Outline

- Introduction
- Linear discriminant analysis and asymptotic results
- Sparse linear discriminant analysis and asymptotic results
- Application and simulation
- Conclusion and discussion

Introduction

The classification problem

Introduction

The classification problem

Example: Classifying human acute leukemias into two types

When the distribution of \mathbf{x} is known (μ and Σ are known)

 An optimal classification rule exists, which classifies x to class 1 if and only if

$$\delta' \mathbf{\Sigma}^{-1} (\mathbf{x} - \overline{\mu}) \geq 0$$

$$\delta = \mu_1 - \mu_2, \, \overline{\mu} = (\mu_1 + \mu_2)/2$$

- It minimizes the average misclassification rate
- The optimal misclassification rate is

$$R_{\text{OPT}} = \Phi\left(-\Delta_{
ho}/2
ight), \qquad \Delta_{
ho} = \sqrt{\delta' \Sigma^{-1} \delta}$$

Φ: the standard normal distribution function

- This rule is the Bayes rule with equal prior probabilities for two classes
- The dimension p: the larger, the better

$$\lim_{\Delta_{
ho} o \infty} R_{OPT} = 0, \qquad \lim_{\Delta_{
ho} o 0} R_{OPT} = 1/2$$

When μ and Σ are unknown

- We have a training sample $\mathbf{X} = \{\mathbf{x}_{ki}, i = 1, ..., n_k, k = 1, 2\}$
- $\mathbf{x}_{ki} \sim N_p(\mu_k, \Sigma), k = 1, 2$
- $n = n_1 + n_2$
- All x_{ki}'s are independent and X is independent of x

Statistical issue

How to use the training sample to construct a rule having a misclassification rate close to R_{OPT}

Traditional application: small-p-large-n

The well known linear discriminant analysis (LDA) replaces unknown δ , $\overline{\mu}$, and Σ by $\widehat{\delta} = \overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2$, $\widehat{\overline{\mu}} = \overline{\mathbf{x}} = (\overline{\mathbf{x}}_1 + \overline{\mathbf{x}}_2)/2$, and $\widehat{\Sigma}^{-1} = \mathbf{S}^{-1}$ where

$$\overline{\mathbf{x}}_k = \frac{1}{n_k} \sum_{i=1}^{n_k} \mathbf{x}_{ki}, \quad k = 1, 2, \quad \mathbf{S} = \frac{1}{n} \sum_{k=1}^{2} \sum_{i=1}^{n_k} (\mathbf{x}_{ki} - \overline{\mathbf{x}}_k) (\mathbf{x}_{ki} - \overline{\mathbf{x}}_k)^t$$

are the maximum likelihood estimators

When μ and Σ are unknown

- We have a training sample $X = \{x_{ki}, i = 1, ..., n_k, k = 1, 2\}$
- $\mathbf{x}_{ki} \sim N_p(\mu_k, \Sigma), k = 1, 2$
- $n = n_1 + n_2$
- All \mathbf{x}_{ki} 's are independent and \mathbf{X} is independent of \mathbf{x}

Statistical issue

How to use the training sample to construct a rule having a misclassification rate close to R_{OPT}

Traditional application: small-p-large-n

The well known linear discriminant analysis (LDA) replaces unknown δ , $\overline{\mu}$, and Σ by $\widehat{\delta} = \overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2$, $\widehat{\overline{\mu}} = \overline{\mathbf{x}} = (\overline{\mathbf{x}}_1 + \overline{\mathbf{x}}_2)/2$, and $\widehat{\Sigma}^{-1} = \mathbf{S}^{-1}$ where

$$\overline{\mathbf{x}}_k = \frac{1}{n_k} \sum_{i=1}^{n_k} \mathbf{x}_{ki}, \quad k = 1, 2, \quad \mathbf{S} = \frac{1}{n} \sum_{k=1}^{2} \sum_{i=1}^{n_k} (\mathbf{x}_{ki} - \overline{\mathbf{x}}_k) (\mathbf{x}_{ki} - \overline{\mathbf{x}}_k)'$$

are the maximum likelihood estimators

Modern application: large-*p*-small-*n* (large-*p*-not-so-large-*n*)

