Optimal Estimation of Large Toeplitz Covariance Matrices

Harrison H. Zhou
Department of Statistics
Yale University

Joint work with T. Tony Cai and Zhao Ren

Outline

- Introduction
- Motivation from Asymptotic Equivalence Theory
- Main Results
- Summary

Introduction

Let $\mathbf{X}_1, \ldots, \mathbf{X}_{-}$ be i.i.d. p-variate Gaussian with an unkown Toeplitz covariance matrix $\Sigma_{-\times}$,

$$\begin{pmatrix} \sigma_0 & \sigma_1 & \cdots & \sigma_{-2} & \sigma_{-1} \\ \sigma_1 & \sigma_0 & & \sigma_{-2} \\ \vdots & \ddots & \vdots & \\ \sigma_{-2} & & \sigma_0 & \sigma_1 \\ \sigma_{-1} & \sigma_{-2} & \cdots & \sigma_1 & \sigma_0 \end{pmatrix}$$

Goal: Estimate Σ_{\times} based on the sample $\mathbf{X}: 1 \leq i \leq n$.

Introduction – Spectral Density Estimation

The model given by observing

$$\mathbf{X}_1 - N\left(0, \Sigma_{\times}\right)$$

with Σ_{\times} Toeplitz is commonly called

Spectral Density Estimation

 \mathbf{X}_1 , a stationary centered Gaussian sequence with spectral density f where

$$f(t) = \frac{1}{2\pi} \sum_{=-\infty}^{\infty} \sigma \exp(imt) = \frac{1}{2\pi} [\sigma_0 + 2\sum_{=1}^{\infty} \sigma \cos(mt)], t [-\pi, \pi].$$

Here we have $\sigma_{-} = \sigma$.

Remark: there is a one-to-one correspondence between f and $\Sigma_{\infty \times \infty}$.

<u>Introduction – Problem of Interest</u>

We want to understand the minimax risk:

$$\inf_{\hat{\Sigma}} \sup_{\mathcal{F}} \mathbb{E} ||\hat{\Sigma} - \Sigma||^2$$

where $\|\cdot\|$ denotes the spectral norm and — is some parameter space for f.

Motivation from Asymptotic Equivalence Theory

Golubev, Nussbaum and Z. (2010, AoS)

The **Spectral Density Estimation** given by observing each **X** is asymptotically equivalent to the **Gaussian white noise**

$$dy(t) = \log f(t)dt + 2\pi^{1/2}p^{-1/2}dW(t), t \quad [-\pi, \pi]$$

under some assumptions on the unknown f.

For example,

$$(M, \epsilon) = f : |f(t_1) - f(t_2)| \le M |t_1 - t_2|$$
 and $f(t) \ge \epsilon$.

We need $\alpha > 1/2$ to establish the asymptotic equivalence.

Intuitively, the model

X
$$N(0, \Sigma_{\times}), i = 1, 2, ..., n$$

is asymptotically equivalent to

$$dy(t) = \log f(t)dt + 2\pi^{1/2} (np)^{-1/2} dW(t), t \quad [-\pi, \pi]$$

possibly under some strong assumptions on the unknown f.

"Equivalent" Losses

Let $\hat{\Sigma}_{\infty \times \infty}$ be a Toeplitz matrix and \hat{f} be the corresponding spectral density.

We know

$$\left\|\hat{\Sigma}_{\infty\times\infty} - \Sigma_{\infty\times\infty}\right\| = 2\pi \left\|\hat{f} - f\right\|_{\infty}$$

based on a well known result

$$\|\Sigma_{\infty\times\infty}\| = 2\pi \|f\|_{\infty}$$

where

$$\|\Sigma_{\infty\times\infty}\| = \sup_{\|\ \|_2=1} \|\Sigma_{\infty\times\infty}v\|_2$$
, and $\|f\|_{\infty} = \sup|f(x)|$.

Intuitively

$$\|\hat{\Sigma}_{\times} - \Sigma_{\times}\| \|\hat{\Sigma}_{\infty \times \infty} - \Sigma_{\infty \times \infty}\| ?$$

Thus optimal estimation on f may imply optimal estimation on Σ .

