Summer School, Peking University, 2020

Dynamical Systems and Machine Learning

Qianxiao Li
20—24 July 2020

Preface

These lecture notes are compiled for the summer school on

https://www.overleaf.com/latex/templates/lecture-note-template/dwyrjrnthdcz
mailto:qianxiao@nus.edu.sg

Contents

Contents
1 Introduction 5
11 OVEIVIEW . . . o o e 5
1.2 Supervised Learning and Neural Networks 6
1.2.1 The Basic Supervised Learning Problem 6
122 Example: LinearModels 8
1.2.3 The Neural Network HypothesisSpace 11
124 Optimizing Neural Networks 13
125 DeepNeural Networks 15
1.3 Ordinary Dilerkntial Equations 16
131 BasicDelnitions 17
132 Flow Map and Dependence on Initial Condition 18
1.3.3 Numerical Solutionof ODEs 19
2 Optimal Control Theory 21
2.1 From Calculus of Variations to Optimal Control 21
211 AMotivatingExample o 21
2.1.2 The Problem of Optimal Control 23
213 WeakvsStrongMinima 23
2.1.4 A Dynamical View on the Calculus of Variations 25
2.15 The Optimal Control Formulation. 26
2.2 Pontryagin’s Maximum Principle 27
221 TheMaximumPrinciple 28
2.2.2 Other Forms of the Maximum Principle 31
223 FurtherReading. 33
2.3 Hamilton-Jacobi-Bellman Equations 34
2.3.1 Motivating Example of Dynamic Programming 34
2.3.2 The Dynamic Programming Principle 35
2.3.3 Hamilton-Jacobi-Bellman Equations 37
2.34 Implications for Optimal Control 39
235 FurtherReading. 42
3 Dynamical Systems Meets Deep Learning 43
3.1 A Mean-[eldl Optimal Control Formulation of Deep Learning 43
3.2 Optimality Conditions 45
321 Mean-[eld Pontryagin’s Maximum Principle 45
3.2.2 Mean- [eltl Hamilton-Jacobi-Bellman Equations 46

Contents

3.3 Control Inspired Learning Algorithms 47
3.3.1 Method of Successive Approximations 47

3.3.2 Layer Parallel Training Algorithms 48

3.33 SummaryandOutlook 50

34 Control Inspired Architectures 51
3.4.1 Constraining Weights to Guarantee Stability 51

3.4.2 Architectures from Other Finite Di [erknce Discretization Schemes . . 53

3.4.3 ArchitecturesfromPDE Theory 54

344 SummaryandOutlook, 55

3.5 Mathematical Results from the Dynamical Systems Approach 56
351 Approximation Theory 56

352 Generalization 57

3.5.3 Connection between Continuous and Discrete Time 58

354 SummaryandOutlook, 59

4 Summary 61

1 Introduction

1 Introduction

1.1 Overview

With recent advancements in algorithms and computational hardware, deep learning [LBH15]
has risen to the pinnacle of many practical applications, including image analysis, natural
language processing and game playing, etc. However, on the theoretical side, we are only at
the nascent stages of exploration. In a sense, deep learning is about learning representations,
yet the way it does so is quite peculiar: it relies on repeated transformations through the deep
layers of a neural network to disentangle features and learn very complex representations.
Mathematically, these transformations act together via compositions, which connects this to the
classical [ell of study known as dynamical systems [Bir27]. How does this connection help us
to unveil certain aspects of deep learning?

These notes presents an pedagogical overview of the connection between dynamical systems
and machine learning. Here, the theory of optimal control acts as a bridge between calculus of
variations on the one hand, and training deep networks on the other. Hence, we will use the [rst
half of the notes to introduce the basic theory of optimal control, including the central results of
Pontryagin and Bellman. This lays the basic theoretical groundwork for its applications to deep
learning research. As there are many references to these topics, the focus here is not to present
the theory in its utmost generality. Instead, we will sacri [cd generality (and sometimes, a bit
of rigor) in favor of simplicity and transparency. Nevertheless, where relevant further reading
references will be provided for readers interested in the general theory of calculus of variations
and optimal control.

In the second part of these notes, we will discuss some applications of the dynamical sys-
tems viewpoint on deep learning, including mathematical formulations, optimality conditions,
learning algorithms and model architectures. The content in this part is fairly new and our
understanding is still far from complete. Hence, the goal of this part is to survey recent research
in this direction, as well as point out the limitations and a host of future research directions
that one may pursue.

The reader is assumed to have a basic familiarity with linear algebra, calculus/analysis and
probability. Knowledge of machine learning, di Lerkntial equations, numerical analysis and
optimization is highly desirable, but the relevant ideas will be introduced along the way, with
reference provided for further reading or review.