- How do we construct a rule when p > n?
- The LDA needs an estimator of Σ^{-1} (a generalized inverse S^{-2})
- The larger p, the better?
- A larger p results in more information, but produces more uncertainty when the distribution of x is unknown
- A greater challenge for data analysis since the training sample size n cannot increase as fast as p
- Bickel and Levina (2004) showed that the LDA is as bad as random guessing when $p/n \rightarrow \infty$
- In some studies researchers found that it is better to ignore some information (such as the correlation among the p components of x) Domingos and Pazzani (1997), Lewis (1998), Dudoit et al. (2002).

Our task

To construct a nearly optimal rule for large dimension data

Modern application: large-*p*-small-*n* (large-*p*-not-so-large-*n*)

- How do we construct a rule when p > n?
- The LDA needs an estimator of Σ^{-1} (a generalized inverse S^{-} ?)
- The larger p, the better?
- A larger p results in more information, but produces more

Linear discriminant analysis and asymptotic results

Regularity conditions

There is a constant c_0 (not depending on p or n) such that

- ullet $c_0^{-1} \leq$ all eigenvalues of $\Sigma \leq c_0$
- $oldsymbol{o} c_0^{-1} \leq \max_{j \leq p} \delta_j^2 \leq c_0 \ \delta_j ext{ is the } j ext{th component of } \delta$

Consequences

- \bullet $\Delta_p \geq c_0^{-1}$, $\Delta_p = \sqrt{\delta' \Sigma^{-1} \delta}$
- $R_{\text{OPT}} \leq \Phi(-(2c_0)^{-1}) < 1/2$
- ullet $\Delta_{
 ho}^2={\mathsf O}(\|\delta\|^2)$ and $\|\delta\|^2={\mathsf O}(\Delta_{
 ho}^2)$

Asymptotic setting

Linear discriminant analysis and asymptotic results

Regularity conditions

There is a constant c_0 (not depending on p or n) such that

- ullet $c_0^{-1} \leq$ all eigenvalues of $\Sigma \leq c_0$
- $oldsymbol{\circ} c_0^{-1} \leq \max_{j \leq p} \delta_j^2 \leq c_0 \ \delta_j ext{ is the } j ext{th component of } \delta$

Consequences

- ullet $\Delta_p \geq c_0^{-1}$, $\Delta_p = \sqrt{\delta' \Sigma^{-1} \delta}$
- $R_{\text{OPT}} \leq \Phi(-(2c_0)^{-1}) < 1/2$
- ullet $\Delta_{
 ho}^2 = O(\|\delta\|^2)$ and $\|\delta\|^2 = O(\Delta_{
 ho}^2)$

Asymptotic setting

Linear discriminant analysis and asymptotic results

Regularity conditions

There is a constant c_0 (not depending on p or n) such that

- ullet $c_0^{-1} \leq$ all eigenvalues of $\Sigma \leq c_0$
- $c_0^{-1} \leq \max_{j \leq p} \delta_j^2 \leq c_0$ δ_j is the jth component of δ

Consequences

- ullet $\Delta_{
 ho} \geq c_0^{-1}, \ \Delta_{
 ho} = \sqrt{\delta' \Sigma^{-1} \delta}$
- $R_{\text{OPT}} \leq \Phi(-(2c_0)^{-1}) < 1/2$
- ullet $\Delta_{
 ho}^2 = O(\|\delta\|^2)$ and $\|\delta\|^2 = O(\Delta_{
 ho}^2)$

Asymptotic setting

- $n = n_1 + n_2, n_1/n \to c \in (0, \infty)$ as $n \to \infty$
- p is a function of n, $p/n \rightarrow b \in [0, \infty]$ as $n \rightarrow \infty$

Conditional and uncoditional misclassification rate

T: a classification rule

- R_T(X): the average of the conditional probabilities of making two types of misclassification, where the conditional probabilities are with respect to x, given the training sample X
- $R_T = E[R_T(\mathbf{X})]$: unconditional misclassification rate of T

Asymptotic optimality $(n \rightarrow \infty)$

Conditional and uncoditional misclassification rate

Linear discriminant analysis (p < n)

For what kind of p (which may diverge to ∞), the LDA is asymptotically optimal or sub-optimal?