Question

Can we show

$$\inf_{\stackrel{\wedge}{p} = p} \sup_{F} E \stackrel{\wedge}{p}_{p} = \frac{2}{p} = \frac{np}{\log(pn)} = \frac{\frac{2}{2}+1}{?}$$

Remark: Classical result on nonparametric function estimation under the sup norm:

$$\inf_{\stackrel{\wedge}{p}=p} \sup_{F} E \quad f^{\stackrel{\wedge}{f}} \quad f \quad \frac{2}{1} \quad \frac{np}{\log(pn)} \quad \frac{\frac{2}{2+1}}{1}.$$

Again,

- We don't really have the asymptotic equivalence.
- The following claim is very intuitive

$$\|\hat{\Sigma}_{\times} - \Sigma_{\times}\| \|\hat{\Sigma}_{\infty \times \infty} - \Sigma_{\infty \times \infty}\|.$$

Main Results -Lower bound

Show that

$$\inf_{\hat{\Sigma}_{p \times p}} \sup_{\mathcal{F}_{\alpha}} \mathbb{E} \left\| \hat{\Sigma}_{\times} - \Sigma_{\times} \right\|^{2} \ge c \left(\frac{np}{\log(pn)} \right)^{-\frac{2\alpha}{2\alpha+1}}$$

for some c > 0.

Main Results –Lower bound

A more informative model

Observe $\mathbf{Y}_1 = (\mathbf{X}_1, \mathbf{W}_1)$ with a circulant covariance matrix $\tilde{\Sigma}_{(2-1)\times(2-1)}$

Define

$$\omega = \frac{2\pi j}{2p-1}, \ |j| \le p-1$$

and where

$$f(t) = \frac{1}{2\pi} \left(\sigma_0 + 2 \sum_{i=1}^{-1} \sigma_i \cos(mt) \right).$$

It is well known that the spectral decomposition of $\tilde{\Sigma}_{(2-1)\times(2-1)}$ can be described as follows:

$$\tilde{\Sigma}_{(2 - 1) \times (2 - 1)} = \sum_{|\mathbf{i}| \le -1} \lambda \mathbf{u} \mathbf{u}'$$

where

$$\lambda = f(\omega), |j| \le p-1$$

and the eigenvector **u** doesn't depend on $\sigma: 0 \leq m \leq p-1$.

Main Results -Lower bound

The more informative model is *exactly* equivalent to

$$Z = f(\omega)\xi, |j| \leq p - 1, Var(\xi) \approx 1/n.$$

For this model it is easy to show

$$\sup_{\mathcal{F}_{\alpha}} \mathbb{E} \left\| \hat{f} - f \right\|_{\infty}^{2} \ge c \left(\frac{np}{\log(pn)} \right)^{-\frac{2\alpha}{2\alpha+1}}.$$

Main Results -Lower bound

We have

$$\left\| \hat{\Sigma}_{\times} - \Sigma_{\times} \right\| \geq \sup_{\epsilon [-]} \left| (\sigma_{0} - \hat{\sigma}_{0}) + 2 \sum_{i=1}^{\infty} (1 - \frac{m}{p}) (\hat{\sigma}_{i} - \sigma_{i}) e \right|$$

$$= \sup_{\epsilon [-]} \left| \hat{f}(t) - f(t) \right| + \text{negligible term}$$

based on a fact

$$\|\Sigma \times \| \geqslant \sup_{\in [-]} \frac{1}{p} \Sigma_{\times} v, v = \sup_{\in [-]} \sigma_0 + 2 \sum_{i=1}^{\infty} (1 - \frac{m}{p}) \sigma_i e$$

where $v = (e, e^2, \dots, e)$. Thus

$$\sup_{\mathcal{F}_{\alpha}} \mathbb{E} \left\| \hat{\Sigma}_{\times} - \Sigma_{\times} \right\|^{2} \ge c \left(\frac{np}{\log(pn)} \right)^{-\frac{2\alpha}{2\alpha+1}}.$$

Remark: Need to have some assumptions on (n, p, α) such that the "negligible term" is truly negligible.

Main Results – Upper bound

Show that there is a $\hat{\Sigma}_{\times}$ such that

$$\sup_{\mathcal{F}_{\alpha}} \mathbb{E} \left\| \hat{\Sigma}_{\times} - \Sigma_{\times} \right\|^{2} \leq C \left(\frac{np}{\log(pn)} \right)^{-\frac{2\alpha}{2\alpha+1}}$$

for some C > 0.

Main Results – Upper bound

Let $\Sigma = [\sigma \ 1_{\{ \leqslant -1\}}]$ be a banding approximation of Σ_{\times} ,, and $\tilde{\Sigma}$ be a banding approximation of the sample covariance matrix $\hat{\Sigma}_{\times}$. Note that $\mathbb{E}\tilde{\Sigma} = \Sigma$. Let $\hat{\Sigma}$ be a Toeplitz version of $\tilde{\Sigma}$ by taking the average of elements along the diagonal.