1 Introduction

1.2 Supervised Learning and Neural Networks

We start by giving a quick review of supervised learning and neural networks. The discussion
is rather brief and the reader is referred to [BO06, MRT18] (and for deep learning, [GBC16]) for
a more thorough introduction.

1.2.1 The Basic Supervised Learning Problem

We begin with a brief introduction of the problem statement of supervised learning. Supervised
learning is perhaps the most basic class of machine learning problems. Here, we are given a
dataset D = {xj, yi }i’\‘:1 consisting of inputs x; with their corresponding labels y; and N is the
size of the data. The underlying assumption is that each y; is determined by x; through some
target function F*, i.e. yi = F*(xj). In classi [cdtion problems, the function F* is sometimes
called the oracle, carrying the meaning that it can determine perfectly the label of any sample
presented to it. More generally, one can take into account of noise and uncertainties by assuming
that given x;, y; is a sample from some “target” conditional distribution y; ~ p*(|xj). The most
common model for this case is when y; = F*(xj) + € with ¢ representing some random noise
term. For the sake of simplicity, for now we shall discuss supervised learning in the deterministic
context. When the labels y; take values in a continuum, say in R, we say that this is a regression
problem. Otherwise, if y; take discrete values, we say that this is a classi [cation problem.

The target F* is unknown to us except from the information contained in the dataset D =
{xi,yi = F*(x)}iN:1- As such, the over-arching goal of supervised learning is to construct, using
D, a good approximation of the target. The word supervised means that in our dataset D, the
correct label is provided to us as a form of supervision by F* in our learning process.

So, how can we go about constructing such a predictive model? Notice that without explicit
knowledge of F* and from mere observations of D, it is not clear how we can even represent F*,
say on a computer. Consequently, this motivates the following approach: we take a collection of
functions that we can represent on a computer or even a piece of paper; From this collection we
pick one F that “best approximates” F* in some sense — F is then taken as our learned predictive
model. This collection of functions, which is our job to decide, is called the hypothesis space
and we will denote it by .

What is missing from the above discussion is how we pick a particular function F to approximate
F*. Clearly, it relies on a precise de [nikion of “best approximation”. This is where the concept of
loss functions comes in. In abstract terms, we want to have a notion of how close any candidate
F is to the target F*. For classi[cation problems, a reasonable measure of the closeness of
another classi [ed F to the target F* is

N
1
R(F) = N Z L (xi)F *(xi)» (1.1)
i=1

where 1. is the indicator function which equals 1 if condition ¢ is true and 0 otherwise. Thus,

1 Introduction

R(F) is the accuracy of f on the training dataset D. In statistical language, R(F) is also called
an empirical risk associated with the predictor F.

More generally, the closeness of F to F* can be de [ndd by a suitable loss function @, so that

N N
RF) = 2 3 L(FGR), () = < " @(F(x), 1) 12)
i=1 i=1

and we want ®(y’, y) to decrease as y and y’ becomes closer. For the example given in (1.1),
we have ®(y’, y) = Ly, and this is known as the zero-one loss. For various reasons which will
become clear, the zero-one loss is not often used, and we will consider a variety of other loss
functions in both classi [cation and regression problems. For example, a commonly used loss
for regression is the square loss ®(y’, y) = %Hy’ —yll%.

Once a suitable loss function (and hence a notion of distance) is de [ndd, the supervised learning
problem can now be formalized as an optimization problem

Enel(p(R(F), (1.3)
and if we can solve this problem, a minimizer F € H of (1.3) is then our obtained predictive
model. The process of [nding F by minimizing R(F) (!vhich depends on the data D) is called
training, and F is called a trained model. Hopefully, F performs our task of predicting label
from inputs adequately, in which case we have succeeded at this supervised learning task.

Empirical Risk Minimization vs Population Risk Minimization. The preceding discus-
sion, in particular Eq. (1.3) appears to suggest that machine learning is in some sense equivalent
to an optimization problem. However, this is not so. In fact, Eq. (1.3) is not the actual problem
we want to solve. To see this, simply observe that we can easily come up with a F that minimizes
the zero-one loss in the digit recognition problem — we simply memorize the label associated
with each image xj, i = 1,2,..., N found in the training data, i.e.

i):{yi o x=x f_orsomei:1,2,...,N. (L4

anything otherwise

Obviously, R(F) = 0 but F is not what we want. What we really want is F to perform well
on new examples not found in, but distributed identically as, the original training dataset. In
mathematical terms, what we really want to solve is the population risk minimization problem

Min Roop(F) = Bx-uL(F(x), F*(x)), (L5)

where u denotes the probability distribution from which the samples {x; }i’\‘:1 are sampled from.
More generally, p is used to denote a joint distribution of the input and label, and so we have

gli(p{Rpop(F) = Ex.y)~p L(F(x), y), (1.6)

1 Introduction

which includes(1.5)as a special case iftx;y°! 1X° g 0=y, but also includes more general
cases where the label can depend stochastically on the input.