Theorem 1

Suppose that $s_n = p\sqrt{\log p}/\sqrt{n} \to 0$.

(i) The conditional misclassification rate of the LDA is equal to

$$R_{\text{LDA}}(\mathbf{X}) = \Phi(-[1 + O_P(s_n)]\Delta_p/2).$$

(ii) If $\Delta_{\rho}=\sqrt{\delta'\Sigma^{-1}\delta}$ is bounded, then the LDA is asymptotically optimal and

$$\frac{R_{\text{LDA}}(\mathbf{X})}{R_{\text{OPT}}} - 1 = O_P(s_n).$$

- (iii) If $\Delta_p \to \infty$, then the LDA is asymptotically sub-optimal.
- (iv) If $\Delta_p \to \infty$ and $s_n \Delta_p^2 = (p \sqrt{\log p}/\sqrt{n}) \Delta_p^2 \to 0$, then the LDA is asymptotically optimal.

Linear discriminant analysis (p < n)

For what kind of p (which may diverge to ∞), the LDA is asymptotically optimal or sub-optimal?

Theorem 1

Linear discriminant analysis (p > n)

When p > n, S^{-1} does not exist.

But the estimation of Σ^{-1} is not the only problem

Even if Σ^{-1} is known (so that the LDA can use the prefect "estimator" of Σ^{-1}), the performance of the LDA may still be bad

Theorem 2

Linear discriminant analysis (p > n)

When p > n, S^{-1} does not exist.

But the estimation of Σ^{-1} is not the only problem

Even if Σ^{-1} is known (so that the LDA can use the prefect "estimator" of Σ^{-1}), the performance of the LDA may still be bad

Theorem 2

Suppose that $p/n \to \infty$ and that Σ is known so that the LDA classifies \mathbf{x} to class 1 if and only if $\widehat{\delta}' \Sigma^{-1} (\mathbf{x} - \widehat{\overline{\mu}}) \ge 0$, where $\widehat{\delta} = \overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2$, and $\widehat{\overline{\mu}} = \overline{\mathbf{x}}$.

- (i) If $\Delta_p^2/\sqrt{p/n} \to 0$ (which is true when $\Delta_p = \sqrt{\delta' \Sigma^{-1} \delta}$ is bounded), then $R_{\rm LDA}(\mathbf{X}) \to_{_P} 1/2$.
- (ii) If $\Delta_p^2/\sqrt{p/n} \to c$ with $0 < c < \infty$, then $R_{\rm LDA}(\mathbf{X}) \to_{\scriptscriptstyle P} \Phi\left(-c/(2\sqrt{2})\right)$ and $R_{\rm LDA}(\mathbf{X})/R_{\rm OPT} \to_{\scriptscriptstyle P} \infty$.
- (iii) If $\Delta_p^2/\sqrt{p/n} \to \infty$, then $R_{\rm LDA}(\mathbf{X}) \to_p 0$ but $R_{\rm LDA}(\mathbf{X})/R_{\rm OPT} \to_p \infty$.

Sparse linear discriminant analysis and asymptotic results

Sparsity measure for Σ

Bickel and Levina (2008) considered the following sparsity measure for Σ

$$C_{h,p} = \max_{j \le p} \sum_{l=1}^{p} |\sigma_{jl}|^h$$

 σ_{jl} is the (j,l)th element of Σ h is a constant not depending on p, $0 \le h < 1$

Special case of h = 0

 $C_{0,p}$ is the maximum of the numbers of nonzero elements of rows of Σ

Sparsity on Σ

- Not sparse: $C_{h,p} = O(p)$
- Sparse: $C_{h,p} = O(\log p)$ or $C_{h,p} = O(n^{\beta})$, $0 \le \beta < 1$

