ’s are independent and X is independent of x

Statistical issue
How to use the training sample to construct a rule having a
misclassification rate close to ROPT

Traditional application: small-p-large-n
The well known linear discriminant analysis (LDA) replaces unknown
δ, µ, and Σ by δ̂ = x1 −x2, µ̂ = x = (x1 +x2)/2, and Σ̂

−1 = S−1 where

xk =
1
nk

nk

∑
i=1

xki , k = 1,2, S =
1
n

2

∑
k=1

nk

∑
i=1

(xki −xk )(xki −xk )′

are the maximum likelihood estimators
Jun Shao (ECNU and UW-Madison) Sparse Linear Discriminant Analysis July, 2010 6 / 28



logo

Modern application: large-p-small-n (large-p-not-so-large-n)
How do we construct a rule when p > n?

The LDA needs an estimator of Σ
−1 (a generalized inverse S−?)

The larger p, the better?

A larger p results in more information , but produces more
uncertainty when the distribution of x is unknown

A greater challenge for data analysis since the training sample
size n cannot increase as fast as p

Bickel and Levina (2004) showed that the LDA is as bad as
random guessing when p/n → ∞
In some studies researchers found that it is better to ignore some
information (such as the correlation among the p components of x)
Domingos and Pazzani (1997), Lewis (1998), Dudoit et al. (2002).

Our task
To construct a nearly optimal rule for large dimension data
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Modern application: large-p-small-n (large-p-not-so-large-n)
How do we construct a rule when p > n?

The LDA needs an estimator of Σ
−1 (a generalized inverse S−?)

The larger p, the better?

A larger p results in more information , but produces more
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Linear discriminant analysis and asymptotic results

Regularity conditions
There is a constant c0 (not depending on p or n) such that

c−1
0 ≤ all eigenvalues of Σ ≤ c0

c−1
0 ≤ maxj≤p δ 2

j ≤ c0

δj is the j th component of δ

Consequences

∆p ≥ c−1
0 , ∆p =

√
δ′Σ−1δ

ROPT ≤ Φ(−(2c0)
−1) < 1/2

∆2
p = O(‖δ‖2) and ‖δ‖2 = O(∆2

p)

Asymptotic setting
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Linear discriminant analysis and asymptotic results

Regularity conditions
There is a constant c0 (not depending on p or n) such that

c−1
0 ≤ all eigenvalues of Σ ≤ c0

c−1
0 ≤ maxj≤p δ 2

j ≤ c0

δj is the j th component of δ

Consequences

∆p ≥ c−1
0 , ∆p =

√
δ′Σ−1δ

ROPT ≤ Φ(−(2c0)
−1) < 1/2

∆2
p = O(‖δ‖2) and ‖δ‖2 = O(∆2

p)

Asymptotic setting

n = n1 +n2, n1/n → c ∈ (0,∞) as n → ∞
p is a function of n, p/n → b ∈ [0,∞] as n → ∞
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Conditional and uncoditional misclassification rate
T : a classification rule

RT (X): the average of the conditional probabilities of making two
types of misclassification, where the conditional probabilities are
with respect to x, given the training sample X

RT = E [RT (X)]: unconditional misclassification rate of T

Asymptotic optimality (n → ∞)
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Conditional and uncoditional misclassification rate
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Linear discriminant analysis (p < n)
For what kind of p (which may diverge to ∞), the LDA is asymptotically
optimal or sub-optimal?

Theorem 1

Suppose that sn = p
√

logp/
√

n → 0.

(i) The conditional misclassification rate of the LDA is equal to

RLDA(X) = Φ
(
−[1+OP(sn)]∆p/2

)
.

(ii) If ∆p =
√

δ′Σ−1δ is bounded, then the LDA is asymptotically
optimal and

RLDA(X)

ROPT
−1 = OP(sn).

(iii) If ∆p → ∞, then the LDA is asymptotically sub-optimal.

(iv) If ∆p → ∞ and sn∆
2
p = (p

√
logp/

√
n)∆2

p → 0, then the LDA is
asymptotically optimal.
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Linear discriminant analysis (p < n)
For what kind of p (which may diverge to ∞), the LDA is asymptotically
optimal or sub-optimal?

Theorem 1
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Linear discriminant analysis (p > n)

When p > n, S−1 does not exist.

But the estimation of Σ
−1 is not the only problem

Even if Σ
−1 is known (so that the LDA can use the prefect “estimator”

of Σ
−1), the performance of the LDA may still be bad

Theorem 2
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Linear discriminant analysis (p > n)

When p > n, S−1 does not exist.