In contrast, (1.3) is aempirical risk minimizatiorproblem, which we can rewrite as

i 1o-1®] 1F1y. O- F 1y, 00 Lid. .
min RemptF° = — L1Fx; 0 F x; Xi : a.7)
F2H 21
However, in practice we cannot represent the sample distributigrand hence we often resort
to solving (1.7)in place of(1.5) Nevertheless, it must be stressed that a good solutiofilob)is
what we are really after. The di erence between the solutions of these problems is the study of
generalizationwhich sets learning problems apart from pure optimization problems.

Three Paradigms of Supervised Learning. Now that we have formalized the basic problem

of supervised learning, it is natural to discuss what sort of questions can we ask in machine
learning theory and practice. In a sense, these questions can be grouped into three large
categoriesapproximationoptimizationandgeneralizationBelow we list some central questions

in each of these aspects.

1. Approximation How large is our hypothesis sp&t@ In particular, does it include, or
at least contain functions that are very close to our target? This is in fact the study of
approximation theorand some oharmonic analysi§DP07 Mal09, although there are
also many modern developments, particularly in the area of deep learning.

2. Optimization How canwe nd or get close to an approximal@fF 2. Thisis indeed the
empirical risk minimization problem, and questions include the design of large-scale opti-
mization algorithms, their convergence analysis and their e cientimplementation. Many
methods are extensions of classical methods in convex optimizaticgsD4. See BCN1§
for a modern review. This will be the primary way optimal control theory comes into the
picture.

3. Generalization Can theP found generalize to unseen exampld$@s concerns the
fundamental interaction between the size of the data and the complexity of our hypothesis
space. In fact, this question is the focus of classical statistical learning theory [FHTO1].

Figure 1.1 gives an illustration of these questions. Of course, some of these concepts also apply
beyond supervised learning framework.

1.2.2 Example: Linear Models

To illustrate supervised learning, it is useful to introduce the simplest casefir model®r
linear basis model€onsider the datasdd = fx;;y; g’il where each inpuk; 2 RY is a vector
in d dimensions and scalar labgl 2 R. Consider the hypothesis space
@ 1
H= F:Fx°= w; jX° (1.8)
j=0

1 Introduction

deep neural networks make up the following hypothesis space

H = {F (F(x) =v'x(K),v € RdK}
where

x(k + 1) = c(W(k)x(k) + b(k)), W(k) € R9+¥dk pk)e R+ k=0,....K-1
with dy=d, =x(0)=x.

The trainable parameters are the weights {W(0), ..., W(K — 1)}, biases {(0),...,b(K — 1)} and
the [nal combination ([nal layer) weights v. The activation function is applied element-wise to
each vector, i.e. o(z)i = o(zj).

Residual Networks. The deep network architecture proved to be tremendously successful
at learning relationships between inputs and outputs. The hypothesis space (1.31) is only the
simplest example, and there are many variants. In these notes, we will focus on a particular
variant known as residual networks [HZRS15], which is among the state of the art architectures
for deep learning. ResNet is not a particular architecture but a class of architectures that has a
residual connection. For example, the residual version of (1.31) is obtained when we replace

x(k +1) = s(WE)x(k) +b(k) — x(k+1) = x(k)+a(Wk)x(k) + b(k)). (132

Note that this necessitates the fact that dy = d forall k = 0, ..., K. More generally, a residual
network has the form

x(k + 1) = x(k) + f(k, x(k), 0(k)), (1.33)

where 6(k) € © are the trainable parameters at layer k. Readers familiar with ordinary di Cerkn-
tial equations will immediately recognize the form of (1.33) resembles a Euler discretization —
this observation is in fact the central viewpoint of the work on the dynamical system viewpoint
of deep learning, which is the focal point of these notes. Hence, let us now complete the
background material by introducing some basics of di [erential equations.

Back-propagation Algorithm. Just like shallow networks, DNNs can be trained using GD
(or SGD). The only complication is, since there are many trainable parameters linked in a
deep network, can we have a e [Cieht way to compute the gradient? The well-known back-
propagation algorithm precisely handles this. Since we are going to introduce an mathematical
equivalent way to view back-propagation, we will postpone detailed discussion of this algorithm
to later chapters.

1.3 Ordinary Di Lerkntial Equations

In this section, we introduce some basics of ordinary di Lerkntial equations that will be useful to
us for later chapters. We will not present any proofs since they can be found in any standard

16

1 Introduction

introductory text (e.g. [Arn12, Cod12]) the readers are assumed to have some familiarity with
the topic, but we will state without proof a few useful properties and illustrate some relevant
phenomenon with examples.