Sparse linear discriminant analysis and asymptotic results

Sparsity measure for Σ

Bickel and Levina (2008) considered the following sparsity measure for Σ

$$C_{h,p} = \max_{j \le p} \sum_{l=1}^{p} |\sigma_{jl}|^h$$

 $σ_{jl}$ is the (j, l)th element of Σ h is a constant not depending on p, $0 \le h < 1$

Special case of h = 0

 $C_{0,p}$ is the maximum of the numbers of nonzero elements of rows of Σ

Sparsity on Σ

Sparse linear discriminant analysis and asymptotic results

Sparsity measure for Σ

Bickel and Levina (2008) considered the following sparsity measure for $\boldsymbol{\Sigma}$

$$C_{h,p} = \max_{j \le p} \sum_{l=1}^{p} |\sigma_{jl}|^{h}$$

 σ_{jl} is the (j, l)th element of Σ

Bickel and Levina's thresholding estimator of Σ

S: sample covariance matrix

 $\widetilde{\Sigma}$ is **S** thresholded at $t_n = M_1 \sqrt{\log p} / \sqrt{n}$ (M_1 is a constant)

i.e., the (j,l)th element of $\widetilde{\Sigma}$ is $\widehat{\sigma}_{jl} I(|\widehat{\sigma}_{jl}| > t_n)$

 $\widehat{\sigma}_{jl}$ is the (j,l)th element of **S**, and I(A) is the indicator function of the set A

Consistency of $\widetilde{\Sigma}$

lf

$$\frac{\log p}{n} o 0$$
 and $d_n = C_{h,p} \left(\frac{\log p}{n} \right)^{(1-h)/2} o 0$

ther

$$\|\widetilde{\Sigma} - \Sigma\| = O_P(d_n)$$
 and $\|\widetilde{\Sigma}^{-1} - \Sigma^{-1}\| = O_P(d_n)$

||A||: the maximum of all eigenvalues of A

Sparsity on δ

A large $\|\delta\|$ results in a large difference between $N_p(\mu_1, \Sigma)$ and $N_p(\mu_2, \Sigma)$

But it also results in a more difficult task of constructing a good classification rule, since δ has to be estimated based on the training sample **X** of a size that is much smaller than p.

Sparsity measure for δ

We consider the following sparsity measure for δ :

$$D_{g,p} = \sum_{j=1}^{p} \delta_j^{2g}$$

 δ_j is the jth component of δ g is a constant not depending on p, $0 \leq g < 1$

 δ is sparse if $D_{g,p}$ is much smaller than p

Sparsity on δ

A large $\|\delta\|$ results in a large difference between $N_p(\mu_1,\Sigma)$ and $N_p(\mu_2,\Sigma)$

But it also results in a more difficult task of constructing a good classification rule, since δ has to be estimated based on the training sample **X** of a size that is much smaller than p.

Sparsity measure for δ

Sparse estimator of δ

Sparse estimator of δ

 $\widetilde{\delta}$: $\widehat{\delta}$ thresholded at

$$a_n = M_2 \left(\frac{\log p}{n}\right)^{\alpha}$$
 with constants $M_2 > 0$ and $\alpha \in (0, 1/2)$

i.e., the *j*th component of $\widetilde{\delta}$ is $\widehat{\delta_j}I(|\widehat{\delta_j}|>a_n)$ $\widehat{\delta_j}$ is the *j*th component of $\widehat{\delta}$

A useful result

lf

$$\frac{\log p}{p} \to 0$$

then

$$P\left(|\widehat{\delta_j}| \leq a_n, \ j=1,...,p \ \text{with} \ |\delta_j| \leq a_n/r
ight) o 1$$

and

$$P\left(|\widehat{\delta_j}|>a_n,\ j=1,...,p ext{ with } |\delta_j|>ra_n
ight)
ightarrow 1$$

Sparse linear discriminant analysis (SLDA) for high dimension data

Classify **x** to class 1 if and only if $\widetilde{\delta}'\widetilde{\Sigma}^{-1}(\mathbf{x}-\overline{\mathbf{x}})\geq 0$