But the estimation of Σ
−1 is not the only problem

Even if Σ
−1 is known (so that the LDA can use the prefect “estimator”

of Σ
−1), the performance of the LDA may still be bad

Theorem 2
Suppose that p/n → ∞ and that Σ is known so that the LDA classifies x
to class 1 if and only if δ̂′

Σ
−1(x− µ̂)≥ 0, where δ̂ = x1−x2, and µ̂ = x.

(i) If ∆2
p/

√
p/n → 0 (which is true when ∆p =

√
δ′Σ−1δ is bounded),

then RLDA(X) →P 1/2.

(ii) If ∆2
p/

√
p/n → c with 0 < c < ∞, then RLDA(X) →P Φ

(
−c/(2

√
2)

)

and RLDA(X)/ROPT →P ∞.

(iii) If ∆2
p/

√
p/n → ∞, then RLDA(X) →P 0 but RLDA(X)/ROPT →P ∞.
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Sparse linear discriminant analysis and asymptotic
results

Sparsity measure for Σ

Bickel and Levina (2008) considered the following sparsity measure for
Σ

Ch,p = max
j≤p

p

∑
l=1

|σjl |h

σjl is the (j , l)th element of Σ

h is a constant not depending on p, 0 ≤ h < 1

Special case of h = 0
C0,p is the maximum of the numbers of nonzero elements of rows of Σ

Sparsity on Σ

Not sparse: Ch,p = O(p)

Sparse: Ch,p = O(logp) or Ch,p = O(nβ ), 0 ≤ β < 1
Jun Shao (ECNU and UW-Madison) Sparse Linear Discriminant Analysis July, 2010 13 / 28
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Sparsity measure for Σ
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Σ
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j≤p

p

∑
l=1

|σjl |h

σjl is the (j , l)th element of Σ
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Bickel and Levina’s thresholding estimator of Σ

S: sample covariance matrix

Σ̃ is S thresholded at tn = M1
√

logp/
√

n (M1 is a constant)

i.e., the (j , l)th element of Σ̃ is σ̂jl I(|σ̂jl | > tn)

σ̂jl is the (j , l)th element of S, and I(A) is the indicator function of the
set A

Consistency of Σ̃

If
logp

n
→ 0 and dn = Ch,p

(
logp

n

)(1−h)/2

→ 0

then
‖Σ̃−Σ‖= OP (dn) and ‖Σ̃−1 −Σ

−1‖ = OP (dn)

‖A‖: the maximum of all eigenvalues of A
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Sparsity on δ

A large ‖δ‖ results in a large difference between Np(µ1,Σ) and
Np(µ2,Σ)

But it also results in a more difficult task of constructing a good
classification rule, since δ has to be estimated based on the training
sample X of a size that is much smaller than p.

Sparsity measure for δ

We consider the following sparsity measure for δ:

Dg,p =
p

∑
j=1

δ 2g
j

δj is the j th component of δ

g is a constant not depending on p, 0 ≤ g < 1

δ is sparse if Dg,p is much smaller than p
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Sparsity on δ

A large ‖δ‖ results in a large difference between Np(µ1,Σ) and
Np(µ2,Σ)

But it also results in a more difficult task of constructing a good
classification rule, since δ has to be estimated based on the training
sample X of a size that is much smaller than p.

Sparsity measure for δ
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Sparse estimator of δ
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Sparse estimator of δ

δ̃: δ̂ thresholded at

an = M2

(
logp

n

)α
with constants M2 > 0 and α ∈ (0,1/2)

i.e., the j th component of δ̃ is δ̂j I(|δ̂j | > an)

δ̂j is the j th component of δ̂

A useful result
If

logp
n

→ 0,

then
P

(
|δ̂j | ≤ an, j = 1, ...,p with |δj | ≤ an/r

)
→ 1

and
P

(
|δ̂j | > an, j = 1, ...,p with |δj | > ran

)
→ 1

r > 1 is any fixed constantJun Shao (ECNU and UW-Madison) Sparse Linear Discriminant Analysis July, 2010 16 / 28
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Sparse linear discriminant analysis (SLDA) for high dimension
data

Classify x to class 1 if and only if δ̃′
Σ̃

−1(x−x) ≥ 0

Theorem 3
Assume (logp)/n → 0 and

bn = max

{
dn,

a1−g
n

√
Dg,p

∆p
,

√
Ch,pqn

∆p
√

n

}
→ 0p

/
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Sparse linear discriminant analysis (SLDA) for high dimension
data