1.3.1 Basic Definitions

We will work in RY. An ordinary di [efkntial equation (ODE) is the equation
%(t) = f(x(), x(0)=xp € RY, (1.34)

where x denotes the time derivative, f : RY — RY js a function or vector [eltl and x; is the
initial condition. This called a time homogeneous ODE since the vector [eltl on the right does
not depend explicitly on time ¢. On the other hand, a time-inhomogeneous ODE is given by

%(t) = f(t,x(1)), x(0)=xp € RY. (1.35)

We note that minus technical conditions, these two equations are equivalent. First, obvi-
ously (1.35) includes (1.34). For the reverse direction, we de [n@& an auxiliary variable x° € R
such that x%(t) = 1, x%(0) = 0 so that x°(¢) = . Then, we can rewrite (1.35) by de [Aing
%= (% x), f(%) = (1, f(x x)) exactly in the form of (1.34). Hence, for convenience we will
work with either (1.34) and (1.35), keeping in mind that they are e [edtively equivalent for most
purposes.

By a solution of an ODE on [0, T] we mean a function x : [0, T] — RY with X := {x(¢) : t €
[0, T]} that satis [edl (1.35).

Example 1.7: Linear ODEs

Letd = 1and f(x) = ax with a € R. Then, check that
x(t) = e¥txg, (1.36)

is the solution to (1.34). More generally, consider d > 1 and f(x) = Ax where A € R%4,
Then,

x(t) = ePxo, (1.37)

is the solution to (1.34). Here ¢© := 3; C'/i! denotes the usual matrix exponential.

The de [nition of solution requires X to be di Lerkntiable on (0, T). But we remark that it is
possible to relax this by considering integral forms. For example, we can write (1.35) as

t
x(t) =xp + /0 f(s,x(s))ds. (1.38)

17

1 Introduction

The advantage here is that we can consider less regular X to be solutions of ODEs, e.g. here
it is only required for X to be absolutely continuous, meaning that x satis [edl (1.35) for almost
every t. One of the most basic results concerns when a solution to (1.35) (or (1.38)) exists. The
following result gives su Lcieht conditions, and we will hereafter always assume that a unique
solution exists to whichever ODE we deal with.

Theorem 1.8: Picard—Lindel6f Theorem

Let f be continuous in ¢ and uniformly Lipschitz in x, i.e. there exists a constant C such
that || f(t,x) — f(t,x")]| < C|lx — x’|| for all x,x” € RY and ¢ € [0, T]. Then, there exists a
unigue solution to (1.35) on [0, T].

1.3.2 Flow Map and Dependence on Initial Condition

One way to look at ODEs is to look at its solution trajectories given initial condition. Alterna-
tively, we can also look at what the solution does to a set of initial conditions at a [xdd terminal
time. In other words, we de [né the [aw or the [ow map ¢ : RY — R

ot (x) == x(t) where x(s) = f(s,x(s)), se[0,t], x(0)=x (1.39)

In fact, the set @ := {¢ : t € R} forms a one-parameter continuous group of transformations
on RY, under the binary operation of function composition. Analyzing the set & can be seen as
an alternative way to understand ODEs, and is of particular relevance when we connect with
the realm of deep learning.

The following properties are well-known and easy to check:
* ¢ IS continuous for each ¢
* ¢ is the identity mapping, ¢o(x) = x for all x
* If £ does not depend on ¢, then ¢ o g5 = @t4s, i.6. t — @ is @a homomorphism.

One can also ask how sensitive does the terminal state of the ODE is to the initial condition.
This can be captured by the jacobian of ¢, [Vt (x)]ij = j¢t,i(x). The following result will be
useful to us later.

18

1 Introduction

Theorem 1.9: Dependence on Initial Condition

Let f be continuously di[erentiable in x, and Lipschitz in x uniformly in ¢. Let X be
the solution of the ODE (1.35) with [aw map ¢; and v be the solution to the linear
time-inhomogeneous ODE

o(s) = Vyx f(s, x(s))v(s), s €[0,t], v(0) = vyg. (1.40)
Then, we have

@t (xo + €vp) — @t (xp)
£

—o(t)|| — 0, (1.41)

lim

e—0*t

uniformly in ¢ € [0, T] for ||Jvg]| < 1.

Corollary 1.10

1 Introduction

duction. Pertaining to the topic discussed in these notes, it is su Ccieht to [rst introduce the
simplest possible method, the forward Euler method.

In this method, we construct a solution to (1.35) by discretizing time and setting
x(k + 1) = x(k) + At f(kAt, x(k)), x(0) = xo, (1.45)

which can be seen as a [rst-order Taylor expansion of the integral form of the ODE (1.38) for
small At. The latter is called the step size. We expect that this approximation to get better as
the step size At becomes small. This is made precise in the following result.