Theorem 3

Assume $(\log p)/n \rightarrow 0$ and

$$b_n = \max \left\{ d_n, \ \frac{a_n^{1-g} \sqrt{D_{g,p}}}{\Delta_p}, \ \frac{\sqrt{C_{h,p}q_n}}{\Delta_p \sqrt{n}} \right\} \rightarrow 0$$

Sparse linear discriminant analysis (SLDA) for high dimension data

Classify **x** to class 1 if and only if $\widetilde{\delta}'\widetilde{\Sigma}^{-1}(\mathbf{x}-\overline{\mathbf{x}})\geq 0$

Theorem 3

Assume $(\log p)/n \rightarrow 0$ and

$$b_n = \max \left\{ d_n, \ rac{a_n^{1-g} \sqrt{D_{g,p}}}{\Delta_p}, \ rac{\sqrt{C_{h,p}q_n}}{\Delta_p \sqrt{n}}
ight\}
ightarrow 0$$
 $\Delta_p = \sqrt{\delta' \Sigma^{-1} \delta}, \quad a_n = \left(rac{\log p}{n}
ight)^{lpha}, \quad d_n = C_{h,p} \left(rac{\log p}{n}
ight)^{(1-h)/2}$ $C_{h,p} = \max_{j \leq p} \sum_{l=1}^p |\sigma_{jl}|^h, \quad D_{g,p} = \sum_{j=1}^p \delta_j^{2g},$ $q_n = \#\{j: |\delta_j| > a_n/r\}$

Theorem 3 (continued)

(i) The conditional misclassification rate of the SLDA is equal to

$$R_{\mathrm{SLDA}}(\mathbf{X}) = \Phi\left(-[1+O_P(b_n)]\Delta_p/2\right).$$

(ii) If Δ_p is bounded, then the SLDA is asymptotically optimal and

$$\frac{R_{\rm SLDA}(\mathbf{X})}{R_{\rm OPT}}-1=O_P(b_n).$$

- (iii) If $\Delta_p \to \infty$, then the SLDA is asymptotically sub-optimal.
- (iv) If $\Delta_p \to \infty$ and $b_n \Delta_p^2 \to 0$, then the SLDA is asymptotically optimal.

Situations where the SLDA is asymptotically optimal

There are two constants c_1 and c_2 such that $0 < c_1 \le |\delta_j| \le c_2$ for any nonzero δ_j

 q_n is exactly the number of nonzero δ_j 's

 Δ_p^2 and $D_{0,p}$ have exactly the order q_n .

- If q_n is bounded (e.g., there are only finitely many nonzero δ_j 's), then Δ_p is bounded and the result in Theorem 3 holds if $d_n = C_{h,p}(n^{-1}\log p)^{(1-h)/2} \to 0$
- When $q_n \to \infty$ ($\Delta_p \to \infty$), we assume that $q_n = O(n^{\eta})$ and $C_{h,p} = O(n^{\gamma})$ with $\eta \in (0,1)$ and $\gamma \in [0,1)$. Choose $\alpha = (1-h)/4$
 - If $p = O(n^{\kappa})$ for a $\kappa \ge 1$, then the result in Theorem 3 holds when $\eta + \gamma < (1 h)/2$ and $\eta < (1 + h)/2$
 - If $p = O(e^{n^{\beta}})$ for a $\beta \in (0,1)$, then the result in Theorem 3 holds if $\eta + \gamma < (1-h)(1-\beta)/2$ and $\eta < 1-(1-h)(1-\beta)/2$

Situations where the SLDA is asymptotically optimal

Choosing constants in thresholding: A cross-validation procedure

 \mathbf{X}_{ki} : the data set with \mathbf{x}_{ki} deleted

 T_{ki} : the SLDA rule based on \mathbf{X}_{ki} , $i = 1, ..., n_k$, k = 1, 2.