Classify x to class 1 if and only if δ̃′
Σ̃

−1(x−x) ≥ 0

Theorem 3
Assume (logp)/n → 0 and

bn = max

{
dn,

a1−g
n

√
Dg,p

∆p
,

√
Ch,pqn

∆p
√

n

}
→ 0

∆p =
√

δ′Σ−1δ, an =

(
logp

n

)α
, dn = Ch,p

(
logp

n

)(1−h)/2

Ch,p = max
j≤p

p

∑
l=1

|σjl |h, Dg,p =
p

∑
j=1

δ 2g
j ,

qn = #{j : |δj | > an/r}
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Theorem 3 (continued)
(i) The conditional misclassification rate of the SLDA is equal to

RSLDA(X) = Φ(−[1+OP(bn)]∆p/2) .

(ii) If ∆p is bounded, then the SLDA is asymptotically optimal and

RSLDA(X)

ROPT
−1 = OP(bn).

(iii) If ∆p → ∞, then the SLDA is asymptotically sub-optimal.

(iv) If ∆p → ∞ and bn∆
2
p → 0, then the SLDA is asymptotically optimal.
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Situations where the SLDA is asymptotically optimal
There are two constants c1 and c2 such that 0 < c1 ≤ |δj | ≤ c2 for any
nonzero δj

qn is exactly the number of nonzero δj ’s

∆2
p and D0,p have exactly the order qn.

If qn is bounded (e.g., there are only finitely many nonzero δj ’s),
then ∆p is bounded and the result in Theorem 3 holds if
dn = Ch,p(n−1 logp)(1−h)/2 → 0

When qn → ∞ (∆p → ∞), we assume that qn = O(nη ) and
Ch,p = O(nγ) with η ∈ (0,1) and γ ∈ [0,1).
Choose α = (1−h)/4

If p = O(nκ) for a κ ≥ 1, then the result in Theorem 3 holds when
η + γ < (1−h)/2 and η < (1+h)/2
If p = O(enβ

) for a β ∈ (0,1), then the result in Theorem 3 holds if
η + γ < (1−h)(1−β )/2 and η < 1− (1−h)(1−β )/2
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Situations where the SLDA is asymptotically optimal
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Choosing constants in thresholding: A cross-validation
procedure
Xki : the data set with xki deleted
Tki : the SLDA rule based on Xki , i = 1, ...,nk , k = 1,2.
The cross-validation estimator of RSLDA is

R̂SLDA =
1
n

2

∑
k=1

nk

∑
i=1

rki

rki is the indicator function of whether Tki classifies xki incorrectly
If RSLDA = R(n1,n2),

E(R̂SLDA) =
2

∑
k=1

nk

∑
i=1

E(rki)

n
=

n1R(n1 −1,n2)+n2R(n1,n2 −1)

n
≈ RSLDA

R̂SLDA(M1,M2): the cross-validation estimator when (M1,M2) is used
Minimize R̂SLDA(M1,M2) over a suitable range of (M1,M2)

The resulting R̂SLDA can also be used as an estimate of RSLDA
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Application and Simulation

Applying the SLDA to human acute leukemias classification
p = 7,129 genes
n1 = 47, n2 = 25, n = 72

Plot of the cumulative proportions of δ̂ 2
j
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Plot of off-diagonal elements of S
(0.45% values are above the blue line)
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Cross-validation selection of M1 and M2

α = 0.3
M1 = 107, M2 = 300
2,492 nonzero δ̃j

(35% of 7,129)
227,083 nonzero σ̃jk

(0.45% of 25,407,756)
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Cross validation estimates
Cross validation for SLDA

misclassification rate is 0.0278
1 of 47 cases in class 1 are misclassified
1 of 25 cases in class 2 are misclassified

Cross validation for LDA
misclassification rate is 0.0972
2 of 47 cases in class 1 are misclassified
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Boxplots of conditional misclassification rates of LDA and SLDA
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Two-way plot of conditional misclassification rates: LDA vs SLDA
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Conclusion and Discussion

The ordinary linear discriminant analysis is OK if p = o(
√

n)

When p/n → ∞, the linear discriminant analysis may be
asymptotically as bad as random guessing

When p is much larger than n, asymptotically optimal
classification can be made if both the mean signal δ = µ1 −µ2

and covariance matrix Σ are sparse

A sparse linear discriminant analysis (SLDA) is proposed, and it is
asymptotically optimal under some conditions
SLDA is different from variable selection for δ+ LDA

Correlation among variables have to be considered
SLDA does not require the number of nonzero δ̃j ’s to be smaller
than n

Extension to non-normal data

Extension to unequal covariance matrices: quadratic discriminant
analysis
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