Theorem 1.12: Global Truncation Error of Forward Euler Method

Let f be Lipschitz in x uniformly in ¢ and continuous in ¢t. Let X be a solution of the
ODE (1.35) with initial condition x; and X be the iterates de [néd in (1.45), then for each
K > 0 there exists a constant C > 0 such that

max |¥(k) — x(kAD)| < CAL. (1.46)

20

2 Optimal Control Theory

2 Optimal Control Theory

The study of optimal control theory originates from the classical theory of the calculus of varia-
tions, beginning with the seminal work of Euler and Lagrange in the 1700s. These culminated in
the so-called Lagrangian mechanics that reformulate Newtonian mechanics in terms of extremal
principles. In a nut shell, the calculus of variations studies optimization over “curves”, which
one can picture as an in [nike dimensional extension of traditional optimization problems.

Optimal control theory is a nontrivial extension of the classical theory of calculus of variations
in two main directions: to dynamical and non-smooth settings. This builds on important
contributions of Weierstrass and others and led in two inter-related directions: the Pontryagin’s
maximum principle and the Hamilton-Jacobi-Bellman theory. An interesting historical account
of the developments can be found in [Lib12].

In this section, we give a minimal introduction of the problem formulation of optimal control
problems, paying particular attention to the so-called Bolza problems which are most relevant
to deep learning. The reader is referred to comprehensive texts on optimal control theory for a
more complete account [AF13, Lib12, BPO7].

2.1 From Calculus of Variations to Optimal Control

2.1.1 A Motivating Example

Finite-dimensional optimization problems are of the form

inf ®(x), d: X - R, (2.2)
X eX

where X is usually a subset of a Euclidean space. On the other hand, a calculus of variations
problem minimizes some functional J over some in [nike dimensional space X, i.e.

ini{][x] J: X >R, (2.2)

There are many possible forms of the functional J and the space X. For example, one may
encounter functionals in the form of an integral, where the argument X = {x(u) : u € [a, b]} is
a function of a scalar variable 4, i.e.

b
JIX] = / Lot x(u), X' (w)du 23)

21

2 Optimal Control Theory

Let us consider motivating example problem of this nature that is also of substantial historical
importance.

Example 2.1: Rolling a Ball Down a Ramp

Let a < b be two points on a horizontal plane, and our goal is to build a ramp such that
when we release the ball from point q, it can arrive at a point directly under point 4 in the
shortest time possible. See [gure below. We will assume that there is no friction.

a b

i d

\
]

X

What shape of the ramp will achieve this task? It turns out that we can phrase this as a
calculus of variations problem. Let s(u) be the instantaneous speed of the ball when its
horizontal coordinate is at u, and let {x(«)} denote the shape of the ramp and that x(a) = 0.
By conservation of energy we [nd that

%ms(u)2 = mgx(u) = s(u) = v2gx(u) (2.4)

Hence, the total time taken from a to b is the integral of the arc-length divided speed, i.e.

u, (2.5)

. V1+ x’(u
Total time = /

ng(u

which is of the form (2.3) where L(u, x,v) = V1 + v/+/2gx.

The problem in Example 2.1 is known as the Brachistochrone' problem, and is [Ist posed by
Johann Bernoulli in 1696. One can see from the example above that to solve this problem, it is
needed to solve optimization problems over curves. A classical result due to Euler and Lagrange
gives a necessary condition for optimality that allows us to solve this problem.

LIn Greek, “Brachistochrone” is literally “shortest time”.

22

2 Optimal Control Theory

Theorem 2.2: Euler-Lagrange Equations

Let X € Cl([a, b],R) be an extremum of J as de [N&d in (2.3). Then, X satis [ed the Euler-
Lagrange Equations

O« L (u, x(u),x"(u)) = di;aX/L (u, x(u), x"(u)), u € [a,b]. (2.6)

We have deliberately left several notions rather unde [ndd, such as the meaning of an extremum.
We will revisit this slightly subtle issue in the next part. Here, we will not present a proof of the
Euler-Lagrange equations, since it is not required for the rest of our discussions. A proof can be
found in any standard texts on the subject of calculus of variations, say [GS00, Lib12].

Exercise 2.3: Brachistochrone Solution

Consider the Brachistochrone problem in Example 2.1. By choosing appropriate units one
can set g = 1/2. Show that the optimal ramp shapes are cycloids whose parametric forms
are

w(@) =a+c(0@-sind)

x(68) = e(1 - c0s6) 0e[0,27x], ¢>0. (2.7

2.1.2 The Problem of Optimal Control

In passing to optimal control, we consider additionally two aspects of the problem, namely the
type of extrema studied, as well as the setting in which such calculus of variations problems are
phrased.

Throughout these notes, the word “extrema” refers to either a minimum or a maximum in the
function/functional under consideration. Since maximization is just equivalent to minimization
by replacing the objective function(al) with its negation, we will hereafter only discuss minima,
unless otherwise stated.

We start with distinguishing di Lerknt types of minima.

2.1.3 Weak vs Strong Minima

In [nike-dimensional optimization, it is easy to de [né the notion of local and global minima.
Let d : RY — R be a function.