The cross-validation estimator of R_{SLDA} is

$$\widehat{R}_{SLDA} = \frac{1}{n} \sum_{k=1}^{2} \sum_{i=1}^{n_k} r_{ki}$$

 r_{ki} is the indicator function of whether T_{ki} classifies \mathbf{x}_{ki} incorrectly If $R_{\mathrm{SLDA}} = R(n_1, n_2)$,

$$E(\widehat{R}_{SLDA}) = \sum_{k=1}^{2} \sum_{i=1}^{n_k} \frac{E(r_{ki})}{n} = \frac{n_1 R(n_1 - 1, n_2) + n_2 R(n_1, n_2 - 1)}{n} \approx R_{SLDA}$$

 $\widehat{R}_{\mathrm{SLDA}}(M_1,M_2)$: the cross-validation estimator when (M_1,M_2) is used Minimize $\widehat{R}_{\mathrm{SLDA}}(M_1,M_2)$ over a suitable range of (M_1,M_2) The resulting $\widehat{R}_{\mathrm{SLDA}}$ can also be used as an estimate of R_{SLDA}

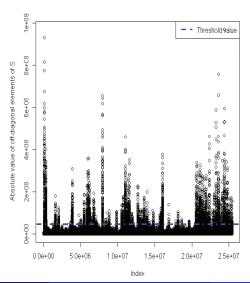
Application and Simulation

Applying the SLDA to human acute leukemias classification

p = 7,129 genes $n_1 = 47, n_2 = 25, n = 72$

Plot of the cumulative proportions of $\hat{\delta}_{j}^{2}$

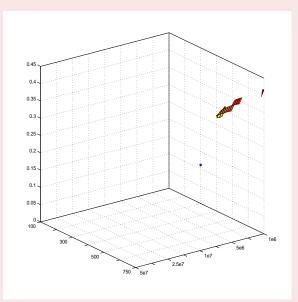
Plot of off-diagonal elements of **S** (0.45% values are above the blue line)



Cross-validation selection of M_1 and M_2

 $M_1 = 10^7$, $M_2 = 300$ 2,492 nonzero $\widetilde{\delta}_j$ (35% of 7,129) 227,083 nonzero $\widetilde{\sigma}_{jk}$ (0.45% of 25,407,756)

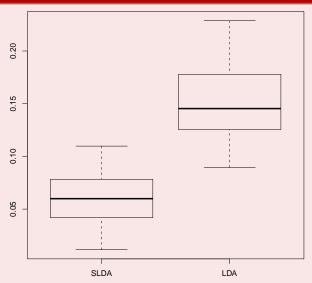
 $\alpha = 0.3$



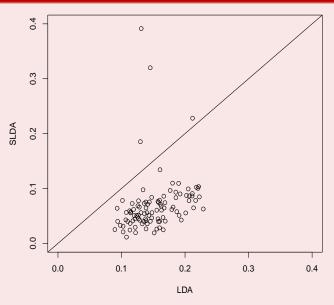
Cross validation estimates

- Cross validation for SLDA
 - misclassification rate is 0.0278
 - 1 of 47 cases in class 1 are misclassified
 - 1 of 25 cases in class 2 are misclassified
- Cross validation for LDA
 - misclassification rate is 0.0972
 - 2 of 47 cases in class 1 are misclassified
 - 0

Boxplots of conditional misclassification rates of LDA and SLDA



Two-way plot of conditional misclassification rates: LDA vs SLDA



Conclusion and Discussion

- The ordinary linear discriminant analysis is OK if $p = o(\sqrt{n})$
- When $p/n \to \infty$, the linear discriminant analysis may be asymptotically as bad as random guessing
- When p is much larger than n, asymptotically optimal classification can be made if both the mean signal $\delta = \mu_1 \mu_2$ and covariance matrix Σ are sparse
- A sparse linear discriminant analysis (SLDA) is proposed, and it is asymptotically optimal under some conditions
- ullet SLDA is different from variable selection for $\delta+$ LDA
 - Correlation among variables have to be considered
 - SLDA does not require the number of nonzero δ_j 's to be smaller than n
- Extension to non-normal data
- Extension to unequal covariance matrices: quadratic discriminant analysis