We have

$$\|\hat{\Sigma} - \Sigma\|^{2} \le 2\|\hat{\Sigma} - \Sigma\|^{2} + 2\|\Sigma - \Sigma\|^{2} \le 8\pi^{2} \left(\|\hat{f} - f\|_{\infty}^{2} + \|f - f\|_{\infty}^{2}\right)$$

since

$$\|\Sigma\| \le 2\pi \|f\|_{\infty} = \sup_{[-]} |\sigma_0 + 2\sum_{=1}^{-1} \sigma \cos(mt)|.$$

Main Results – Upper bound

Variance-bias trade-off

Variance part:

$$\mathbb{E} \parallel \hat{f} - f \parallel_{\infty}^{2} \le C \frac{k}{np} \log (np).$$

Bias part:

$$|| f - f ||_{\infty}^2 \le Ck^{-2}$$
.

Set the optimal k:k $\simeq \left(\frac{1}{\log}\right)^{\frac{1}{2\alpha+1}}$ which gives

$$\sup_{\mathcal{F}_{\alpha}} \mathbb{E} \left\| \hat{\Sigma}_{\times} - \Sigma_{\times} \right\|^{2} \leq C \left(\frac{np}{\log(pn)} \right)^{-\frac{2\alpha}{2\alpha+1}}$$

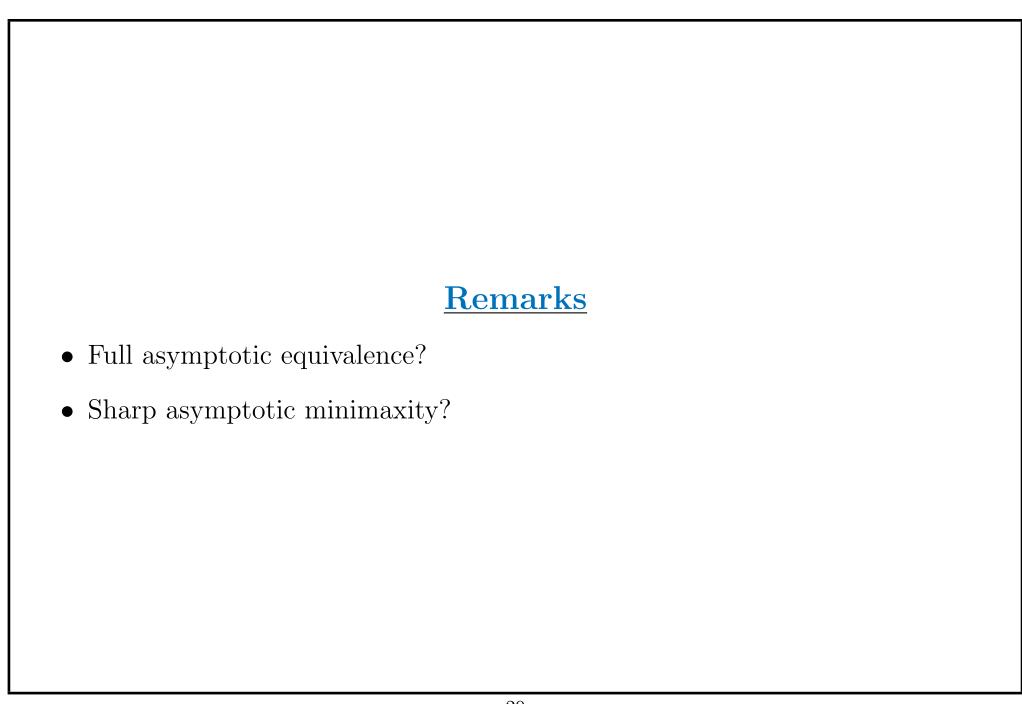
Remark: For simplicity we consider only the case $k \leq p$.

Main Result

Theorem. The minimax risk of estimating the covariance matrix Σ_{\times} over the class—satisfies

$$\inf_{\hat{\Sigma}_{p \times p}} \sup_{\mathcal{F}_{\alpha}} \mathbb{E} \left\| \hat{\Sigma}_{\times} - \Sigma_{\times} \right\|^{2} \simeq \left(\frac{np}{\log (pn)} \right)^{-\frac{2\alpha}{2\alpha+1}}?$$

under some assumptions on (n, p, α) .



Summary

- We studied rate-optimality of Toeplitz matrices estimation.
- Le Cam's theory plays important roles.
- Full asymptotic equivalence and sharp asymptotics remain unknown.