» We say that x* is a local minimum of @ if there exists a § > 0 such that ®(x*) < &(x) for
all ||lx — x*|| < 6.

23

2 Optimal Control Theory

« We say that x* is a global minimum of @ if ®(x*) < ®(x) for all x € RY.

Hence, all global minima are automatically local minima. If @ is di Lerkntiable, then a necessary
condition for a local minima is that V&(x*) = 0. We have seen this in the least squares
formula (1.15).

In extending these ideas to in [nite dimensions, one needs to be slightly more careful. Notice
that the de [nition of minima (local or global) depends on the norm || - || which gives us a sense
of closeness. We did not specify what norm we used in the [nike dimensional case above, since
all of them are equivalent?.

In the in [nike dimensional case of minimization of functionals, the norm we choose will a [edt
our results, and some curve X may be a local minimum of J under one norm but not under
another.

We now distinguish between two notions of minima — weak and strong minima — commonly
encountered in calculus of variations and optimal control.

Let us consider for the moment that our curve X is C1. Moreover, let us simplify things and
consider one spatial dimension, so that x(u) € R for u € [a, b]. Now there are two natural
choices of norm that we can use

« 0-Norm: [[Xllo = SUPy cfa b, [x(w)].
« 1-Norm: [[X[ly = [[X[lg + SUPy c(a,p) %" ().

Each of these norms then allows us de [né the notion of minimum.

De [nikion 2.4: Strong and Weak Minima

Let J : C}([a, b],R) — R be a functional and x* € C*([a, b], R). We say that x* is a strong
local minimum if there exists a 6 > 0 such that J[x*] < J[x] for all ||[x — X*|lo < 6. We say
that x* is a weak local minimum if we place the norm || - |lo by || - |1. The global versions
are de [nad similarly.

Now, it is easy to see that any strong minima must be a weak minima, but the converse is not
true. Moreover, observe that the Euler-Lagrange equations (Thm. 2.2) apply to weak minima,
whereas we need more advanced tools to handle strong minima. We now consider a simple
example below where a weak minima simply do not exist — but we will see later that this does
not prevent the existence of a strong minima. All of these reasons motivate us to go past the
setting of Euler and Lagrange and into the realm of optimal control.

Example 2.5: Piece-wise C* Minimizer

21 et - |la and || - |lg be two norms on RY, then there exists ¢ € (0,1] such that c||x|la < llxlls < Z|lx|| for all
xeRY,

24

2 Optimal Control Theory

Consider the problem of minimizing the functional

1
JIX] = / ()Pl () — 1Pdu, (28)

1

subject to the boundary conditions x(—1) = 0 and x(1) = 1. Clearly, for all x € C* we have
J[X] > 0. But the curve

0 -1<u<0
= - 2.9
x(u) {x O<ucx<l 29)

achieves J[x] = 0, but is only piece-wise C*. In fact, C* curves can get closer and closer to
x(u) with lower and lower cost, thus a C* global minimizer does not exist.

2.1.4 A Dynamical View on the Calculus of Variations

Optimal control is another way to look at calculus of variations problems, in that we view
things in a dynamical nature. Concretely, we may re-parameterize the curves x(u) considered
via in [nikesimal changes in it, in the form of a control. Let us motivate this approach in the
context of the Brachistochrone problem.

Example 2.6: Control Formulation of Brachistochrone

Consider the Brachistochrone problem 2.1, but this time we parameterize the ramp by a
parametric form from the outset, i.e. (u(t), x(¢)) where ¢ is time. Then, the speed at time ¢

is s(u(t)) = s(t) = \/u(t)2 + x(t)2. Then, conservation of energy leads to
2gx(t) = x(t)? + u(t)?. (2.10)
Now, we imagine the reverse scenario treating the velocities x, as controls, by setting
01(t) = u(t)/2gx(t) Ox(t) = 5(1)//29x(1). (2.12)
Then, we end up with a control system that de [nds the equation of the ramp

u(t) = 01(t)v29x(t)

x(t) = 02()y/29x(t) (2.12)
01(t)° + 62()° = 1

(u(tg), x(t9)) = (a,0), u(ty) =b

The cost function in this case is the time taken, so J = ftzl 1dt = t; — to.

25

2 Optimal Control Theory

It is worth noting that by formulating the original calculus of variations problem as a control
problem, we actually gained some generality:

* It is no longer assumed that x can be written as a function of u

* It is not necessary for x to be di Cerentiable with respect to u

2.1.5 The Optimal Control Formulation

Now, let us formulate precisely the optimal control problem in the general setting.

