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Introduction

Let Xy,...,X ,beiid. p-variate Gaussian with an unkown Toeplitz covariance
matrix X p p
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Goal: Estimate X p pbased on the sample X .:1 ¢ ng.




Introduction — Spectral Density Estimation

The model given by observing
Xy N(0,Xu9
with X p p Toeplitz is commonly called
Spectral Density Estimation
X1, a stationary centered Gaussian sequence with spectral density f

where

f(t):% S o %xp(imt):%[aﬁzza cos(mb)], t2 [ .l

m— 00 ml

Here we have o =0

Remark: there is a one-to-one correspondence between f and Yooy oc.




Introduction — Problem of Interest

We want to understand the minimax risk:

inf sup EKY k2
S F

where K K denotes the spectral norm and F is some parameter space for f.




Motivation from Asymptotic Equivalence Theory

Golubev, Nussbaum and Z. (2010, AoS)

The Spectral Density Estimation given by observing each X ,is

asymptotically equivalent to the Gaussian white noise
dy ;(t) = log f(t)dt + 2x2p~2aW (1), t 2 [ =, 7]

under some assumptions on the unknown f.

For example,

F (M,e)=Ff:jf(t1) f(t2)] Mjt1 toj*and f(t) €g.

We need o > 1/2 to establish the asymptotic equivalence.




Intuitively, the model
X, NOYxp,i=1,2,....n
is asymptotically equivalent to
dy (t) = log f(t)dt + 27"/ (np) 2 dW (t), t 2 [ 7, 7]

possibly under some strong assumptions on the unknown f .




“Equivalent” Losses

Let Yoovo, be a Toeplitz matrix and f be the corresponding spectral density:.

We know

A

Ekmxma Z%oxm4|::2ﬂ

ol
based on a well known result

KS soxook = 27 KFK _

where
KX ooxooK = sup K¥ooxaotK,, and Kfk =supjf (z)j.
| 4o=1 x
Intuitively
5jlkp §3B<4 ikaaa EkaaJ)?

Thus optimal estimation on f may imply optimal estimation on ..




Question

Can we show

_ 2 np 2 +1
inf supE "
,\p F P P PP IOg (pn)

Remark : Classical result on nonparametric function estimation under the sup
norm:

2 Ty
inf supE ' f b
Noo F 1 log (pn)




Again,
We don’t really have the asymptotic equivalence.

The following claim is very intuitive
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Show that

for some ¢ > 0.

Main Results —Lower bound

2a

2 ( np ) _2a+1
C
log (pn)

inf supE
Zp><p -/T"oz
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Main Results —Lower bound

A more informative model

Observe Y| = (X1, W;) with a circulant covariance matrix 2(2 P-1)x(2 P-1)

( o) 01 Op2 Op1 Op2 02 01 \
01 oy Op2 Op1 02
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Op1 O p2 01 g0 02 Op2 Op1
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Define

. .
1 17 p
and where

Fi{t) = % <UO+QZJ o8 (m)) |

ml

It is well known that the spectral decomposition of i(g p-1)x (2 1) can be

described as follows:
i(21:L1 2p1) = Z Afu s

< -1
where
A= fp(wj)a J]J p 1

and the eigenvector uJ doesn’t depend on fo ;0 m p 1g.
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Main Results —Lower bound

The more informative model is exactly equivalent to
Zi= fpwd) & jjj<p L, Var(§) 1/n.

For this model it is easy to show

2a

2 ( np ) _2a—|—1
C :
0 log (pn)

A

for

sup £
Fa
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Main Results —Lower bound

We have

P
N A m. ,. .
2ipcp ZPXPH sup | (0o (70)“‘25:(1 ;)(U m 9 %617‘
mml

te[—m ]

= sup |f(t) f (t)| + negligible term

te[—m ]

based on a fact

1 ]
KX K> sup —hXp e, v = sup

0'0—|—2Z(1 @)a 7%"7‘

te[—m x| P te[—m m] —1 p
where v, = (e, e®, ei®) Thus
5 2o
~ 2a+1
SupE > P P > x p‘ C ( o8 ) .
Fa log (pn)

Remark: Need to have some assumptions on (n,p, «) such that the “negligible
term” is truly negligible.

15




Main Results — Upper bound

Show that there is a 3. w psuch that

2a

2 np ) T 2a+1
C
<1Og (pn)

sup K
Fa

2Wp ZW%

for some C > 0.

16




Main Results — Upper bound

Let ¥» = [0 ] sr_1j) be a banding approximation of ¥ . 5, and ¥ be a
banding approximation of the sample covariance matrix > p Note that

EX, = . Let 3» be a Toeplitz version of X, by taking the average of elements
along the diagonal.

We have

2 2Hi}k sl 4ok, B K 87T2(kfk fa K2+ K fr fpkio>

S, 24

since
p-1
kXpk <27 K fp Koo= sup jog + 2 Z o cos(mt)j.
[—m 7]

ml
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Main Results — Upper bound

Variance-bias trade-off

Variance part:

Ekfk fr K2, Cﬁlog(np).
np

Bias part:
Kfr foki Ck*«

1

7.29 2a+1 . .
o Tp) which gives

Set the optimal k: k p, .4 (

2a

2 np ) 20+l
C
<10g (p2)

Remark: For simplicity we consider only the case k p, 5, P

EWP ZW%

sup K
Fa
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Main Result

Theorem. The minimax risk of estimating the covariance matrix X p pover the
class F _satisfies

2

2 ( np ) T 2a+1 )
log (pn) |

inf supE
Ypxp Fa

in ZW%

under some assumptions on (n, p, ).
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Remarks

Full asymptotic equivalence?

Sharp asymptotic minimaxity?
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Summary

We studied rate-optimality of Toeplitz matrices estimation.
Le Cam’s theory plays important roles.

Full asymptotic equivalence and sharp asymptotics remain unknown.

21