The Dynamics. Consider the ordinary di Lerkntial equation
x(t) = f(£,x(1),0(t)), t€lto,tr], x(to) = x0. (2.13)
Here x(t) € RY is the state, 8(t) € © c R™ is the control, with © the control set. We will assume
that the control set is closed (but it need not be bounded).
We will assume that the following conditions on f holds, unless otherwise stated:
* f(t,x,0)is continuous in ¢ and @ for all x
* f(t,x,0) is continuously di Lerkntiable in x for all ¢, 6

These conditions are su [cieht to ensure that (2.13) is well-posed by a similar result as in
Theorem 1.8. See [BPO7].

Remark. The conditions outlined above are certainly not the weakest possible to imply local
well-posedness of solutions, and they can be weakened in various ways (See e.g. [BP07] Ch.2).

We also emphasize two crucial points not assumed
* We did not assume that f is di [erentiable with respect to 6

» We did not assume that ¢ +— 6(t) is regular. In fact, in the general case we can consider 6 to
be a essentially bounded function of ¢

The Cost Functional Let us now de [nd the objective functionals. We will consider function-
als of the form

t
1= /t L(t, x(0), ())dt + (1, x(11) (214)

e L:RxRYx© — Ris called the running cost

e &:RxRY — Ris called the terminal cost

26

2 Optimal Control Theory

The Bolza Problem of Optimal Control Now, we state the Bolza problem of optimal con-
trol, which will be the primary object of analysis in these notes.

6]
infJl 1= /t Lt x(0), 0(t))dt + B(11, x(11))

subject to
x(t) = f(£,x(1),0(t)), t€lto,tn]l, x(to) = x0.

For historical reasons, the case where ® = 0 (no terminal cost) is called a Lagrange problem,
where as the case with L = 0 (no running cost) is called a Mayer problem. In optimal control
theory, we often consider xq (initial condition) and ty (initial time) to be [xdd. However, the
terminal time ¢; can either be [xdd or it can vary. Moreover, there can be a constraint set placed
on the terminal state x(¢1). We will mostly consider the case where the [nal time #; is [xdd (so
that we can neglect the #; dependence of ®), and there is no constraint on the terminal state,
and we will discuss how the various results may change if we consider the general case.

(2.15)

As with classical optimization problems, the primary object of study is optimality conditions.
One di Lerkntiates between necessary and su Lcieht conditions for optimality. The former asks
what conditions must any local/global optimum satisfy, and the latter concerns a condition that
is enough to guarantee optimality. In the following sections, we will investigate each of these
aspects in turn.

2.2 Pontryagin’s Maximum Principle

In this section, we discuss a necessary condition for optimality — the Pontryagin’s Maximum
Principle (PMP) —that is a hallmark result in optimal control theory and the calculus of variations.
It greatly generalizes the Euler Lagrange equations in highly nontrivial ways, and forms a natural
bridge between optimal control theory and deep learning, as we will subsequently investigate.

We will present the proof of the PMP in the case of [xdd end time, without constraints on the
terminal state. In this case, the problem is

u
infJl 1= /t L(t,x(8), 0(1))dt + D(x(12))

subject to
x(t) = f(t,x(¢),0(1)), t€to.t1l, x(to) = xo.
The proof of the PMP for this case is quite accessible, and hence we will present it in full. We

will discuss the PMP for other variants of the basic formulation, but we will omit the proofs as
they can be signi Lcantly more involved.

(2.16)

27

2 Optimal Control Theory

2.2.1 The Maximum Principle

To state the Pontryagin’s maximum principle, we need some de [niktions. Let us de [né the
Hamiltonian
H:RxRIXRYx0© - R,

. (2.17)
H(t,x,p,0) = p" f(t,x,0) - L(t, x, 0).

For acontrol = {6(t) : t € [to, t1]}, we say it is admissable if (¢) € © for all ¢ € [t, t1].
Theorem 2.7: Pontryagin’s Maximum Principle

Let * be a bounded, measurable and admissable control that optimizes (2.16), and x* be
its corresponding state trajectory. Then, there exists an absolutely continuous process
p = {p(t) : t € [to, t1]} such that

x*(t) = VpH(t,x"(t),p* (1), 0%(t)), x"(to) = x0 (2.18)
Pr(t) = =VxH(t,x*(t),p"(t),0°(t)), p"(t1) = =VxP(x"(t1)) (2.19)

H(t,x"(t),p"(t), 07 (t)) = H(t,x"(t),p"(t), 0)

(2.20)
VO e ®@and a.e. t € [ty, t1]

Proof 2.7: Proof of the PMP (Theorem 2.7)

The proof proceeds in several steps. To make the proof instructive, we will [rst assume
that the function ¢t + 6*(¢) is continuous, and we will relax this assumption at the end.

Step 1: Convert to Mayer Problem. De[ng an auxiliary scalar variable x°(t), with
Ot) = Lt x(1),6(1)), x°(to) = 0. (2.21)

Then, by going one dimension higher and setting ¥ = (x%, x), f = (L, f), and (%) =
®(x) + x° we can rewrite (2.16) as one without running cost in the new augmented
coordinates. Hence, we will hereafter drop the tildes and assume without loss of generality
that L = 0.

Step 2: Needle Perturbation. Fix r > 0 and an admissible s € ®. De [né the needle
perturbation to the optimal control

s ift e[r—e 1]

(1) = { 0*(t) otherwise 222)

28

2 Optimal Control Theory

Let X be the corresponding controlled trajectory, i.e. the solution of

Xe(t) = ftxe (1), 0c (1)), xe(to) = xo. (2.23)

Our goal is to derive necessary conditions for which any such needle perturbation will
be sub-optimal, thus resulting in a necessary condition for a strong minima in the cost
functional.

Step 3: Variational Equation Itis clear that x¢(t) = x*(¢) for t < r — ¢. Let us de [nd
fort >t

xe (1) — x*(1)
—_— (2.24)

ol = Jig,
This measures the propagation of the e [edt of the needle perturbation as time increases.
In particular, at ¢ = 7, v(r) is the tangent vector of the curve e — x¢(7), given by

o(r) = SILrBL{% ' f(t,xe(t),s)dt — ! /Tlf(t, x*(¢), 0%(¢)) dt}

T-¢ 3

= f(r.x(0).5) - f (z.x"(0), 0°(7)) .

For the remaining time ¢t € [z, T], x¢ follows the same ODE (2.23). Thus, by Theorem 1.9
v(t) is well-de [ndd and solves the linear variational equation

(2.25)

o(t) = Vx f (6, x7°(1), 07 () o(t), t€[r.n], (2.26)

with initial condition given by (2.25). In particular, the vector v(#;) describes the variation
in the end point x¢ (¢1) due to the needle perturbation.

Step 4: Optimality Condition at End Point. By our assumption, the control * is
optimal, hence we must have

D(x*(t1)) < D(xe(t1))- (2.27)
Thus, we have

@ (xe (1) — @ (x" (1) _ % O(e(n)) =VOG(n)-onm) (2.28)

=0+

0< lim
£—0+ £

In fact, the inequality (2.28) holds for any = and s that characterizes the needle perturbation.

29

2 Optimal Control Theory

Step 5: The Adjoint Equation and the Maximum Principle. The idea is now to
derive consequence that the end-point optimality condition have on each z. To this end,
we de [né p*(¢) as the solution of the backward Cauchy problem

P11 = —Vu f(t,x7(1),0°(1)"p*(1), p*(t1) = —=VO(x" (1)) (2.29)

Then, observe that we indeed have

Lp@owl=0 viclul = PO =y <0, (230)
which implies that for any = € (t, t1] we have

[p" ()] f(z,x7(),60°(2)) = [p"()]" f(z,x"(2),5) (2.31)
for any s € ©. By continuity this also holds for ¢ = 1.

By undoing the conversion in in Step 1, we can back to a general Bolza problem by sending
p* — (p°% p*). In particular, observe that 5°(t) = 0 and p°(t;) = —1. Hence, p°(t) = —1.
Hence, we get from the optimality condition (2.31) that

p'(0) f(z,x7(2),0°(7) - L(z,x"(1),0°(7)) 2 p*(1)" f(z,x7(7),5) — Lz, x(1),5), (2.32)

H (T,x*(1),p*(1).8*(1)) H(T,x*(1),p*(1).8)

where p* satis [ed the adjoint equation

p7(1) = =VxH(t, x(0),p" (1), 6°(1)), p"(ta) = —=V(x"(12)). (2.33)

Step 6: Extending to Measurable Controls. The last step is purely of technical in-
terest, where we relax the assumption that ¢t — 6*(t) is continuous. By the Lebesgue
di Lerkntiation theorem, we have for almost every t € (ty, t1),

i = [I X @.0°0) = £ (e (0.0l de = 0 (234)

that is, the measurable function ¢ — f(t, x*(t), 0*(t)) is quasi-continuous. Hence, the proof
steps 1-5 proceeds exactly as before, only that 7 is required to be a Lebesgue point, and
hence the solutions of the state and adjoint equations are now only absolutely continuous,
and the maximization condition (2.32) now only holds at Lebesgue points, which is almost
every t € [to, t1]. This concludes the proof of the maximum principle. O

Let us make some remarks on the maximum principle.

» The equation (2.18) is called the state equation, and it is simply

X(t) = f(t,x7 (1), 07 (1), (2.35)

30

2 Optimal Control Theory

and it describes the evolution of the state under the optimal control.

» The equation (2.19) is called the co-state equation, with p* being the co-state. As evidenced
in the proof of the PMP, the role of the co-state equation is to propagate back the optimality
condition and is the adjoint of the variational equation. In fact, one can also connect p*
formally to a Lagrange multiplier enforcing the constraint of the ODE. However, this
approach can only derive the weaker o